HRocket

Rocket UniVerse

UniVerse BASIC Commands Reference

Version 11.3.3

May 2021
UNV-1133-BASR-1

ROCKETSOFTWARE.COM

Notices

Edition

Publication date: May 2021
Book number: UNV-1133-BASR-1
Product version: Version 11.3.3

Copyright
© Rocket Software, Inc. or its affiliates 1985-2021. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the
use, import, or export of encryption technologies, and current use, import, and export regulations
should be followed when exporting this product.

http://www.rocketsoftware.com/about/legal

Corporate information

Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

Rocket Global Headquarters
77 4" Aven ue, Suite 100
Waltham, MA 02451-1468
USA

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information
and technical support, use one of the following telephone numbers.

Country Toll-free telephone number
United States 1-855-577-4323
Australia 1-800-823-405
Belgium 0800-266-65
Canada 1-855-577-4323
China 400-120-9242
France 08-05-08-05-62
Germany 0800-180-0882
Italy 800-878-295
Japan 0800-170-5464
Netherlands 0-800-022-2961
New Zealand 0800-003210
South Africa 0-800-980-818
United Kingdom 0800-520-0439

Contacting Technical Support

The Rocket Community is the primary method of obtaining support. If you have current support and
maintenance agreements with Rocket Software, you can access the Rocket Community and report
a problem, download an update, or read answers to FAQs. To log in to the Rocket Community or to
request a Rocket Community account, go to www.rocketsoftware.com/support.

In addition to using the Rocket Community to obtain support, you can use one of the telephone
numbers that are listed above or send an email to support@rocketsoftware.com.

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

Contents

N OTICES . tteeetteeete e ettt e ettt et e e sttt e ettt e e tae e e tee e e saeeassae e sseeasseeasssaeassaaeassseassseansseeensseeanssaeanseeeansseannseaeasseeansteeensaeeansseeensaeeansaaans 2
COrPOrate INFOIMATION...c.iiieieieictcee ettt ettt et s b et e st et e se e s e e s e et e s esseseeseesaesassassansaseeseasessessensensensesassansan 3
Chapter 1: Statements and fUNCLIONS.iviviiiiieirirere ettt ettt e e be st e st et et e e ssessesbensenseseessesessensens 15
L =) (=] 0 1] | SO U RO PRSP PP 15
HINCLUDE STAt@MENT..ciiiiiiieiieieiteceitc ettt ettt s st e e s ae e s be e e s sab e e e baeesabaeessbaessssaeesssaessssassnsaeassseessssaeesssaeens 15
G SEALEIMENT . cvietiveeereeeteeteet ettt ettt e b e e ereete et e b e b erseseeteeb e e b e b essesbersebeeb e et e b enbersertereebeebe b ensensereeneereerenrensens 16
SCHAIN SEATEMENT.c.vevitieietietieticteetet ettt ettt ere et ereebe et e s esse s eseebeebenbessessessessesessessessessessessesansensenserserseseesesansn 17
SCOPYRIGHT SEALEMENT....cviverierierierieteter ettt eteer et et ereereereesessessessessesseseesessensessessesessessassessessessessesensensenserseseesen 17
SDEFINE STATEIMENT...cueivietietierereeeteereeteeteetee et et ereete b esserseseereebessessessesseseesessessensessessessbensersessessesessensensensessessesensenes 18
SEJECT SEAtEMIENT...cevieeeeieteeteetiet ettt ettt ettt eteereebebe b essesseseeseebesbessessesseseeseebessessensessessesensensensessersereesensensenee 20
SIFDEF SEATEMENT.c.vivivceeeeietietietectet ettt ettt e e e e ereebeebe et e b esbesseseeseebebessessessesseseesensensensessessesansensensensessereesesensenee 20
SIFNDEF SEAEEMENT....cuecvievierierereereteeteeteereerest et et ereeressessessessesseseeseesessensesseseesesessessessessessesessensensensenseseesensensersesseses 22
SINCLUDE SEAEMENT....uiivivireeeeeretierierererereeteereeressessessesseseeseesessessessesseseesessessessessessessesensessensessessesessensersersessesessans 24
SINSERT SEALEMENT....vitieeeererieriereerestereertereererteteeere et ereesesessessereeseesessessessessessesesessensessessesaasarsensersereesessersensensensens 25
SMAP STATEIMENT....eivietietiireteeeeeeere ettt et et eteete b e be e et eraeseesessessessesseseebaesensersessessesesessessessessessesessensensensersesesensons 25
SOPTIONS SEAEEIMENT....cveitierirrireieeetecteeteer et et et et ereeses e esteseeseese s essessesseseesessessessessessesessesessensessesseseesensensensesseses 26
SPAGE SEAtEMENT......cuiieetiirietetet ettt ete et et ebebe b e e eseeteebesbe s essesseseeseesassessensesseseesassensensessessesessersersensersesees 32
SUNDEFINE SEAEEMENT....cuvcvieieriirierereeeeetiereerestesereereereetessessessessessereesessessessesseseesessesessessessessesesensensessessesessensenses 33
SEATEIMIENT . c.ueeteetecteete ettt et et e e et e s te et e be e e et e et e e b e s b e era e b e e ba e b e b e er s e b e eas e b e baeab e teeas et e ereenb e beeasenteereenseereentan 33
IR o] 01T = (o] GO PP P PP PR PPRROPRRONN 34
@ FUNCEION. ettt et et et e et e beeeaa e et s eebeeebbeeaes et e ebseeseseaseessseseesassenssessesassenseeessessessrseenssenens 34
[] OPEIATON . ettt sttt et s et s e st e b e st et e st e st et e satesbesseeat e b e eseesbesaae st e beeatenbe s st entesa e et e b eeatenbansaentesaeentents 48
ABORT STATEMENT...ciiiiiiteiteee et e e s bt e s seae e e s be e s s bb e e s baee s baeessbeeesssaesssbaeesssaessaassseeesnsseennsans 49
ABS TUNCLION.....titieteetecectese ettt ettt e s e et et e e e e b e e beesaesbesaaessessaessessasseessesseessessasssensaseessensesssensessenssensassesnsenes 50
ABSS FUNCHION. .. ittt ettt et et e e e et e s te e b e s beera e b e e beessessesasessesbeessensaessansessaensenbaessensanseensessenssensessenn 51
ACCEPLCONNECTION fUNCHION.c..ciiieirtirieieietet sttt sttt et sse st et et et e e eseesesbestessassesessessessensessessesassassensens 51
ACOS TUNCLION. ..uteteeteetece ettt ettt et et e rte s e et esbeeseebesbeersesbesssessasbaessensesssansesseessenbasssensenteessensesssensessenssensansannes 52
ACTIVATEKEY STAtEMENT..c.uiiiiiiiiiiieiteeeste sttt e e st essite e s ae e s sbae e ssaae e s baesssbeesssaeesssaesssssesssaeessseeessseesssaesnssesnnnes 52
addAUthentiCatiONRUIE FUNCLION......ccui ettt ettt e e be e e s seersebeebe e s e saessensesseensenses 53
F=To [o [O0=T g] dToF=Y {30 10 Vo Vot o] s VU UUOOOO U EO T U OO TS EUU RSO UR SRRt 55
addReqUESIPAramMeEter fUNCHION......coviiiireiireetetcereee ettt ettt e b et e e e e e e sbe st et essesessassnssassanes 57
ADDS FUNCLION. ...ttetictecteeteeteteeeet ettt et e et et eete et e ebe e e e sbeersesbesbaessesbaeseessesseessesseessensansaessessesssensesseensensanseensensenaes 58
ALPHA fUNCHION .ttt ettt e et e te e e e st e eteebesbe e b e bassaessaeseessesseessensasbaessensesssessesseensensaesaensesesnsansenaes 58
AMINITIALIZE FUNCHION.....iteceetececeeee ettt et et e et e s be e e e beess et e baessebeensensesssensenbaessensenssensenses 59
AMRECEIVEMSEZ FUNCHION ...ttt ettt ettt ettt be s e bt e et e st ebe e ebenaene 61
AMRECEIVEREGUEST fUNCLION. ettt ettt ettt st st st et et e e e e s sesb e s b et eseeseesessessansansessesessessensenes 63
AMSENAMSE FUNCLION....c.eriiuiiitiietetreeere ettt ettt et sttt b ettt st et st e st ebe b e b et ebe st sbenessenessenens 65
AMSENAREQUEST TUNCHION. .. iteieiririireretetet ettt ettt sttt et et s e st e b e b e b e e esessesbessessassensssessassansessessessesessensens 66
AMSENARESPONSE FUNCHION...ciiiiiieiiiriitcieetrceert ettt sttt st st s bt et e e s e e s e sba st essessesessessassansansesessessensenes 67
AMTEIMINATE TUNCHION. ..ttt ettt e e s te et e sbe e e e be st e e b e seersessesseensenbasssensasssensesseensensanssensenns 68
ANAlYZECErtifiCate fUNCHION. ..icie ittt ettt et ettt s e st e b e b e e esasbaebebansesaesassessansans 69
ANDS fUNCHION. 1ttt ettt ettt et e e e et e ste e s e beebae s eeseessessesssensasbaessensaessensenseessansesssensenseessensesssensensanssens 69
ASCI FUNCEION. .1ttt ettt ettt e e et e s te e e e b e e ba e b e beese e b esbe e s essaesaessenseessassesssensesaessensassaessensesssersansaensantanes 70
ASIN FUNCHION .ttt ettt ettt et este e e e tesbeeae b e e sa e b e ebeessesbeessensassaessenseeasersesssensensaessensesseensessesnsensassenns 71
ASSIGNED fUNCHION..c.eitietieteetecteeteetectee ettt rte e et e e be e e e be e e ebesbe e s e bassaessesssessessaessensassaessesseenseseessensessaensensenaes 71
ASSIENMENT STALEMENTS.....ciiiiiriieeeteee ettt ettt ettt s s b bbbt sbe e e e et et s s saennen 71
ATAN FUNCHION. .. ettt ettt et e e et e ebe e s et e e be e b esbeess e sesssessesbaessensasseensesssensesseessensanseensenseensenses 72
AUAIELOG() FUNCION. .ttt ettt ettt st b et bttt b e e be e b et b e e benessenenes 73
AUTHORIZATION STATEMENT....iiiiiieiiieecctecere ettt et sste e s sae e e s ae e s sabe e s baeesbaesssseeesssaeesssasenssaesnsseesnseeesssseessees 74
AUXMAP SEATEMENT.....eeiiieiietteeecetrteeeerete e setre e e s seteeeessssbeeeessssseaaessssssasesesssssesessssssseseesssssasesssssssesesssssasesensnnes 75
BEGIN CASE STATEMENT...ciiiiiiiiiiiitecitcctt ettt st este e e s ate e st e e s bt e e sbaeessbaeassbaeessteesssaesnssessnsseesssaeessseennnss 75

Contents

BEGIN TRANSACTION StAtEMENT.....iciuiectiieieeieeeeecteeiteeeteesteeeteete e teesaeesseessaesseeessessssesesassesssesnsesessesssesnseesssenses 75
BITAND fUNCEION. cc.tttttettectteteetece ettt ettt et et et et et ese et e ebeesbesbeesbebeessenseessessesseessenbaseessaseessensesssensenseessensesssensessee 76
BITNOT fUNCEION 1t ctteteeteetectect ettt ettt ettt et e e et e beeabesbeebeeabeebeessebeessenbesbeessesbeessesseessensessesssenseessensesseensensesseen 77
BITOR fUNCHION. cttitieteetecteet ettt ettt ettt ettt e sbe et et e s bs et e beessentesasenbesteessensaseesseteessensesssensenseessenseseenes 77
BITRESET fUNCEION.c.ttittiticteetectect ettt ettt ettt et et et esbeere et e ebeeaeeebeeasebeebsenbenbsessenbeessensesssersenbeessensesseensenses 78
BIT SET fUNCEION. ettt ettt ettt ettt ettt et e b et e ebeeab et e essebeebsenbesbeessenbeessesseessensesseessensesssenseseensensesseen 78
BITTEST fUNCEION . ctt ittt ettt ettt et et ere et e ebe et e beebeeab et e essebeesserbesbeessensaeseeaseessessensesssensenseessenseessensenses 79
BITXOR fUNCEION .t cttitieteeteetectcteee ettt ettt et et et et et e ebe et e ebeesbesbesbsenbesbeessessaessensesseessenbaessenseeseessensesssensenseessensens 79
[AN (G 7= 1 (=] 4 =] 3| OO PTPRN 80
BSCAN STAT@MIENT ...t e et e e e s et r e e s s e baaee e sestaaeeesessaaaeesssnsesaessanssasesssasseneessnsssenesssnses 81
BY TE fUNCEION tiettetieteeeeeeteett ettt ettt ettt et et e et et e ebeereesbeebeesb e beessensaeseessessseasenbaebsessenssessentesssensenseessensensesnsentesane 82
BYTELEN fUNCEION . 1icttetietecteteete ettt ettt et erreteese et e ebeesbesaeebsenseebeessensseseensesssessensesssensassessentesssensenseessenteeseenes 83
BY TETYPE fUNCEION ..icttitictieeeteetecte ettt este et et et e e eebeeas e beebeessebeeseenseebsersanbeessenbeessensesssersesseessensaessensesssensenses 83
BYTEVAL FUNCHION...cut ittt ettt ettt et et et e eteeab e beebeeaseebeessesbesssensebeessenssessensesseessensesssensaeseessenseersenseseen 84
(07 B] - | 1= g =T o | PRSP PSPRRNt 84
(07 Y] - | (=] 4 =] 01 TR UUPR USRSt 86
CATS FUNCEION. ..ttt ettt ettt ettt et et e ebe et et e esb et e ebeebeebeessesbaebeeasaebeessesbsessenseebsessenseessensesssensesbeessenseeseenes 87
CENTURY.PIVOT fUNCHION...cutiitietteticteetecteeteteere et eeteereesteeseeareeteeseessesbsensesseessenseeseensesssessensesssensenseessensesssensesseensens 88
(O P | Y = =T 0 g T=T | SRR PPNt 89
CHANGE fUNCHION. ..ttt et ettt et et er b e ere e b esteess e beebeeabesbsessesbesbsensenbeessenseessensesseensenbeessensaessersesseensn 89
CHAR FUNCHION. .ottt ettt ettt ettt ettt et et e ereebeebeesb e b e ebeeaseebeeaseseebsensenbeessenseessensesseensensaessessenteessenseaee 90
CHARS fUNCHION ...t eteettcteeteeteccte ettt ettt ettt e te et et e st eseeebeebeesbesbeessenbeesseaseessessensesssensenbeessenseessensesseensentesseens 91
CHECKSUM TUNCEION. vt ettieteeteeteereeeeete ettt ettt et ere et esae e s e beebeeabeebsessenbesssenbenbeessenseessensesseessenteessensaessersesseensen 91
(O I Y Sy = 1 (=T 0 =] o PPN 92
CLEARCOMMON......eiitieeieerieiteeeeeeiteeeteesseesseeesseesseesseesssasssesssesssesssesssessssessessssessssessesssssssaesssessesssesssssssessssesssesssasses 92
O N DN N - 1 (=] 4 =] o RPN 93
(O I = o | Sy = = 1 0[] | SO UR 93
CLEARPROMPTS SEAt@MENT..cciiiteiee ettt ettt ettt e s eeae e e s s et tae e e s s e baaa e s seesssaeeesensssaessensssnaessensssnesssnsssnnen 95
(O I N Y Y I L O I - 1 (=] =] o RSP 95
(O IO S =] - 1 (=T 1 4 =] o | OO U UPRRR RPNt 96
CLOSESEQ STat@mMENT....ecieiceiieeeectee ettt ettt e e sstte e e e s rae e e s ssavae e e e s abaaeesesssaaeeessnstaseessnsseaesssnssanesesssesnesasansen 97
ClOSESOCKET FUNCLION.eitietieeeectecttctecteet ettt et ettt ebe et e ebe et esbeesseabeebeessebesaserbesbeensensaessenseessensenseessensanseens 98
ClOSEXMLDAtA fUNCEION..c..ictieteetectectetectect ettt et et er e bt e e e saeeasesbesbe e b ebeessebesssenbesbeessenseessensesssensenseessenseeseenes 98
COLL fUNCEION. ettt ettt ettt ettt ettt et et e be e e et e ebeeabesbeesbebeebsenseebeessessessenseessenserseessensesssensesseensenseessensesseensan 99
COL2 fUNCEION. ettt ettt ettt ettt ettt et et et e e et e ebeeabesbeesbesbeebsenseebeessessessenseessensasteessensssssensesbeessenseessensesseensan 99
COMMAND .EDITOR....ccteeteeeteeeteeiteeiteeseeeteeeseesteeeseeseesseesssassaeseesssesssasssessesassassssesseassessseessesssesssessessssesssesnsens 100
L0001 1 1 ISy 7= 1 (=] 4 1 =] o) RS PURRNt 104
COMMON STAtEMIENT....eiieiicciie et e e rre e e e s e ber e e e sestae e e e s baaeessssbaseeesasseasessssssaneesssstaseessaseseeessnntes 105
COMPARE fUNCHION...ttittetietecteere ettt ettt et et e te et esbe e e et eebeessesbesasenbebeessesseessensesssersensesssensenseessesesssenseseen 106
CONVERT fUNCEION 1t ttteteteeteetecte ettt ettt et et eaeesteere et esbeessenbaebeessesbeessensasssensensaessenseesserserseessenseseessenseessensenses 107
L0101\ AY 1 IS =) (=T 0 0= | ST 108
COS UNCHION. ettt ettt ettt et ebe et e et e eabeebeessesbeebeerbeaseessenseessensabeessenseessensesssensenbeessenseessensenses 108
COSH FUNCHION. .ttt ettt ettt et et ete et et e et et e beeseebesbeesbebeessensaeseessesseessensesssessenseessensesssensentesssensenseens 109
COUNT FUNCEION. ettt ettt ettt ettt et et et et e et e eseesbeeasesbesbeessenbeessessesssessenbeessensaseessentesssensesssensentenseensenns 109
COUNTS fUNCEION. cut ettt ettt ettt ettt et et et e e e beeb s eabeebeesbesbesasensesbeessenssessensesssersanbeessensaeseensesesssensesseen 110
(01 TN S = | (=] 4 T=T o | SRR 111
CreateCertifiCate fUNCLION. ..ottt ettt e be et et et e eseebseasenbesbeessenbaessensesssensensesssensans 112
CreateCertREQUEST fUNCLION.....cciiciececeeee ettt et e e e et e e e e besbe st e b esbessesaesasesbessessasansessensens 113
CreatEREQUEST FUNCIION.cuieieececeetee ettt et et e e et e et e e eseebe b e be st esbesaessesessensensessassesessensensans 115
CreateSeCUrEREQUEST fUNCLION....ciiiieieeeee ettt e st st e e s e e seebe st e e tesaesaesaebessestessassessesessensan 116
CreateSeCUrityCONEXE fUNCLION....ii ittt e et e e st e e b te et e b e b e e esaebesbe st essesseseesessessansansaneas 118
O] IS =1 (=T 0 1= o | ORI 120
D 1N =) (=] 0 0= o | ORI 121
DATE fUNCEION 1t etteticttetectecte ettt ettt et ettt et e ere et e ebeerbesbeeseenseebeessenssessersesssessanseessesseessersenseessenbanseessenseessensenses 122
DATETIMEL FUNCHION..ctitttitietecteetecte ettt ettt et et et eseebeebeeteeaeessebeebsessebeessesseessensassessenbaessensesssersensesssensans 122
DATETIMEZ fUNCEION . cutitietieteitietecte ettt ettt eseeeteere et esbeese e beebeesseebeessensesseessensaessenseessersensesssensenseessenseessensenses 123

Contents

DBTOXML FUNCHION...cttetiitieteteete ettt ettt eteete et ete et esteessesbesbeessenbeeseessesseessensaessersanseessensesssenseseessenseessensesssensan 123
DCOUNT FUNCHION. .cctiiteetectectteteere ettt ettt et e ere et e eteeas e beebeebeebeesbesssessensesssensenbeessensesssensenseessentaessensesssersensesssens 124
DEACTIVATEKEY STAt@MENT...ciiiiiieeectte ettt ettt cttee e s s rtee e e s s rta e e s e s aba e e e s snsaaaesesasseaesassnssaeesssnsenesssnssnes 125
D] YU I - 1 (=] =] o) OO UT 125
DEFFUN STAtEMIENT.....eiieieee ettt ertee e e s rre e e et ba e e e s e bt e e e s esssbeaeseessssaaeessssaaessessseaesssssteessansnsens 126
(D] Y ISy =1 (=] 0 1 1= o | USSR PRRRRRRt 127
DELETE fUNCHION..ectiitietteteetecteete ettt ettt et ere et e eteess e beebeeasesbeessensesasersesseessensaessessesssersensesssensenbeessenseessensanses 128
D] Y I) Sy = = 1 1] L T TP TN 130
DELETELIST STAt@MIENT..cciiiieeee ettt e e st e e s e st bae e e s s b ta e e e e s nbaaeesessstaaesesnstaessensssaaseessssranesannes 132
DESCRINFO fUNCEION.c1icttietieteetecteeteeteete et et eteeteeasebeeseeeesteersesseessensesbeesseseessensesssensenseessenseessenseseessenseessensenseenes 132
DIGEST fUNCHION. cttittieteceteeteeecetecte ettt ettt et et e st e ebe et e ebeesbesbeebsenbebeessebsessensesseessenseessenseessersensesssensenseessensens 133
DIMENSION STAt@MENT....oiieiiiieee ettt e e s e tar e e e ee e e e s e s baa e e e s s staaeeesassaaesessnssaaesssansenesessnssanesannns 134
DISABLEDEC STatemMENt. ... e ettt sttt ettt eeiee e e e e ttae e s s s bae e e s seastaee e e s s saaeeassnssaneessanssasesssnsseseeassnnees 136
D] Y o I N] - | 1T g T=T o) USRI 137
DIV fUNCEION 1ttt ettt ettt ettt ettt e et et e sbeeaeebeeseesbeebeessebeesseasaeseesbenbeessenbasssenseessessensesssenseseessenteeseensesss 138
DIVS FUNCHION. ..ctiittetecteeeecteete ettt ettt et e et et e te et esbeeae e besbeessesbseseessesbsensebeessenssessensesssensenteessenseessensenseessensesseens 138
DOWNCASE fUNCEION...cctietictictietieteeeeett et et et eteeteeseeeteeseebesbeessesbeessenbeeseessesseessenbasssessesseersensesssensesseessenseessensesses 139
DQUOTE fUNCHION. ccutieteetiietietectecte ettt ere et e et et ebeeseebeebeesbesbesssenbaebeessebeessensesssensesbeessensaessensesssensenteessenseeseeres 139
DTX fUNCEION 1ttt etectectecteee ettt ettt ettt et et e ebe et e sbe e b e beebeerbeebsesbebeebsenbebeessesseessenbesssensenbeessenseessensesssensenseessensans 139
EBCDIC fUNCEION...i vttt ettt ettt eete st et eeseeteebeesbesbeessenbeeseessesseessenbeessessanseessenssessensesssessensaessensesseensenss 140
L0 L@ ISy =1 (=] 0 = o | OO ST 141
ENABLEDEC STAt@MENT...cc ettt sttt eetee e e e e erte e e s e st bt e e s s s aba e e e e s sbeaeesessssaaesenssanesssnnssnaesannnes 141
ENCODE fUNCHION.ccttitietteticteeeecteet ettt ettt ettt e ete et e b eebeere e besbsesbesbeessenseessensesssessenbaesserseessenseseessensaseessenseenes 142
ENCRYPT fUNCHION.c.ttititieteetiete ettt ettt ettt este e b et ebe et e ebeess e besseessaeseesbesseessensasssenseseessensesssensenseensensenns 143
o IS = 1 (<] 4 =] o | USRS 148
N D O N =Y = = 1 4[] | SO RSO RUPR 149
END TRANSACTION SEAt@MENT...cc ittt sserre e s e s rae e e e s ebaae e e s sesbaaeeessnstaeesssnsanessssnssneesannns 149
Lo N I T - 1 (=] =] o) PR 149
EOF(ARG.) FUNCEION...ttitietieeetietectectece ettt ettt ettt ete et e st e e e et e ebeesbeebeeasebesbsesseseessesesssensebeessenteessensesssensan 150
[I3 (T g T o TR 150
L@ AN I Iy = (=] 1 U= o | ORI 150
EREPLACE fUNCEION ..t ctteutietieteeteeteeeeere ettt ettt e ste et esteebeeaeeeteeas e beessensebeessesssessensesseessensesssensenssersensesssensenseessensens 152
LR Y Y RS = (=T 1 41T o | SRR 152
EXCHANGE fUNCHION...cutiticteetectectecteee ettt eaeeste et ettt e eseebeebeesbesbeessenseebeessesseasenbesssensenbeessensesseersensesssensasseens 153
) S LU I] - 1 (=] =] 4 PR PUPRRRRt 154
) I Y = (=0 41T o | ST SRRt 156
EXP fUNCEION. ccttitietteteeteee ettt ettt ettt ettt eab e be e be et et e eseebeebeensesseessenbaesseasesssessenseessensenbeessenssessensesseensensens 157
EXTRACT fUNCEION. ettt ettt ettt ettt et et e e et e ebeerteebeeabebeebsesbeeseessesesasensesbeessenteessenseessensenseessenseeseenes 157
FADD FUNCHION..c.tictieteticteetiete ettt ettt ettt et e teereebesbeess e beessesseeseessesseessensaeseessessessensesssensenbeessenseessensesseensensens 159
FDIV fUNCEION. e ttittietectteeteee ettt ettt et ettt ettt et et ebeeteebeesb e beess et aeseeabesasesbenbeebsessanbeessenseessensesssessentaessensesssensenses 159
FRIX UNCEION ettt ettt ettt ettt et e b et e te et et e ebseabeebeeseesaesasersenbeessenbaeseerseeseersensesssensenbeessenseessensesseensans 159
FRLT FUNCHION i ttteteeteceecteeteete ettt ettt et e et eaeeebeebe et et e esb e b s ebeensesssersenbeessenseessessenseessensanbeessenteessensesssensesesssens 160
FIELD fUNCEION . 1ecttietietteetecteetecte ettt ettt et ettt eaeeteeseesaeebeesbebeessensaessessesseessenbesssessenssessensesssensesseessensaessensesseensenses 160
FIELDS fUNCHION. .ctiitteteetieteeteee ettt ettt ettt ettt eteebesbeessebeebeenseeseessesseessensaeseessesseensenseessensenseessenssersentesseensansenss 161
FIELDSTORE fUNCHION....viittiticteceetiete ettt ettt et eae et ereetesbeessenbeeseesbesbeessebeessenseseessenssessensesseessenseeseensenseenes 162
FILEINFO fUNCHION. ccttietietteetectecteeteeteettere ettt ettt et ebe et eeasess e besbeessenbaessessessserseseessensasseenseseessensesssensensesssensanns 163
[| O L O Sy =) = 1 0[] | ST 167
FILEUNLOGCK SEatmM@NTt. . ittt cectte e seetre e s sette e e s s e iaae e s seeabae e e s sensaasessssnsaneessnsssasssssssessssssnssasessnsnsnes 169
L1 D IR = (=T 4 =] | ST PSRNt 170
FINDSTR STATEMIENT....eiiiieeeee ettt e e e e s rre e e e et ae e e e s s bt e e e sesssbteseessstaasessssstasssanssseassesssstaesssnsnsens 170
FIX FUNCEION. 1ttt ettt ettt ettt et et ereebesbeeab e beebeeaseeseesbesseessenbaeseessesssessenseessenbenbeessenssessensenseensensens 171
[WY o 1] - 1 (=] =] o PR 172
FIMT fUNCEION 1ttt ettt ettt ettt et eae et e e be et et e ebeebeebeessebeessenbaebeessessessensesssensenbeessensesseensenseessensenseens 172
FIMTDP fUNCEION. ..itiiteeieeteceeete ettt ettt et ettt e beebe et esbeeseeebeebsesbesbsessensaessessesseessensesssensenteessenseessensesseessensenseens 175
FIMTS FUNCEION. .ottt ettt ettt et et ettt e st e ebeeab e beebsenbeebeeasebsessensesssensanbeessenseessensesbeensenseessenseessensenss 176
FIMTSDP fUNCHION...ttetteetieee ettt ettt ettt ettt et e et et e eaeeseebeebeesbebeessenseessensesseessensasseessenssessensesbsensenseessensanseenes 176

Contents

FIMUL FUNCEION. ottt ettt ettt et e esteebe et et eseesbeebeesbesbeessenbaebeesseseeasenbesssensenbeessensesssensesseessensenseens 177
FOLD fUNCHION. .1t ettietteteeteete ettt ettt ettt et ete e esteebe et e et e esb et s ebeesbesseessensaessensesssersensesssensanbeessenteessenseessensensesssens 178
FOLDDP fUNCEION.c.tttttitieteeeecte ettt et et et e s be e e ebeebeeseeebeebsessesbsessenbeessensesseerseseessensenseesseseessensesseensenseessens 178
O TO I I 1\ LISy =1 (=] o 1= o S USRS 179
[RS =) (=] 1 1= | SRR 181
FORMLIST STAtEMIENT....ceeeiieeeee ettt e e e e rre e e e et te e e s s saabaaeesesssbaaeeeesstaeesssssaaessensssneseenssraesannnes 184
FSUB fUNCEION. ...t itiettetectecteecte ettt ettt ettt e ste e et e et e e b e b e ebeesaesaserbenbeessensaessessesseessenbasssessenteeseenseessensesesnsens 184
FUNCTION STAt@MENT. ...ttt rrree e e tre e s s eerar e e s s ebea e e e s s baee e s s btaaesesnbaaeesssnstaeesesssseaesessssasesannns 184
GCDISTANCE fUNCEION.ctittetictietteetecreetecteee et ettt e eteer et e eseeseeebeerbessesssensebeessenseeseersesseessentasssessenseessensesssensenseessens 186
BENEIALEKEY TUNCHION .ttt t e sttt et e et e s e e ebe e sbe e sbesessenersesensone 186
BENEIALEKEY TUNCHION .ttt t e sttt et e et e s e e ebe e sbe e sbesessenersesensone 188
GES UNCHION. ..ttt ettt ettt ettt e b e et e s e et e ebeebesbeerbenbeessenseebserseseessenbenssessenssessensesteensenseessens 189
€] = ISy = 1 (=T 0 =T) OO URRR PRt 189
ZEtCIPNEISUITE FUNCHION. c.cotititeiteete ettt sttt ettt e e be e s b e e besesbesaseseneens 192
oL A | SO O PO TRPPPPN 193
(€] = G 7= 1 (=] 1 1 T=] 2) U PO UUTRN 193
GET(ARG.) SEATEMENT....cveeteetieteetectectcteete ettt et et ete et et eae et e ereebesbsesb e beessensaeseessessesssensesbeensenseessersesseensensessnens 193
ZEtHTTPDEfAULL FUNCLION. ..ttt ettt st sttt et et eba e ebe e ne 194
L€ = Y I =1 (=] 0 1= 1| USRSt 195
GETLOCALE fUNCEION...ictt ettt ettt ettt eseesteereeaeebeess e beessenseessensesseessensaseessesesssentesssensenseessenssessensenses 196
GETREM fUNCEION. ctt ittt ettt ettt ettt ettt et eteeabesbeebsesbeebeeseeebsessenseessensanbeessenssessensasseensenseessenseessensenss 196
ZetSOCKEEITOrMESSAZE FUNCHION...cuecirieieie ittt ettt sttt e se s e be e s benessesestenessenens 197
getSocketINformation FUNCLION.. ...ttt ettt be e b ee 197
ZEtSOCKEIMAP FUNCHION. ...cciitiieieieieetete ettt ettt sttt b et se e ba e ebe e sbasesbanenes 198
ZEtSOCKELOPLIONS FUNCHION. c.ctiuiieiiteiitetetre ettt ettt ettt ettt e e be e be e be e senenes 198
(O R V3 = 1 (=] 1 =] o SRR 200
(GOl O ISy =1 (=] 1 0= o | SRS 201
GROUP fUNCLION. .cttettetitecteete ettt ettt ettt et saeeas et e e beeabeebeesbesbesssesbebeessensaeseessesseessensesssensenseessesesssensesseensens 201
GROUPSTORE StatemMENT. ... e ettt ettt srtee e e srree e s e s stre e e e e s beae s s e sbaee e e s nstaeesesnbaaesssnnstaaeesssnseneeanns 202
GTS FUNCHION. .ttt ettt ettt et et et e beebe et e b e eseesbeebeesbebeessenbeessesseasserserbeessensenseessenssessensesseensensens 203
HEADING STAteMIENT....ceiieiieee ettt rre e e e e e s e e aa e e e s e btee e e senstaae s s s sbaseessnnstaaeeesssenessssssanesansnnnes 204
HMAC fUNCEION 1ttt ettt ettt et eebeebe et e be et eebeesbenbesbeessenbaesserseessesseseessensaseessenssessensesssensenseessensens 207
[1O o I =1 (=] 1 1 =] 0| PR 208
ICHECK fUNCEION. ettt ettt ettt ettt et ete et et e et et e ebeeabeebeessenbeebeessaseessensesssensanbeessenseessensesssensenseessensens 209
ICONVY FUNCEION . ..cutitietietictecteete ettt ettt et et et e teebeebeebeesbeebeesb e beebsesbeseessesseessensesseersenseessensesssensesseensenseessensanns 210
ICONVS FUNCEION. .ctieteeteeticte ettt ettt ettt et e b e et eae e beebeebesbeesbebeessensaeseessesseessensesssersenseessensesssensensesssensanseens 212
1S = 1 (=T 0 =] 0) USSP 212
IFS fUNCEION ettt ettt ettt ettt et et et e se et e et e b e ebeeab e beebsesbeeseessesseessenseebsessanbeessenseessensenbeensenseessenseeseensentes 214
ILPROMPT fUNCHION. ..cttitietieticteeteeteeet ettt et ere et eete e e eteebeeseeeteeasesseessenbesseessesssessensesssensenbeessensesssensesssensensesssensanes 214
LN (O I U1] - | (=T g =] o | OO SPR 216
INDEX FUNCHION.c.cttietiettetetiete ettt ettt et ettt ereebesbeesb e beeseessaeseessesseessensaseessensaessessesseersensesssensenseessenseessensenses 217
INDEXS FUNCHION.ccutittettitictectecttet et ettt et eete e estesbeerb et e eseesbeebeerbebaessenseebeessanseessensesseensenbaessensesssensensesssensanseens 218
INDICES fUNCEION 1t ettietieteeteeteet ettt ettt ettt et eeteereetesbeeas et e essebeeseesbesseessenbaessensesssensesseessensesseessenssensensesssensensenns 218
INIESECUIESErVErSOCKET fUNCHION. . .ictieeietieteceecte ettt ettt r et et s ae e b et eab e beeseebesasensebeessenseeseenes 221
INIESEIVEISOCKET fUNCEION...ecttitieeectictecteteet ettt ettt ettt ete e e teebe et et e eseeebsersenbesseensenbeessenseessensesseensens 221
INMAT FUNCEION. ..ttt ettt ettt et et e e beebe e b e et e ebeesbesbserbesbeessensaessessessseasensesbsensenteessensesssensenss 222
N O ISy =) =T 0 1= o | PSR TRRUUPRRt 223
INPUTCLEAR STATEMENT...cc ittt ettt ertee e s stee e e e e te e e e s s bae e e s s atae e s s s sbeaeesenssanaesssssstaasssnnssanessnnnes 226
N O DT Y oSy =1 (=] 0 1= o | ORI 226
I O DT Sy = 1 (=] 4 = o) RSP RURUUPRRRRt 227
INPUTERR STAT@MENT....ciiiiiieee ettt ettt sete e s s eee e s s e ttae e e s s baae e e ssstaae e s s sseaeesasnssaaesssssstaeesansssenessnnsenes 227
I O W S = 1 (=] 0 1= o) OSSP PRPRRRROt 227
INPUTNULL SEat@MENT.. ettt erttee s tte e e s s s eree e e s s btae e e s s nbaaeesssnstaaesssensenaesssssansesssseanesssnnses 228
INPUTTRAP STAtEMENT.....eeeeeeecee ettt et e e e s erte e e e e s ba e e e s s atae e s e s sbaaeesesnsaaeesesssstaessansssaaesenssssnesann 228
N IR = L] 1 1= 1) PR PUTRN 228
INSERT fUNCEION. cttittiettctteeteeteeteeteet ettt ettt ettt et et et esteerb e beebeess e beesserbesbsersenbeessensaeseessensesssensesssensenteeseensanns 230

Contents

INT FUNCEION ettt et ettt et et e et e e e beebeeabesbeesbebaessensaeseessesseessensesbsessenseessensesseensentesssensansenns 232
ISINULL fUNCEION. ctt ittt ettt ettt ettt ere et e sbeersebeebeessesbeessesbesbsersenseessensaeseessenseessensanbeensenseessensesseersenss 232
ISNULLS fUNCEION...etietteticteetectecr ettt ettt esteete et et ereetseseesbeeseessenbaeseessesseessensesssensenbeessenseeseessesseersensesssensanseens 233
ITYPE fUNCHION. cccttitieteetecteee ettt ettt et ettt ettt et et e e bt e tesbees b e beebsesbeeseeabesseessensaseessentsessensesssensenbesssensseseersenssensan 233
KEYEDIT STAteMENT. .. ettt et e e e ter e e s s et aa e e e e s baa e e s se s baeeeessnseaeessssssanaeesnsstasesssnssesesansntes 235
o IS 7= 1 (=] £ aT=] 0 SRRSOt 239
KEYIN fUNCEION vttt ettt ettt ettt ettt et et e e esbeeasesbesbeessebaessesbesseessenbesssensanbsessenssessensesssessenseesnensenns 239
L Al 27 Sy = = 1 41T | SO U 240
LE T fUNCEION . ctt ettt ettt ettt et et e ebe et e ebeeabesbeessenbeebeessessersenseessensabeessenssessensesssensenseessenseessensenses 241
LEN fUNCEION et tttiteeteetecteete ettt ettt et ete et e eteeteesbeebeeabeebeesbesbeeasenbeebeessenseessesseesserbenbeessensaessensesssenserseensensesssensenns 241
LENDP fUNCEION . ..ctieteettietiereccte et ettt et et et et eaeeasesbesbeessebeeseesbeeseessesseessenseeseessanssessensesssensenbeessensesseensenseessensesseens 242
LENS FUNCHION. 1ottt ettt ettt ettt et et eb et eae e beebeeabesbeesbebeesseasaeseessesbesssensesseessenteessensesssensensesssensensenns 242
LENSDP fUNCHION...ttittietictretectecteete et ettt ettt esteeseeaeebe et e beessenbeeseessesssesbensesssenseseessenssessensesssessensaessensesseensenss 243
LES FUNCHION. 1ecttetectecteettct ettt ettt ettt ettt sttt et eae et e ebeeabesbeessenbeessessaessersesseessensaessersesbeessenseessenseseessenseessensensee 243
[IS =1 (=] (= o | OO UPURPUPN 244
LN fUNCEION ettt ettt ettt ettt et et e e bt e beebsesb et e essenteebeeaseeseesbenbaessensanbeessensesssensebeessenseeseensesssensan 244
0adSeCUrityCONTEXE FUNCHION...c.eiiitieeieieeeee ettt e et et s e s e b e st e besbesbesbenseneeseesansenes 245
LOCALEINFO fUNCEION...ctiitteticticreeteeteeteete et eeteetresteebeessesteeseebeeseesbesseessensaeseessesseessensesseensenseessensesssersensesssensesseens 245
LOCATE statement (IDEAL and REALITY SYNTAX)....ccuevieerieriereereeeeresessesseeeessessessessessessesessessessessessessssessessensenes 246
LOCATE statement (INFORMATION SYNTAX).....cceruereereeeeresesiesieeeesessessessessesesessessessessessessessssessessessessessessesenses 248
LOCATE Statement (PICK SYNTAX)...iiiierieeeeeestesiesieteeeessestessessesesessassessessessessssessessessessessessesessessessesessessssessens 250
[0 01 G = 1 (=] 1 =1 | RPN 253
OO) Sy - 1 (=] 4 1= o) OO U UP TN 254
LOWER fUNCEION..ecttittieticee ettt ettt et et ettt be et eteebeebesbeesb e beeseesbeeseessasseessensabsessenseessansesssensenbeessenseessensesses 255
LTS FUNCHION ettt ettt ettt ete et eeteeab et e e beeabeebeers e beebsenbesbeessanssessenbesssessenbeessersaessensenssensenseessensenseeses 256
N Y =1 (=] 0 1= o | TP SRR 257
MATBUILD STatemMENT. .. e ettt erree e e et te e e s e sttt e e e s s btae e sesasbaaeesenstaeeaesssstaessenssseasssnssssnesans 258
MATCH OPEIATON ... iiieeeeieeett ettt ettt st e st e e s rte e s bt e s euseeseaseeesaeeessbeesaseessssaesansaessseessnseessssesssseessseessnsees 259
MATCHFIELD FUNCEION. 1cttettietieteeetectt ettt ettt ettt et ste et et ebeeteebeesbesbeessenseeseensesseensensaessensenseesseseessensesssensenseens 260
LN I AN R oY =Y (=] 1 1= o | ST 261
MATREAD STat@mMENTS. .. ettt sete e e e e ette e e s s e tae e e s s baaeeessnsbaeeeasanseaeeassssaaesessnstaeesenssaaeeas 262
LN I TN D ISy =Y (=] 1 =1 | RSP 265
MATREADU STAtEMIENT....eiiiiieee ettt e e et e e s s e aee e e s s baae e e s s taaeaesenbeaeesssstaaeessanstaseesnsssenesannns 265
MATWRITE SEat@mMENTS. ettt s e e et te e e e s et e e e s e s abaee e s s sstaeeeessnsaaessenssstaesessnstaesssnsnsens 265
MATWRITEU STATEMIENT....eeiei ittt e s e e rtre e e s s e teae e e se s seaeeesesseaeesssssaseessaseasesssassasesesnnssnsesanas 268
MAXIMUM FUNCEION...cctieteeticteeiecteceect ettt ettt esteeteebeeseeeesteessenbeebseaseebeessebeessensesssessenseessenseeseensansesssensenseenseseeses 268
MINIMUM fUNCEION . c.tttttetietieteie ettt ettt et et et e e et e ebe et eebeeasesbeebaessesbeessensesssensensaessensasssensesseessensesssensaseens 268
MOD FUNCEION. ..ttt ettt ettt et ereerbesbe et et e ebeebeebeesbesbeessenbeebeesseseessensesssensenbaessensesseensenseessensenseens 269
MODS FUNCHION. .ttt ettt ettt ettt e bt et e ebeeabesbeebseabeebeeseessersensesssersenteessenssessenseseeasenseessenseessensenses 270
MQUCLOSE fUNCHION. c.tiitieteeteeteeteete ettt ettt ettt estesbe e besbe e s eebeeseesbesbsensebeessenseessensesssensenteessenseessensenseessensesseens 270
MQUCONN FUNCHION. .. tiitieteetecteeteete ettt ettt ettt et e e beea e beeseesbeebeesbesbeessenbeessessesseersesseessenteessensesseensensesssensansenns 271
MQDISC FUNCHION...c.ti ettt ettt ettt et et e et et e ebeeaesbeessesbeebeeabesteeasenseessensanseessenssessensesseessensasseenseeseesseseessen 272
MULS FUNCEION . ..ctieteitietecteee ettt et ettt eeteereebesbeeseeaeeseesbesbeersenbaessensaeseessesseessenbasssensesseersensesssensenseessenseessensesses 273
NAP STATEMIENT....o et e e e e e rte e e e s bae e e s s baa e e e e s s baaeeasssstaaeeasssseaeseesssaassessaraaeessnssnes 273
NEG fUNCEION. ettt ettt ettt ettt et e et e et e beebseabeebeessessessenseessersenbeessenseessenseseensenbeessensesssensenss 274
NEGS fUNCEION 1t ittiettetteetect ettt ettt ettt et ete et e sbesbe et e beeasenbaebeesseeseersenbasssensanbeessersesssenseseessensaseerseseeses 274
NES FUNCHION. c.ttiticteeteeteee ettt ettt ettt et et e et e b et e ebeesbeebeesbenbeesseasaebeesseseessensaessessentaessensesssersenseessensans 274
LN QI = (=] 1 =] 1) O OO RTTN 275
NOBUF STat@MENT.ccc et e e e et re e e e st b ae e e e s e b tae e e e s s baaeeeesstaeesessstaessensssaeseensseaesannnes 275
NOT FUNCEION . titeetetiettctecte ettt ettt ettt erte e b et et e ebe et e ebeesbeebeesbenbabeessabsessansesssenbesseessenbeeseersesseessentesseensenseens 276
NOTS FUNCHION. .ttt ettt ettt et e b e et ereesbeeaeesbebeessenseeseessesseessenbaessersanbeessensesssensanbeessenseeseensesssensan 276
NOW FUNCEION. ..ttt ettt ettt et eete et et et e ebe et s ebeeabeebeessenbaebeeasesbeessessesssensenseessenbaessersesseersensesssensensenns 277
O T Y =) = 0 01T | S USSRt 277
NUM FUNCEION. ..ttt ettt ettt e bt ee et e ere e besbeeab e beeseeaseessesbesseessenbaeseessastsessensesssenbenbeessenssessensesseensensens 278
NUMS FUNCEION. 1ttt ettt ettt et e ete et e e eebeere e besbsesbebeessenseessensesssessenbeessersesssensenseessensassensenseenes 278
OCONV UNCEION. vttt ettt ettt et ettt et e et ereesteebe e besbeessenbeebeessesssessensasbsessenseessensessserseseessensesseensenns 279

Contents

OCONVS fUNCEION. .t ettt ettt ettt ettt et e e be e e e be e b e esseebeessesesbsenbesbeessenssessensesssersenbeessenseseessesesssensesees 280
(01N IS} - 1 (=T 4 T=T o | PR UUPRRt 281
(O 1 = Y = =1 01T | SRRt 283
(01 L O O Gy =) =] 0 1= o | TP SRRt 285
OPENDEY STat@MENT....oiii ettt ettt eete e e e e rtae e s e s vtee s e sssbaeeeessnstaeeasssssaaeessssssaassssssstaeesssassanesensnssen 286
(O 1] o N I o ISy =1 (=] 0 0= o | PO 288
OPENSEQ SEAt@MENT...c ettt eee e s e s bae e e e s bta e e s e s baaeeessnstaaeaessstaeeessssaassessnstasesasnsseneeas 289
0PENSECUrESOCKEL FUNCHION.iiiiceieeeese ettt b et et e st et esbe e e saebestassessesaenaesesan 293
OPENSOCKET fUNCLION....cuietietictieteteteeeteetee ettt et ettt e et e et et e s esaebeebe st e tessessessesaesesessessassessesessensensan 294
OPENXMLDALA FUNCEION....ictieticteteeeeetee ettt et et et e st et esa e s e e e be st e tessessessesesesesassessesaasessentesensans 295
ORS UNCHION. ..ttt ettt e et e eb et et eebeers e beebeesbesbeessenseessenbesseessenbeessersaeseessenseessensassensenseeses 295
AN €] oY = (= 0 0[] | SRS PSRNt 296
[S O 1 IS =) (=] 1 1= o | ST PURO 297
[S O Y (O] N B = 1 (=T s 1=] | PSRRIt 298
Prepar@XML fUNCHION.ciciecctetceee ettt e st e et e e e e et s b e b e ae e esaebasbesbesbessesaesassestensessassassasansen 299
[LV IESY =) €= 0 01T | SRR PPRPRRRt 299
L LA I = RS = (=T 0 (= o OO SUTRNS 301
PRINTERR STAt@MIENT....ceeeiiiceieeeeee ettt et srree e e e s bte e e s e e bae e e s s saaae s e s nbaaessssastaeesessstasessnssanesannns 302
[O O] = Ny =1 (=] 0 1= o | SO UTR 303
[O LA I Sy =) =] 0 0= o | PRSPt 303
PROGRAM STAtEMIENT.....eiieiiceeeeecctee ettt srrree e e e et re e e e s s bae e e s e s bae e e e s nseaeesessssaaesessnstaeesensstasesssnssanesannns 303
[O L | o IS = =T 4 T=] o) O UR 304
ProtOCOILOZEING FUNCLION..ciiviiiteirieieietete ettt sttt ettt e st et sse st sbesssbenesbenessenessenersenens 304
PWR fUNCEION 1ttt ettt ettt et et esteebe et e beeaeebsebeesbesbeesbensaesseasaeseessentesssensenseessenseessensenseessentesssensenteens 305
YL OF: 1L 10 3Tl T PO OO U U SOURSRSR 305
PYCallFUNCLION fUNCHION. .. ittt ettt sttt e e e be st e st et e b e e esasbe st e bessessessesassessessansesansnasensens 306
PYCallMEtNOA FUNCHION....c.eitietiete ettt ettt e bt eete et e e b essasaesaebe st essensessessesessensensensans 306
Py GEEALLT TUNCLION. ..ttt e st e et e e be st e et et e e et e e bebe st e st esbeseesestestessessesaesessansensensansases 306
PYIMPOIT fUNCHION. .ttt ettt ettt ettt et e e et e s be st et esaesseseebessessessassasaesessestensansassasessessensanes 307
VAT g 11T ot a o) o PO OO TSRO 307
(01U L@ I =38 (7T Tt £ o Yo TSRO 308
RAISE fUNCHION.c..titieteeieetect ettt ettt et be et et et esseebesbeebesbeessenbeessessesbsersensesssensenteessenseessensesseessensenseens 308
RANDOMIZE STat@mMENT. .. ettt ettt s s rree e s e s tae e e e s baae e e s s s baaeeesnstaeeaassssaaessssssaaesassssenessnnsssnes 309
L N D IS = €= 1 0[] L TP UPRR PPNt 309
READBLK STATEMIENT....ccii ettt erttee e rre e e e tte e e s et te e e e s s bt e e e s e s abaaesessstaeseasssaassssssssaasssssnsteesssnsnsens 313
L TN D ISy =) (=] 0 1= o | OO RUPR 314
[N DI Y S = | (=T 41T o | SO USRIt 315
L N DN |) ISy =1 (=] 0 0= o PRSP 316
READSEQ SEAt@MENT...cc ettt e e s e tae e e s s et ta e e s e s baa e e e ssastaaeessnbaaeeassnstaeseessnstaessnsssnaeeas 317
FERAASOCKET FUNCLION....uiiticteeteeticteete ettt ettt ettt et e b beeaeesbeebeesbesbeesbenbeeseeasessserbenbesssenseseessesesssensaseen 318
L N D] - 1 (=T 4 =] o PO PSP 319
L N DLW ISy = 1 (=T 1 =] o) OO URR 320
L TN D Y = (= 1 4[] | SO U UURRPUURRRRNE 321
L N DY ISy =) (=] 0 1= o | USRSt 321
READVU STAtEMIENT.....eiiii ettt te e e e s tee e e s st aa e e s e s eba e e e e ssastaeeeesssstasesssnssaasessssseaessansssenessnsnsees 321
REAAXMLDALA fUNCLION. c.victeetictictecteetcteete ettt ettt ettt ettt e et e e et e ebeeabesbeeasenbesssensenbeessensesseensesseessensenseens 321
REAL fUNCEION . c1tittieteetteeteet ettt ettt et et et et e et et et e eseeteebe et e beessenbeesseasasseesbenseessensasaessessessensesssensenteessensesseensenss 322
RECORDLOCK StatemMENTS....uiiiiiciiieeeccitee ettt e sciee e s s s ette e e s ssrtaee s s s abaa e e s ssssbaeeesssssaeassassssaassassssaessesssseaesannsssnes 322
RECORDLOCKED fUNCLION....viittitietieeicticrt ettt cteeteete et ereetesaeessenbesbeessesseeseessesssessensesssensesssessensesssensesseessensesseenes 324
L I Y =Y =) (=0 1= | SO U TRN 326
RELEASEXML fUNCLION . ..cvi ettt ettt ettt et et este e b et et e eseebeebeeabesbeessenbeesseasessessensesbsensenseessensanseenes 327
REM fUNCHION. ..cttitieteeticte ettt ettt ettt et et ettt ete et ebeesbesbeessenbeebeessesbsessensesasensenbeessenseessessenssessensesseessentesseenes 327
[= Sy = =0 01T o | SO UUPRRt 328
REMOVE fUNCEION.c.ttittiticteetecte ettt ettt et et eteeteeabesbeessesbeebeessesseessensesssensanbeessenssessensesseensenseessenseessensenses 328
L L L@ AV oSy =) (=] 0 0= o | SO UPRPUPN 330
[= =N ST = (=1 1= | SO USRS 331

Contents

10

REPLACE fUNCHION.c.tititeteteetestesteieteeetee e e te st e e e ee e stestessesae s esastetessessessesaesassessessassessesessessersessassassssensensensansases 331
RETURN STATEMENT ...ttt ettt et e st e e s st e s s st e s as e e s s ssaesneeessseesasseessaseessnseessnseesansannns 334
RETURN (VAlUE) SEALEMENT...cveievitieeeeticteetecte ettt ettt et et e sbeeseebeereesbesbeessenbeesseaseseessansesbsensensesssensasseenes 335
REUSE fUNCEION. ..tiitiiteteteeee sttt te e e e st e st e e s e e ebe st et e te s esaasaebabe st ensassesaasessessersensessasassesensentansanes 335
REVREMOVE STAtEMENT.....eeiiiiieeeiieeeeect ettt ettt e et e st e s aee e st e e s st e e sseeesaseessnsaesensaesnsessnnseesnsessnseanns 336
REWIND STAT@MENT ... ittt sttt st e e st e s st e s et e sat e e s at e e sstee s seessasaesensaesansaesnseessnseesseasns 337
RIGHT fUNCHION. .ttt et ettt et e e e te et e et e b esaesaebe st e b esbessaseese st e bessassassesaabensesensassesaasessensan 338
RND fUNCEION. cttiteetiteietee ettt ettt e st e et e e ete st e et et et esaeb e be s b e sassesseseaseesessassansassesaesessessensansessasessensensensans 338
ROLLBACK StAtEMENT....ciieiieieeeeeete ettt ettt ettt s st e s st e e ste e s s bt e ssnsteseseeesaneeessssaesaseeesaseessnseesanseessnseenen 339
RPC.CALL fUNCHION..c.ititetcteeetese ettt et e et e st e e s e e ese et et ebesbe b esaebaebe st e tassesaaseesessessessessassasensensentansanes 339
RPC.CONNECT fUNCHION....titeteietietiseteiee et e e tet et ee et e et e s ae e sbasbe b e sessesaesassestessessessassesasansassassasessassessensan 340
RPC.DISCONNECT fUNCHION...cctiteicieeetestesteteeetee e e te et e e s e ste st et eae e e se st e sesse s esaesassessessessessesassessensessassassesansen 341
SAVESECUTNItYCONTEXE FUNCHION..c.iiieeicicec ettt ettt et et e b e b esa e s e st et essesaesaesesan 342
SADD FUNCHION. ..ttt ettt e et et e e e e et e st et e s s esseseeba st assessessesaesassestentassessassasessesbensansesaasensenes 343
SCMP FUNCHION. ettt ettt ettt et e et e st et e st e s eseebe st e b e b e s s esaesaabesbessensessassasasserbessessassesaasansensansansasnans 343
SDIV FUNCEION. 1ttt ettt ettt te et e st et e b e e e be st et et essesaeseebesbessessassasaesessessessessassessesansansessansasaesansansans 344
SEEK STATEMENT ...ttt ettt e st e st e e s st e e s se e e s be e s aseesenseessnseessnseesannassaseessnseesnnseens 344
SEEK(ARG.) STATEMENT.....icviiiiticteeteereee ettt ettt ettt ere et esbeessenbeebeessesbsessensesbeessenbesssenseesserseseessensesseessensens 346
SELECT SEat@mMENTS. . ittt ettt e et e st e st e e et e e s st e e s st e s saseesessaesnseeesnbeesansaesansesssseessnsesnnnees 346
SELECTE STAt@MIENT....eiiiieiicieeeeeeetee ettt ee s st e s st e st e st e e s st e e s see s s see s s seeesaseessnseessnseesansaesassesssseesnnns 348
SELECTINDEX SEAtEMIENT.....eiiiieeeite ettt sttt ettt e st e et e e s e e e s bt e s e st e ssuseessnseesnseesaseasssseesnsssessnseenan 348
SELECTINFO fUNCHION...cutittitieticteteietetee e tet et e e este st e e s e e esa st e e te b e e esaebaebe st astessessasaesaesensassansassesaesessessansan 350
SEND SEATEMENT...c.nneeiieiieeeeee ettt ettt et s ettt e st e e st e e s st e s s s e e seasee s sseesaseeesstaessseesaseassnseesansesssnseenen 350
SENTENCE fUNCHION.c.itiiteieteeee e etet et teete e te e e e s te st et e s esaesestessessassassesasbessetessassesessestessansassasaesensensensaneas 351
SEQ fUNCHION. .ei ittt ettt ettt ettt et e ebe et e be e b et e ebeesbesbeebsenseabeessesssessensesseersensaessensaseessensesssenseseessenseens 351
SEQS FUNCHION. ettt ettt ettt et e ebe et e sbe e b e b e ebeeabe et e esbebeessenbabsessenssessensesssensenbeessenteeseensesssensan 352
setAUthenticatioNDEPLh fUNCLION......ccuciieeeeeeecee ettt et et a e be st et e e s esseressebesens 353
SELCIPNEISUITE TUNCHION ..ttt et e e st e b et e te st et et essenaesaebasbesbetessasseseesessensan 354
SetClientAUtheNntiCation FUNCHION. ...ttt et et aese e st e e b saeneereeas 356
SO PV et ettt e st e et e s st e e s bt e e e bt e e e s e e e s bt e e e s e e s ab e e s st e e e nteeenaee s reaeereeeannee 357
SEEPIIVATEKEY FUNCHION....eitiiceceeece ettt sttt s e e st e st et esaessesesbestesbensesseseesansenes 358
SEtRANAOMSEEA FUNCHION. ... ettt e e e st e st e e ese et et e b e s e s esaebastestensassesaasensens 359
SET TRANSACTION ISOLATION LEVEL Stat@mMeENt......ccueeieeieeieieeeetesteeeesteseeeesteseeseesreesseseesseessesseessessesssessenes 360
SEtHTTPDEfAULL fUNCHION....ictietiteieeteeee ettt e et e b esaesaebesbe st e s b essesseseesessensensenaases 361
SEtREQUESTHEAAEN fUNCLION....cctiitiieieeceee ettt et et saesaebe st e st et esaesaesaesesensansaneas 363
SETLOCALE fUNCHION. ..ttt tet ettt et e e te e et e st e st e e s ebeste st et essassesaesassessessassesaasessessensassessessssansen 363
SETREM STAtEMENT....eiieeieeeeeeteete ettt et et e et e st e st e st e e s st e e s bt e s s st e sensaessnsaesnsaesnseesaseesssnseennnees 365
SEESOCKEIMAP fUNCLION....cuiitiieieteeeee ettt e e et e et e e e e et e e e ae e e saesaebesbe st enbessesaaseesesessensaneas 366
SEtSOCKETOPTIONS fUNCLION....c.iitietictiicteetee ettt et e et ettt b e e esa et e be st estesbesaeseesessessessensenseseses 366
SHOWSECUITTYCONTEXE fUNCLION....cuiitiieieietieee ettt e e e be st e st et esaeseebesbabessesseseesessessensaneas 367
SIGNATURE fUNCHION....titeieieeiettee et ettt ete e seete st e st este s esa e e s bestetessessesaesessessessensasaesaasestensansasseseasessensenes 368
SIN FUNCEION. 1ttt ettt ettt e st e e e e et e st et e s e st essese et et e sessesaessesessessansessassassessesestessensasseseesensensensan 370
SINH UNCHION. c.tteteteietetetee ettt et e et a et e st e st et e st esaese e s e st e bessessaseesaesassestessassessassasessersessansasaesensassansansan 370
SLEEP STAt@MIENT ...ttt ettt s e e st e s et e s ae e e st e e s at e e s se e e s bt e e sae s st e e e te e e nsaesneeesareeeane 371
SMUL FUNCEION. 1ttt ettt et e et e et e be st et e s et essesaebesbe st essesaesseseesetassessessesaesenbentensansasaasestentensanes 371
SOAPCIeateREQUEST fUNCLION. ...ccuiiteieieeieeeesetetet ettt et e e e et e b e s e e e se e b e s besbesbessesaeseesessestensessessessasansen 372
SOAPCreateSecureReqUESE FUNCHION. ...ttt ettt et e saebasbe st et enaenas 373
SOAPGEIDEfAUIL FUNCEION. ...ectieticteeeeeeeee ettt ettt e e bt e e e e s be st e s b esaesseseesastessensessesansessensens 374
SOAPGELFAULL FUNCHION.....eitietiiieeeteeee ettt e st e et e e e beebe st e b e s esaesaebesbestessessassesessesansensans 375
SOAPGetResSpONSEHEAdEr FUNCHION.ccuciiieicteetet ettt ettt ettt ss e e st e st e st et enbesaeseetestensanes 376
SOAPSEtReqUESIBOAY fUNCLION.....ciiteieieectiestete ettt ettt be st e s te b e s e e e teebebessessesaesessesesanean 376
SOAPSEetReqUEStCONTENT FUNCLION.....ciciciieietceeese et e et e st e s e e e e te b e bessessesaesaesessessenean 377
SOAPSEtReqQUESTHEAET fUNCLION....c.i ittt ettt a e e e te st b e b e s e s esasbesbestensessesaasassens 378
SOAPREQUESTIWIITE FUNCEION. ...ectietictiieieieteeee ettt et e e ettt e st e e besbe st e b esaessesesbesessassessesassensensaneas 378
SOAPSEIDEfAULL FUNCHION.....itiieieteeeee ettt e e bbb e s e e et eebe st et essesaesaeseesessensensaneas 379
SOAPSEIPAramMeters fUNCLION....c.cicieeeee ettt e st et e e e et e st e b essesseseesaebesbessessessesaasestensensensans 380

Contents

SOAPSUDMITREQUEST fUNCHION....etiteieeietieeeestctete ettt e te st et e s e e e st et e b e s esaeseebesbesbessessessesessestensanes 381
SOUNDEX fUNCEION.c.eiitieteeticteeeeete ettt ettt et ereestesbeerbesbeeseebeebeesbesbeessenseessessesseensesseessensesssensenseessensesssensenseens 382
SPACE fUNCEION 1t itteetietecteetecteet ettt ettt et e ebeerteeaeeasebeeseebeebeessesbssasensesseessenteessensesssensenbesssenbaeseensesseessenseeseen 383
SPACES fUNCHION . ..ctietteteetieteeete ettt ettt ereetesbe e b et e ebeerteebeeasebeessenbaeseessessessenseessensebeessenssessensesssessenteessenes 383
SPLICE fUNCEION. cuti ettt ettt ettt ettt et e ebe et e beesseabaeseessestsesbenbeessessanbeessensesssensesbeessensaessenseessensenss 384
SQRT UNCEION. ettt ettt ettt et et e e et e et eatesbeeas e beebeess e beessersesbserseseessenseeseessenssessensesssensenseeseensanns 384
SQUOTE fUNCHION...ctiiteetictecteerecte ettt et eete et erteeteestesbeeseebseseesbesseessensaebeessesseessensesssensenseessenseessersesseessensesssensenseess 385
] = I O IS = =0 01T | SRR 385
SSUB fUNCEION 1t ittiettetetecte ettt ettt ettt ettt et e ebe et esbesbeesbesbeessenbaebeessesssessensasssessanbeessersesssensenseessensaseerseseenes 387
STATUS fUNCEION. ettt ettt ettt et este et et et ere e beebeesbesbeesb et eebsessaessessesesssensebeessensesssersesseersensesseens 388
STATUS SEatEMENTL...ceeeeeeeee e rree e e e e rte e e e e s bae e e e s e bt ae e e s s nbaaeeesssssasaassasseasesasassenessssnsseseessanse 392
Y O oS = (=] 1 0= | SO SPRUUPRRt 395
STORAGE STAtEMIENT....eeieei e e e erre e s s e tar e e s s e baaee e s e s beaeeesenssaeesesessenaessnsssaseessanssanesasanses 396
STR fUNCEION vt etiete ettt ettt ettt ettt et et ere e beebeeabesbeess e bsebbessesbsersesbeessenseebeensesssessenseessensesssensensesssensanseens 396
STRS fUNCEION ittt ettt ettt ettt et e ebe et e beebe e b et e eseesbeebeesbebeessenbaeseesseseerserbeessensenbeessenseessensesseessentans 397
SUDMITREQUEST FUNCEION.....iitiitiietcceeese ettt et et et e s e s b e b e s e se et e sbe st e bessessesaesessensensanaasen 397
SUBR FUNCHION. ..ttt ettt ettt ettt et e sbe e e e beebsesbeebeessessesasensesbeessenseessensesssersanseessensesesaseseessenseseen 398
SUBROUTINE STAt@MIENT....ceeeieeeeeetee ettt erte e e e settee e s e st bee e s s satae e s e s sbaaessesnssaeeesssnstaessanssseaessssnssaeeann 400
SUBS fUNCEION 1ttt ettt ettt et ettt et e ebe et esbesbeesbesbeessenbaebeessesssessenbasssessebeessersesssensenseessensanseensenseenes 400
SUBSTRINGS fUNCLION....tiitteticticieeteeteeteere ettt ettt et et e e et ebeeaesbeessenbeessesseessessensesssensenseessenseessensesseensensesssens 401
SUM FUNCEION ..ttt ettt ettt et et e et eteebe et e sbeeas e beebseabeebeessessssssenseebseasenbeessensesrsensenseensenteessensesseersensesssens 401
SUMMATION FUNCHION.ccttitieteetictectecte ettt ettt esbe et et e ebeesbesbeersesbesbeessensaeseessesseersensasssensenseessenseessensenses 402
YA A S = 1 (=] g T=1 o PR PUPRNN 403
SYSTEM fUNCEION. ettt ettt ettt et ettt et e be e b esbeebsebeebeessenbeeseesseeseessensesssenseseessetesssensesseensens 403
TABSTOPR STAtEMIENT....eeieii ettt e e e e e ere e e s e sbar e e s sebaaeeessnbaeeeessnssaeesesessanaesssnssaneessaseanesssnnses 407
TAN fUNCEION ettt ettt ettt ettt et e saeeae et e e be e b e beessebesseensebeessenseeseessesseersenbesssensaseesseseessensaseen 407
TANH UNCEION ettt ettt ettt et e teeae e beebe e b et e esbebesbsensebeessenseessensesbsensenseessenseessensenseensentesseens 408
TERMINFO fUNCHION..ctiitteteeteetiteee ettt ettt et et ettt ete et esteereebesbeeas e beeseessesasenbenbeessensaessersesseensensesssenseseessensessee 408
TIME FUNCHION. cccttitetecttctecte ettt ettt et et eaeeste et e b et e ese et e ebeerb e beessenbaeseessassseasenbesbeensenbeessensesssensensesssensanseens 423
TIMEDATE fUNCHION...cttiitiettetieteceeete ettt et et ere et e ete et esbeeaeebesbeeasenbeeseesseeseessenbasssensanseessersesssensenseessensaeseensenseenes 423
TIMEOUT STat@MIENT....eeiieiiceiee ettt eeee e e e e ea e e e s e bae e e s sea bt aae s e s s baaeeesesstasesssanseaaesssssesessssseasesssanses 424
TODATE fUNCHION..c.tiitieteteeteeteete ettt ettt ettt et eeteeaeesbesbe e b et e ebeerbesbeesbebaessensebeessensssssensesssessenseessenseessersesesssen 425
TODATETIME fUNCHION . ..ctiittetietieteete et et ettt eteeae et esteeseebeebeessestseasensesbeessenbeessensesssensesesssensesseensesssersensesseen 426
TOTIME FUNCHION. ettt ettt ettt ettt este et et e b eebeereebesbeesbesbeessenseessensasseessenbeesserseessersenseessensanseensenseeres 426
TPARM FUNCHION....tiettitieteeteetecteete et ettt ettt et erte et et e be et et s ebeesbeebeesbebeessensaessersaseessensesssenseteessensesssensenseensensens 427
I 2 S =1 =] 0 1= U UPRPPPRNt 429
TRANS fUNCEION ettt ettt ettt ettt et et e et ereebeebe e b et e ess et e ebeesbesbeessenbasseessenseersensesssensenbeessenteessensesss 430
TrANSACTION STATEIMENTES. . e it e e te e e te e e te e e tae e e bee e e saeesssaeasssaaeasseessesaansesasnsseesnseanns 431
TRANSACTION ABORT STateMENT ...ttt cececccrrerereeeee e et e eesesessesssssssasesssesesesssesessssssssssssssssssssesssssennns 431
TRANSACTION COMMIT STAtEMENT.....uuiiiiitiiieieeeeeeeeeeeeeertrrtreeeeeeeeeeeeeessesessssssssssssssessesssssssessssssssssessassesesssesennns 433
TRANSACTION START STAtEMENT......eiiiiiiiitieeeeeeeeeeeceeccrirerreeeeeeeeesseseesesssssssssesseseseesessessssssssssssssssssesassessensnsannns 433
TRIM fUNCEION. ettt ettt ettt et et et e e et e ebe et e ebeeab e baebeenseebeessensesssensesbeessenssessensesssensebeessenseeseenes 433
TRIMB FUNCLION. 1cttettietectteete ettt ettt ettt ettt et e ebeeaeesteesb e beebeeas e beessesesasenbesbeessensaessensesseensenbeessensenseensenseeres 434
TRIMBS FUNCHION.c..tictiiteeteeteeteetece ettt ettt ettt et e eteeatesbe e e et eebeessesbseasensesssessanbeessensesssersesbeessensaessensenssersenseeseen 435
TRIME FUNCEION. ettt ettt ettt ettt e te et e et e b e ebeerb e beebsenbe b eessesbeessenbesbsensenseessensaessensenseessenbeessensenteeses 435
TRIMES FUNCHION ettt ettt ettt et et et e e beeas e beebeeasebeessensesasesbenseessensaeseessenssessensesssensenseessensanes 435
TRIMS fUNCEION 1ttt ettt ettt et et et et e eaeeteebeeabesbeessensaebeeasessseasenbesbeensensaessensesssensenseessensenseensensens 436
B O) =) (=] 0 1= | R UTRRPPPRRRNt 436
B €] 0 IS =) (=] 0 = o | OO OO UP SRRt 437
I) 2 IS =1 (=] 0 1= o SRRt 441
UDOAITAYAPPENAILEM.....ooeeeieiieteteeeeteseete e st eteste st e te s e et esseeseestesreessessasssassassaansessesssessesseessessesssensesseessensens 443
UDOAITAYDEIELEILEM..... ettt et e st e s et e s et esse e e e tesre s e e se s s e e st esseeseessesreassessesssensesssansassenseeneen 443
UD OAITAYGEIITEM. ...ttt ettt ee e s ee e et e s st e e s st e e s e e e sse e e s st e essseeessseessssaesansaesansesssnseesnssessseannns 443
UDOAITAYGEINEXEITEM...ceiiieeee ettt ettt e et e st eseaee e s bt e s s seesssseessaseesssseesanseesneassnseesnssessseesan 444
UD O AITAYGEESIZE. ... viiteieteeieiciteeiteeite st esteste s bt s st e st e s ste s be e s st esate s beessaesssessseesaessaesssessseessaesssessseesseenseessesssessses 444
UD OAITAYINSEIEITEMeieeeeeeete ettt ettt e e et e s st e s st e e sare e sbe e e s st e sessaeesaseeesaseesensaesasseessnseensnseesnees 445

11

Contents

12

UD OAITAYSEEITEM ...ttt ettt e et st e st e e s at e e s seessabeessaseesessae s steesnseesanseesasaassnseessssessnseenns 445
UD O CIONE. ... eteeteeteeeee et et e teeteeete e te e s beebe e beessaeebe e ssessseessaessaesasessaesssensassssassseensaesssanssesnseeseesssasnseesasassenssennss 446
L0100 @1 =T | (TSP 446
UD O D EIEEEPIOPEITY..c.uecueeteetereeteettectee et e stesteste s e e aesse st este s e ssessassaessasseaseassesssessessesssassesssassessesssessesssesensennsenes 446
UD O F T ... ittt ettt ettt e et e s ettt e e s e ettt e e e se et taeeeeeesbtaaeesasbaaeeeaasseaaesasasseaaeeeaseaaeeasassaseesssastaaesessseaesensnrsaaeeanes 447
101010 CT= d - 11 o =X o o] (OO UPRSTN 447
UD O GEENEXEPIOPEIY..ccitiiiiieeeieeeieeete ettt eetee et e e ste e s sate e sssteessaeessseeesaseessaseesensaesansaessnseesssseesassessseesssseesnsees 448
UD O GETOPTION. c.ttiuteeieeitteetteste et et esteste s st e steeste s bessseessaesbeessaessaesssasssesssaesssesssessseessaesssessessseesssesssessseesssenaesnns 448
UD O GEEPIOPEITY..ceiiieieiieietteectteeett et e e ite e s rrte s s ree s s bt e s sareesaae e s see e s saeesssaessaseesensaesensaesnseassnsessssessseesssseessseens 449
UD O GETPIOPEITYNAIMES..ccnuiiieiie ittt et e st e s srteeeseessbee s s st e seaseesseessseeessseessasaesssseesanseessnseessnseessssassaseenen 449
UD O G TY P etteeiteetteeeteeeete sttt e sttt e st e e et e et e e seate e s sae e s st e sssstessaseeasssaesansaesnsaessstaessteesseasssseessnseessnseensseensnne 449
UDOISTYPEO ...ttt e ste et e e e e s et e e e e ese st e st e et esaesaebesbestassessesease et ersessassasaesassassestassesseseasestentessassassasansen 450
UDOREAA.......oicctieteietieeieeetteete e e eeteesteeetesebeesteessseesaesssessessrseesaesseesssassseensaessseassesassersesassessssesbaeessensseensaenssenssennses 450
UD O SEIOPTION. e tiettitterteeteectt st e st e et stt s te s te s sbe e s e e s ste s baessaessaesabeesaeessaesssassaessaesssesssaessaenseesssessseenseessessseessaenns 450
UD O SO PIOPEITY..ceieitieiteeeieeete et et e et e et e sttt essste e s ste e s seesebeesensaesssseesssseessnsaesasaesssseeesnsseesseessnseessnseesanseens 451
L0110 11T USSR 451
UNASSIGNED fUNCEION. ..ttt ettt ettt ettt et eaeeste et easebeeseesesbeessenseessensaseessessessensesseensensesssensesseenes 452
UNICHAR fUNCEION. ettt ettt et et ettt et e e et e ebeebeebeeas e beebeenseebeesseseessensebeessenbeessensesssensenseessenseeseenes 452
UNICHARS fUNCEION . cticttiticteetecteee ettt ettt este et v et eseeteebeesbesbeessenseeseessessessensesseensensaessensesssenseseessensenseensensenns 452
(O ISY O (Vg ot £ o TSRS 453
L8NS =@ 13 {01 3 ot £ PSSR 453
[0\ O 08 G - 1 (=T 4 =] o | RSP PUPRRt 454
UPCASE fUNCHION. ..ttt ettt et ete et et eteebeebeeseesbeessebesbsenseebeessesseessensesssessenseesserseessensanteessensenseenseteeres 454
L8] o SN S - 1 (=] =1) U UUPR 455
USERINFO fUNCHION.c.eititeeticticteetecte ettt ettt et steeasebeebeeaseebeeseebesbsensesbeessensaeseessesseessensesssensensesssesesssersenseessens 455
LA O Sy = €= 1 1= | SO PRSPt 457
WEOFSEQ STat@MENT...c.. ettt e e s e ttr e e s s e tae e e s s bta e e e s snbaaeessanseaeeassssaassessnstaseessnssaneeas 458
LAl S = L (=] 1 =) ORI 459
WRITEBLK StatemMENT.....eeeeeeeceee ettt etee e s s are e s s et e e e s seaaa e e e s s abaaeeessnssaaesesansaaeesssssaseessnnsenseennas 463
ARl S Y IS =1 (=] 1 =1] TR 464
WRITESEQ STAtEMIENT....eeieei ettt e e s e etae e e e s ebae e e e s e baee e s s saaeeassssbasesessnstaeesesssesesessssenesnnnns 464
WRITESEQF STAt@MIENT...cocii ettt eserre e e s s etee e e s s btae e s e s s baae e s s nstaeessssnsaaesesssssaeesansseaessnnnes 466
WIETESOCKET FUNCLION. ..veiticeietictectetece ettt ettt et e et eae et e e be e b e b e eseebesasenbesbeessenseessensesssensenseessenseeseenes 467
LA I = IS =1 =] 0 = o | OO UPRUPRRRRt 468
WRITEU SEQTEMENT..c.cc et e e e e tae e e e s ea e e s s bae e e e s e staeesessrasesessnstaaesesssanesassnssanesannes 469
L Wl AV 7= (=] 4 1= 0| USRI 469
WRITEVU SEat@MENT..c. ettt e e s et e e e s e tvt e e e s s sttt e e e e sessaaeeesasseaeessaassaneessnssesaesssnnsaneessan 469
XDOMAAACKIIA fUNCEION. ..ttt ettt e et ettt ebeebeebeesbe b e ebeenbaebeensenbesssensenseensenseeres 469
XDOMAPPENA FUNCHION. ...titeeictieteeeteeteeee ettt e e et esbe s te b e b e s e e e s et et essessesaesessestesensassasaasessensanes 471
XDOMCIONE FUNCEION. ..ttt ettt ettt et et et e beese et e ebeessestseabenbeebsessebeessensesasensebeessensaessenseeseensentes 472
XD OMCIOSE FUNCHION....titiceeetictectectectcteere ettt et et ere et e e bt ebesbe e b e beeseessesseessensesssensenbeessensesssensesseersensesseens 472
XDOMCIEAtENOAE fUNCLION...ccviiteitictectecteetcreete ettt ettt et e et e ebe et e ebeesbebesssessebeessersesssensenseessensanseessenseenes 473
XDOMCIEAtEROOT fUNCHION. .. ectictietietiete ettt ettt ettt et erb et ebeebesaeessesbeebserbesseessensesasensesssensenteeseensenns 474
XDOMEVAIUALE fUNCEION.c.tieteitieteetectecetececteete ettt ettt e ebe et e ebe e b e beebeesbebeessessesssensenseessensaessersenseensan 475
XDOMGETALLITDULE fUNCEION . cueitietieeeeteceetecteceeete ettt et et e ebe e b e beese et e ebeessesseesbenbesbsesseseessesesssensansens 476
XDOMGELCHIlANOAES FUNCLION...c..iitietetieteeticteceeete ettt et eete et et e beesb et e ebeessesbeessenseessenseseessesesssersenseessens 476
XDOMGEELEMENTBYIA fUNCHION....iitiiteieieeetee ettt e ettt et e e e se et e et e b esae e ebesbesbensessasaesaesensan 477
XDOMGetELlementsBYNAmME fUNCION.....cc.ciiiciceieteeeee ettt sttt e st e s e e s besbestessesseseensesensan 478
XDOMGELEIEMENtSBYTAZ fUNCHION....cuiciiteieieirieericerie ettt sttt ettt et se e sasbe s ba e b e e s 479
XMLGEEEITOr FUNCHION. . cue ittt ettt ettt et eeteeae e beebeeab e beessesbeebsesseseessenseeseessessessensesssensenteeseensanns 480
XDOMGEINOAENGME FUNCLION....c.eiitietiiiieticeeetecte ettt ettt et et et ebeereesbeeasenbeebeessesteessensesseensenseessenseeseenes 480
XDOMGENOAETYPE fUNCLION....cuitiieieieietestestetete et e ae e te e e be st et e b e e e e st et esbessesaessesesbestessensessesessestensanes 481
XDOMGEENOAEVAIUE FUNCLION...cueeueitietectectietetecteeteete ettt et ee et e ereeteebeessesbeessenseeseessesesssensesssensenseeseensenns 481
XDOMGEtOWNErDOCUMENT FUNCEION....uiiviticeeeiectecteetecteteete ettt ere et ere et e ebeeabesbeessenseeseesseseessensesssensensenns 482
XDOMGELUSEIDATA FUNCLION.....icieticeectictectectect ettt ettt ettt er e te e e ebeeseesbeebeersenbeessensesssensesseensenseeseensenns 482
XDOMIEEM FUNCLION....veieteetieteeteetect ettt ettt et et et et e beebs et e beesseebseasenbesbsersenbaessensesseensenseessensesssenseseenes 483

Contents

XDOMLENGEN FUNCHION ..ttt b et st st e st st bt sbe e be e ste e st e se st esenessaneesanesenense 484
XD OMLOCALE FUNCHION....eictieteetectecteetecte ettt ettt ettt et e sbeeas e beebeesseebsessenbesbsensenbeessensaessensesseessenteessensenseenes 484
XDOMLOCATENOAE FUNCHION...cuiiitietectieticeccte ettt ettt et ettt e b et e e b esbesbeesbesbeessenseeseersesssessensesssensenseessensessne 485
XDOMOPEN fUNCLION..c.cctiitietiieieteeeee et et e e e te st e e ae e s teste st esse s eseesasbessessessasaesessestantassessessasessessensansessesensenes 487
XDOMQUETY FUNCEION...c.tittitietieeietettetee ettt e et e et e e e et e e s te b esaesaesesbe st esbessassasaesasessensassassesessestensensansans 489
XDOMREMOVE FUNCHION.....eiitieriitieticeectecte ettt ettt et et e ebeerb et e eseeabeebeesbesseebsenbebeessensssssensesssensenseessenssessensenses 489
XDOMREPLACE FUNCHION. ...tiieieeteeeee ettt ettt et et et s bbb eas e e e seebe b et essesaeseesesbestensesseseasensensenes 490
XDOMSEtNOAEVALUE fUNCEION....cviitieeeitietectectecretecte ettt ettt ettt et e e esaeeasenbesbeessebeessensesssensesseensenseeseensenns 491
XDOMSEtUSEIDATA FUNCLION...viivitictectectectetecte ettt ettt ebe et e ebeesbesbeesseabeebeessesseersensesseessenbeessensesseenes 491
XDOMTANSTOIM fUNCEION.c.ectiitieietictectecte ettt ettt ettt ettt et e beebe et e ebeeabesbseasenbesbeessenteessensesseensensesssensansenns 492
XDOMVAlIAALE fUNCEION....cuiivitieteereeteceecte ettt ettt ettt et be et et e e e et e ebeerbesbeeasenbeebeeasentsessensesseensenbeessenseeseenes 493
XDOMWITEE FUNCEION . ..c.eiitieteetieteceietece ettt ettt et et et sae et e st e eseeabeebeesbesseeasenbasbsesseseessensesbsensenbeessenseeseensesssensan 493
KLATE FUNCHION. ettt ettt ettt et et e et et e beeae et e ebe et e ebeeasenbeebseaseebsessensesasensesbeessenbeessensesssenseseessenseeseenes 494
Q1 o Y o o =T e (ol TSRS 495
XMAPCLOSE FUNCLION....eiiviiteetectectctecte ettt ettt et et eae et eseebeebeesbesbeesseaseebeessesesssensesseessenseessensesssensensesssensanseens 496
XMAPCIEAtE FUNCHION. . ciiiiieeiie ettt ecee et e et e e te e et e e e ste e s see e e baeeensasesssaaasssaaaassseenssseansesennsssssnseasnnsasannes 496
XMAPOPEN FUNCEION....ietitiieieteeeee e tet ettt te e te e seete et e st et e b eseeteste st e s s essesaesasbessessansasseseasestessansassaseasensensenes 497
XMAPREAANEXE fUNCHION.c..ictieteitieteceicte ettt ettt et ettt ereeateebeesbesbeessebeebeessesesasenbesssensenseessenssessensenss 498
XMAPTOXMLDOC fUNCEION...ctieteetieteeteeeticte ettt ettt eteete et esteeseebeebeessesseseensesseessenseessensesseessesesssensenseessensesseenes 499
XMLETTOE fUNCEION 1t ittieticttctectecteete ettt ettt et et ebeeteebe et e beeseenbeebeesbesssessenbesssensaseessenssessensesssensensaessensesseensenses 499
XMLEXECULE TUNCEION . ..itieteetictecteetece ettt ettt ettt et et et esaeebseab e beeseebseseenbesssessenbaesseasebeessentesssensenbeessensesseenes 500
XMLTODB fUNCHION. c.viiteetecteeteeteete ettt ettt e et eteeae e beebeebeebeeseesssessensesbsessenbeessensesssenseseessenseessensesssersensesssens 502
XTD FUNCHION. .ttt ettt et ebe et e beebe e b et e eseesbeebsesbesbeessenbeessessaessersenseessensabeessenssessensesssensentens 503
APPENIX A: QUICK FEIEIENCE. . cuviuietieteetitetete ettt et et e e st e st e b e s e seese et e b essessesseseesessessensessaseesessensensassaressens 504
COMPILET IFECLIVES. ..cuveetieieeteeteeeetetee ettt te e se e st e s e s e et e s e et e sse et esbesseessasseassessesssessesseassesseansassesseensessesssensenns 504
(D 1Tel F= T = 14 Lo o 1 USRS 505
ASSTENMIENTS. ..ttt ettt ettt st e s bt s e e e bt et e b e et e b e s bt e e e b e e e e s e e bt e e e s b e st e be e bt e e e st eneeaesaes 505
Program FlOW CONTIOL......ciriirieirieirieienteetete ettt ettt st sttt ettt e bt s be st s b e e be e besessenenes 506
FILE 1/0 ettt ettt ettt ettt e e et e et e s be et e e ba e s ba et e e beessba e b e e baessaeasbeeasa e beeasbeease e beeasseesseenba e seensaeeabaebeeareenates 507
SEQUENTIAL FILE 1/0.uitiiiieieeeeeeeeterte ettt ettt et et e st et e s e s e ese e b e b e b essesaeseeseasessensanseseesessensansansaneas 508
Printer @nd TeIMINALI/Ouuuc ettt e et e esaae e sbae s e beeeessesesaseeessseesassesssaeessesesssessnranas 509
LI o LS 4O 2RSSRt 510
Y] (=Tt B 1) & OSSP 510
SEING NANAIING ettt ettt st ettt s b st et et et s bt s b et e b et et e st ebesbeseeneen 511
Data conversion and fOrMattiNg.....c.cceeeeirieirirene ettt ettt ettt be s be e besanen 513
N L S ettt s ettt e e e s rte e e e s st a e e e e et a e e e e e st e e e e e e b raeeeearbaaee e e rbaeeeea e raaeeee et aaeeeeartaeeeeaartaeeeenrraaeeenses 514
MathemMatiCal fFUNCHIONS....c.ecveiececetece ettt ettt et e e ebesbeesb et e ebsenseessesseseersensenseensensens 515
RELAtIONAL FUNCEIONS...ctieteetectectectece ettt ettt et s b e b et e et e b e ebeere e beersesbesbeessenseessenseeseensenseessensens 516
)Y (=] 1 1 PO O T OSSR ORURO PR PPRIUPRTRRN 517
[T gL =R 0T Tel=To U] ¢ =IN or- | TSROSO 518
MiISCRILANEOUS......ccuteeteetteete ettt te et e e ee e rae e be e s ta e e e e e be e baeesaessse e baeeseeeseeessaesssesseesasaensaenseesssensseenseesssenssensseenses 518
Appendix B: ASCI and heX @QUIVALENTS.......ooiiiirieeeiereetereeteeste ettt ettt e eeeesteste st esaesssessessesssensessnensessesnsensens 519
Appendix C: Correlative and CONVEISION COUES.......cuiiiiririniiiiiitiieertertetet ettt sa ettt sb b sae e ene 523
A €ode: alEEDraiC fUNCLIONS.....cviiirieirieirieertee ettt ettt b ettt b bbbt be e sentenen 525
BB and BX COAES: Dit CONVEISION.....ccuiiietieeicteeeeiteeeeteete et et s e e rteste e e eveeseeaesbesreesessaessensesssensesseensensesssensensanes 528
C COAE: CONCATENALION.c..icticeetecteeteeteeeete ettt et et e et e e be et e be e e e besbaess e seessessesseeasensasssensanseessessesssensasanssensenns 528
D COAE: dAtE CONVEISION....cueiteeieteeteete et etete et e e te et esse e e eaesbeesaebeeseessessesasessesseessessasssensesssensessasssensensesnsensenses 529
DI code: international date CONVEISION.......c.ecvveveecieieeeccteereee et eeerte e e e ere e e e aeebeersesbeesaensesbasssesesssensesseensensens 533
DT cOde: datetime CONVEISION.....cceccveereereeteeteeteeteetesteeeeteeteetesseesesseeseesesseessessesssesesseesseseessensesssensessesssensanes 534
ECS code: extended character SEt CONVEISION........ccieeecierieeeecteeeeteee ettt et te e e ste e e esbesbaessesseersessesseensansens 537
F code: Mathematical fUNCLIONS.......ocvi ettt ettt e et et e e e e b e sre e b e sbaena e baeseensesseennenses 537
G COAR: BrOUP EXEIACKION...cutrveuirteuerteuertetertetetet ettt sttt ettt et be b e bt s b et sbe st b e st b e st seseateseatebentesentsenesseneasenn 539
L cOde: [ENGEN fUNCHION....coiiiieieeeee ettt ettt ettt sttt sttt e e 540
MC Codes: Masked CharaCter CONVEISION........cccvciereeieenteeeereeereeeesteeeeteeteeeesseereesesseesesesssessessesssessesssensessenes 540
MD code: masked deCimal CONVEISION.......ccicviviieieteeteeeereete et este et erte e e eaesteereeaeeseessesbesssensessaessessesssensessaensens 541

13

Contents

MM COAE: MONELAIY CONVEISION....uiciictieteetisteetetesreeteseseesaesreesessesseesessesssessesssessesseessessessesssessesssessensesnsensennes 543
ML and MR codes: formatting NUMDEIS.......ccovieiiiririeiretrcerteee ettt ettt se e e ne 544
MP code: packed deCimal CONVEISION.......ccieiirieeeeiereeterte et te ettt sae e e e te s e et e tesseesaesresssessesnsensensasnsanes 546
Y/l Il Ta [g =T o 0 LV7=Y Y[PP TRSR 546
MX, MO, MB, and MUOC cOdes: radiX CONVEISION......cccveireerrreeireeireesreeeeeiseesseeessesseesseesssessessssessssessessssesssesssenns 547
MY COAE: ASCI CONVEISION....eetirteeuierreeteitesteetestesstestessessessesseesessasssassesseassessesssessesseessessesssessessesssessesssessessesssanes 548
NL code: Arabic NUMEIal CONVEISION......ccviiieeeeierieeeetesee e steste e s e e ste s e s e e ste s e e sessesseessessesssessesssensesseensessesnees 548
NLSmapname code: NLS MaP CONVEISION.....cccicieriereereertereeeestesesstessessessessesssessessssssessesssessesseessessessssssessasssens 549
NR code: roman NUMEIAl CONVEISION.....c.iiiiciireeterieseete st e ee e e ee e steeseestessesssessesssessesseessessesssessessesssessesssessenns 549
P code: Pattern MatChiNg. ..ottt sttt et ettt s e et et et ese s b et et et e en 550
Q code: eXpoNeNtial NOLATION.....ccviei ettt et e s et e st e e s e s e e s e sre e s e sesseensessesseansesnenn 550
R COAE: FANEE FUNCLION ..ttt ettt sttt ettt et st e e st e e ebese b eseasesansesansesansesanssanes

S (SOUNAEX) COUR...uecueiriirritictectteeteete ettt et st ear e beebeebeeteebesteessebeebeessesssessenseessersanbeessenssessensesseensenseessenseessensenses

S (SUDSEITULION) COUB.utitiitiiiicteetectect ettt ettt ettt eaeesbeeas e besbeeab e beebeesseebeersenbeessenseseessenseessensenss

QLI ee Yo LT =D Q=D - ot o o PSSR

Tfile code: file translation

Appendix D: BASIC reSEIVEA WOITS.....c.icirierieeeeiiesieetesteeeesteseestesseeseessessesssessesseessesseessassesssessesseessesseessessesseessessesssessens 555
APPENIX E: @VATADLES...cuveeiieiieiieieeeeesteetest sttt ettt sttt e st e st et e e se et e st e s e e sbessaesbesseestesseeseesesseessaseensensessaensenaes 566
APPENIX F: BASIC SUDIOULINES..... .ottt sttt s et e st e et e ste st e besbaesbesbe e st essesasenbessasnsensesssansessesnsensens 571
L ASYNC SUBDTOULING...c.veteeieeteetetececte ettt s e et e te e e et e e te e b e s be e s e bessaessessaessessesssessassaenseseessensesssensensaessensanes 572
TEDIT.INPUT SUDIOULINE....cveeteeieceeteceecteeteeteete et ete s e et e sbeeaesesbeeseessesseensesbaessensasssessesseessensasssensensesssensesssensensens 573
TERRINO SUDIOULINE....c.tietieieeteeieteceetesteeeete et eeesteeteebeetaeasesseessesesssesesbasssessasseessessesssessesseensensasssensesseensessensaens 578
TFECMP SUDIOULING....cveeieieeieieeteete et este et eteste e e esbesteeaesbeessessassaessesseessessesssensenbassaenseessensesesssenbasseensensanssansenses 578
IGET.KEY SUDTOULINE.....ectiteeieteceete ettt et e et e teeteesbeete e aesbaessesbaesaensessaessesseersensessaensansesnsensesseensensens 578
IGET.PARTNUM SUDIOULING.....ectetieieetieeetececteseeeeete et ete e e et teeteebeeteeaesseersessassaessessaessesesssensessesssensenssensenses 579
IGET.PATHNAME SUDIOULING...eccvtiitiiiiieitectee ettt etecteenteeeeeeateebeesseeesaeeaseeseesseesssseaseessesssssaseenssensessssessseents 581
IGETPU SUDIOULINE......vetietietietecteete ettt eteesae s e e stesbe s e e steebeesaesbeessenbessaessessaessessesssensensasssensesssessesseensensanseens 581
IGET.USER.COUNTS SUDIOULINE......ceotieiereetieieeieetesteeeesreeteetesteeeesaesteesesseessesesseesessaensensesssensesseensessesssensessenns 584
IGET.USERS SUDIOULINE.......coueeiireeeetecteeeete et eeeste et e tee e esesteeeessesssesessaessessasssessessesssessesssensansasssesesseensessennsens 584
TINLINE.PROMPTS SUBDTOULING.....veiveiiiiictecetecctee ettt cste et e esveeeteesseeeabeeaseessessabeenseesesssseenssenseesssessseenseens 585
TINTS SUDIOULINE....cueitictieieciietecteee et ettt eete et e st e e e et e ebeeteeaesteeasesbaesaensaessersesseessessessaessensaessansesssensesanssensansennsenns 586
IMAKE.PATHNAME SUBDIOULING......viiiiirieitiictecie ettt ettt eeteeetseeaeeebeesbsesssseavsenseesssessssenseesssesssssnseeseensens 587
IMATCHES SUBDIOULING...c.eieieteceetecteeeteete ettt ettt et te e e et e steesaesbeess e baesaessesbeessesesssensensaessensenssensessesssensansenns 588
IMESSAGE SUDIOULINE......oictieteteceetecteeteteeeete e e et e ste e e ebeebeeseesseeteesesseessesbassaensesssessesseessensenseensansesssensesseensensens 588
IPACK.FNKEYS SUDIOULING....cvietetieeeteceetesteetesteeteete e e eteste e e ebeeseesesseessessesssessessaessesesssensesssensensasssensenseensenses 589
IREPORT.ERROR SUDIOULING.....ecctiiteeieteetteteete ettt ettt et et et erae s e ens e beeraesesseesaesbesrsensessaessensesssensesssensensennsens 592
ISET.PTR SUBDIOULING.....ueitieteeieteceeteet ettt ettt et e e e e e e te e e ebesbaeabesbaesaessesbeensesbesssessasseessenseensensesssensensannsensenses 593
ISETPU SUDIOULING....cvieeteteeteeieeiecteeteetete et et e teeeestesaeesesbeess e seessessessaeasesbasssensasssensesseensensesssensenssensessesssensensanns 594
ITIMDAT SUDTOULING....viteeeeteetteteetece ettt te et et e e e eaesbeereesbesbaeabebaessessessaessessesssessasaessessesssessesseensensanseensensenses 596
TUSER.TYPE SUBDIOULING......eeotiitieieeteetecteeteeteete et et et esteste e e e steeteeaesseensesbasssessesseessessesnsensessaessensasssensessaensesenssens 597
IVOC.PATHNAME SUBDIOULING.....eiiteeteiecieteeteeteete ettt eteete e e este e e eaesbeeaebesseessesseessessesssensesasssensenssensessesnsensens 598
Appendix G: Socket fUNCLION €rror FELUIM COUES.....uiiiiiiiiiiiieiecteeteete ettt ettt et ere e e e sbe e s ebe e e essesseessessesssensensans 599

14

Chapter 1: Statements and functions

This chapter describes the UniVerse BASIC statements and functions.

I statement

Use the ! statement to insert a comment in a UniVerse BASIC program. Comments explain or
document various parts of a program. They are part of the source code only and are nonexecutable.
They do not affect the size of the object code.

A comment must be a separate BASIC statement and can appear anywhere in a program. A comment
must begin with one of the following comment designators:

* REM

= |

L S*

Any text that appears between a comment designator and the end of a physical line is treated as part

of the comment, not as part of the executable program. If a comment does not fit on one physical line,
you can continue it on the next physical line only by starting the new line with a comment designator.

If a comment appears at the end of a physical line containing an executable statement, you must put a
semicolon (;) before the comment designator.

Syntax

! [comment. text]

Example

The PRINT statement at the end of the third line is not executed because it follows the exclamation
point on the same line and is treated as part of the comment. Lines 4, 5, and 6 show how to include a
comment in the same sequence of executable statements.

001: vi PRINT "HI THERE"; ! Anything after the ! is a comment.
002: ! This line is also a comment and does not print.

003: IF 5<6 THEN PRINT "YES"; ! A comment; PRINT "PRINT ME"
004: IF 5<6 THEN

005: PRINT "YES"; ! A comment

006: PRINT "PRINT ME"

007: END

This is the program output:

HI THERE
YES
YES
PRINT ME

#INCLUDE statement

Use the #INCLUDE statement to direct the compiler to insert the source code in the record program
and compile it with the main program. The #INCLUDE statement differs from the SCHAIN statement in

15

Chapter 1: Statements and functions

that the compiler returns to the main program and continues compiling with the statement following
the #INCLUDE statement.

When program is specified without filename, program must be a record in the same file as the program
containing the #INCLUDE statement.

If program is a record in a different file, the file name must be specified in the #INCLUDE statement,
followed by the name of the program. The file name must specify a type 1 or type 19 file defined in the
VOC file.

You can nest #INCLUDE statements.
The #INCLUDE statement is a synonym for the SINCLUDE and INCLUDE statements.

Syntax

#INCLUDE |[filename] program

#INCLUDE program FROM filename

Example

PRINT "START"
#INCLUDE END
PRINT "FINISH"

When this program is compiled, the #lNCLUDE statement inserts code from the program END (see the
example on the END statement, on page 148). This is the program output:

START
THESE TWO LINES WILL PRINT ONLY
WHEN THE VALUE OF 'A' IS 'YES'.

THIS IS THE END OF THE PROGRAM

S* statement

16

Use the $* statement to insert a comment in UniVerse BASIC object code. Comments explain or
document various parts of a program. They are nonexecutable.

A comment must be a separate UniVerse BASIC statement and can appear anywhere in a program.

Any text appearing between the $* and the end of a physical line is treated as part of the comment, not
as part of the executable program. If a comment does not fit on one physical line, you can continue

it on the next physical line only by starting the new line with another $*. If a comment appears at the
end of a physical line containing an executable statement, you must put a semicolon (;) before the $*.

Syntax

$* [comment. text]

Example

The PRINT statement at the end of the third line is not executed because it follows the exclamation
point on the same line and is treated as part of the comment. Lines 4, 5, and 6 show how to include a
comment in the same sequence of executable statements.

001: PRINT "HI THERE"; $* Anything after the $* is a comment.
002: $* This line is also a comment and does not print.

SCHAIN statement

003: IF 5<6 THEN PRINT "YES"; $* A comment; PRINT "PRINT ME"
004: IF 5<6 THEN

005: PRINT "YES"; $* A comment

006: PRINT "PRINT ME"

007: END

This is the program output:

HI THERE
YES
YES
PRINT ME

SCHAIN statement

Use the SCHAIN statement to direct the compiler to read source code from program and compile it as
if it were part of the current program. The SCHAIN statement differs from the SINCLUDE statement,
#INCLUDE statement, and INCLUDE statement in that the compiler does not return to the main
program. Any statements appearing after the SCHAIN statement are not compiled or executed.

When the program name is specified without a file name, the source code to insert must be in the
same file as the current program.

If the source code to insert is in a different file, the SCHAIN statement must specify the name of the
remote file followed by the program name. filename must specify a type 1 or type 19 file defined in the
VOC file.

When statements in program generate error messages, the messages name the program containing
the SCHAIN statement.

Syntax

$CHAIN |[filename] program

Example

PRINT "START"
SCHAIN END
PRINT "FINISH"

When this program is compiled, the SCHAIN statement inserts code from the program END (see the
example in END statement, on page 148). This is the program output:

START
THESE TWO LINES WILL PRINT ONLY
WHEN THE VALUE OF 'A' IS 'YES'.

THIS IS THE END OF THE PROGRAM

SCOPYRIGHT statement

Use the SCOPYRIGHT statement to specify copyright information in UniVerse BASIC object code.
copyright.notice is inserted in the copyright field at the end of the object code.

copyright.notice must be enclosed in single or double quotation marks.

17

Chapter 1: Statements and functions

The copyright field in the object code is set to the empty string at the beginning of compilation. It
remains empty until the program encounters a SCOPYRIGHT statement.

If more than one SCOPYRIGHT statement is included in the program, only the information included in
the last one encountered is inserted in the object code.

This statement is included for compatibility with existing software.

Syntax

$COPYRIGHT "copyright.notice"

SDEFINE statement

18

Use the SDEFINE statement to define identifiers that control program compilation. SDEFINE has two
functions:

= Defining an identifier

= Supplying replacement text for an identifier

Syntax

$DEFINE identifier [replacement.text]

Parameters
Parameter Description
identifier The symbol to be defined. It can be any valid identifier.
replacement.text A string of characters that the compiler uses to replace identifier everywhere
it appears in the program containing the SDEFINE statement.
Description

When used as a replacement text supplier, SDEFINE adds the specified identifier and its associated
replacement.text to the symbol table. Each time identifier is found in the program following the
SDEFINE statement in which its value was set, it is replaced by replacement.text. If replacement.text is
not specified, identifier is defined and has a null value.

Separate replacement.text from identifier with one or more blanks. Every character typed after this
blank is added to replacement.text up to, but not including, the Return character that terminates the
replacement.text.

Note: Do not use comments when supplying replacement.text because any comments after
replacement.text are included as part of the replacement text. Any comments added to
replacement.text can cause unexpected program behavior.

UniVerse does not supported nested SDEFINE/SUNDEFINE statements.

The SUNDEFINE statement removes the definition of an identifier.

Conditional compilation

You can use SDEFINE with the SIFDEF statement or SIFNDEF statement to define an identifier that
controls conditional compilation. The syntax is as follows:

SDEFINE identifier [replacement.text]

SDEFINE statement

{ SIFDEF | SIFNDEF } identifier
[statements]

SELSE

[statements]

SENDIF

The SIFDEF or SIFNDEF statement that begins the conditional compilation block tests identifier to
determine whether it is defined by a SDEFINE statement. If you use SIFDEF and identifier is defined, the
statements between the SIFDEF and the SELSE statements are compiled. If identifier is not defined, the
statements between the SELSE and SENDIF statements are compiled.

If you use SIFNDEF and identifier is defined, the statements between SELSE and SENDIF are compiled.
If identifier is not defined, the statements between the SIFDEF and SELSE statements are compiled.

Conditional compiler directives

Conditional compiler directives allow the inclusion of code and features available in later releases

of UniVerse to be included in programs used in earlier releases. The newer, unavailable features are
ignored by the compiler on older UniVerse releases. This helps developers avoid maintaining multiple
code streams for the various releases of UniVerse.

The following compiler definitions are available in UniVerse BASIC.

This type of directive functionality was initially added at UniVerse 11.2.0 and typically includes double
underscores in the name.

Version-specific names

Note: Earlier version directives are included in later UniVerse versions.

* U2 UNIVERSE

* U2 UNIVERSEv1l

* U2 UNIVERSEv11.2
* U2 UNIVERSEv11.3

Functionality-specific names

Note: Not all functionality included with UniVerse has matching compiler directives.

* Local Subroutine Calls (added at UniVerse 11.2)
° U2 LOCALCALL (single underscore, added at 11.2.3)

° U2 LOCALCALL (double underscore, added at 11.3.2)
= Support for GCDISTANCE function
U2 GEOSPATIALand U2 GEOSPATIAL 1 (addedat11.3.2)

= Support for UTC Date Time functions (DATETIMEL, DATETIMEZ, NOW, TODATE, TODATETIME,
and TOTIME)

U2 UTCDATETIME and U2 UTCDATETIME 1 (addedat11.3.2)

For example, specifying SIFDEF U2__UNIVERSEv11.2, allows the use of 11.2 functionality within the
SIFDEF statement. The U2_LOCALCALL identifier can be used for local subroutines and variables
without being specific to 11.2. Using SIFDEF with the UniVerse supplied identifiers allows for compiling
a program on an earlier release where the code contained in the SIFDEF clause will be ignored.

19

Chapter 1: Statements and functions

Note: The SUNDEFINE statement cannot be used to remove the UniVerse supplied identifiers.

Example

In this example, the identifier NAME.SUFFIX is defined to have a value of PROGRAM.NAME[5]. When the
compiler processes the next line, it finds the symbol NAME.SUFFIX, substitutes PROGRAM.NAME[5] in
its place and continues processing with the first character of the replacement text.

SDEFINE NAME.SUFFIX PROGRAM.NAME[5]
IF NAME.SUFFIX = '.B' THEN

END

SEJECT statement

Use the SEJECT statement to begin a new page in the listing record.

Syntax

SEJECT

This statement is a synonym for the SPAGE statement.

SIFDEF statement

20

Use the SIFDEF statement to test for the definition of a compile-time symbol. SIFDEF tests to see
if identifier is currently defined (that is, has appeared in a SDEFINE statement and has not been
undefined).

Syntax

SIFDEF identifier
[statements]

[[SELSE]
[statements]]
SENDIF

Description

If identifier is currently defined and the SELSE clause is omitted, the statements between the SIFDEF
and SENDIF statements are compiled. If the SELSE clause is included, only the statements between
SIFDEF and SELSE are compiled.

If identifier is not defined and the SELSE clause is omitted, all the lines between the SIFDEF and SENDIF
statements are ignored. If the SELSE clause is included, only the statements between SELSE and
SENDIF are compiled.

SIFDEF statement

Both the IFDEF statement and SIFNDEF statement can be nested up to 10 deep.

Conditional compilation

You can use SDEFINE with the $IFDEF statement or SIFNDEF statement to define an identifier that
controls conditional compilation. The syntax is as follows:

SDEFINE identifier [replacement.text]

{ SIFDEF | S$IFNDEF } identifier
[statements]

SELSE

[statements]

SENDIF

The SIFDEF or SIFNDEF statement that begins the conditional compilation block tests identifier to
determine whether it is defined by a SDEFINE statement. If you use SIFDEF and identifier is defined, the
statements between the SIFDEF and the SELSE statements are compiled. If identifier is not defined, the
statements between the SELSE and SENDIF statements are compiled.

If you use SIFNDEF and identifier is defined, the statements between SELSE and SENDIF are compiled.
If identifier is not defined, the statements between the SIFDEF and SELSE statements are compiled.

Conditional compiler directives

Conditional compiler directives allow the inclusion of code and features available in later releases

of UniVerse to be included in programs used in earlier releases. The newer, unavailable features are
ignored by the compiler on older UniVerse releases. This helps developers avoid maintaining multiple
code streams for the various releases of UniVerse.

The following compiler definitions are available in UniVerse BASIC.

This type of directive functionality was initially added at UniVerse 11.2.0 and typically includes double
underscores in the name.

Version-specific names

Note: Earlier version directives are included in later UniVerse versions.

* U2 UNIVERSE

* U2 UNIVERSEvIl

* U2 UNIVERSEv11.2
* U2 UNIVERSEv11.3

Functionality-specific names

Note: Not all functionality included with UniVerse has matching compiler directives.

* Local Subroutine Calls (added at UniVerse 11.2)
° U2 LOCALCALL (single underscore, added at 11.2.3)

° U2 LOCALCALL (double underscore, added at 11.3.2)
= Support for GCDISTANCE function

21

Chapter 1: Statements and functions

U2 GEOSPATIALandU2 GEOSPATIAL 1 (addedat11.3.2)

= Support for UTC Date Time functions (DATETIMEL, DATETIMEZ, NOW, TODATE, TODATETIME,
and TOTIME)

U2 UTCDATETIME and U2 UTCDATETIME 1 (added at11.3.2)

For example, specifying SIFDEF U2__UNIVERSEv11.2, allows the use of 11.2 functionality within the
SIFDEF statement. The U2_LOCALCALL identifier can be used for local subroutines and variables
without being specific to 11.2. Using SIFDEF with the UniVerse supplied identifiers allows for compiling
a program on an earlier release where the code contained in the SIFDEF clause will be ignored.

Note: The SUNDEFINE statement cannot be used to remove the UniVerse supplied identifiers.

Example

The following example determines if the identifier “modified” is defined:

SDEFINE modified 0

SIFDEF modified

PRINT "modified is defined."
SELSE

PRINT "modified is not defined."
SENDIF

SIFNDEF statement

22

Use the SIFNDEF statement to test for the definition of a compile-time symbol. The SIFNDEF statement
complements the SIFDEF statement.

Syntax

$SIFNDEF identifier
[statements]

[[SELSE]
[statements]]
SENDIF

Description

If identifier is currently not defined and the SELSE clause is omitted, the statements between the
SIFNDEF and SENDIF statements are compiled. If the SELSE clause is included, only the statements
between SIFNDEF and $SELSE are compiled.

If identifier is defined and the SELSE clause is omitted, all the lines between the SIFNDEF and SENDIF
statements are ignored. If the SELSE clause is included, only the statements between SELSE and
SENDIF are compiled.

SIFDEF and SIFNDEF statements can be nested up to 10 deep.

Conditional compilation

You can use SDEFINE with the SIFDEF statement or SIFNDEF statement to define an identifier that
controls conditional compilation. The syntax is as follows:

SDEFINE identifier [replacement.text]

SIFNDEF statement

{ SIFDEF | SIFNDEF } identifier
[statements]

SELSE

[statements]

SENDIF

The SIFDEF or SIFNDEF statement that begins the conditional compilation block tests identifier to
determine whether it is defined by a SDEFINE statement. If you use SIFDEF and identifier is defined, the
statements between the SIFDEF and the SELSE statements are compiled. If identifier is not defined, the
statements between the SELSE and SENDIF statements are compiled.

If you use SIFNDEF and identifier is defined, the statements between SELSE and SENDIF are compiled.
If identifier is not defined, the statements between the SIFDEF and SELSE statements are compiled.

Conditional compiler directives

Conditional compiler directives allow the inclusion of code and features available in later releases

of UniVerse to be included in programs used in earlier releases. The newer, unavailable features are
ignored by the compiler on older UniVerse releases. This helps developers avoid maintaining multiple
code streams for the various releases of UniVerse.

The following compiler definitions are available in UniVerse BASIC.

This type of directive functionality was initially added at UniVerse 11.2.0 and typically includes double
underscores in the name.

Version-specific names

Note: Earlier version directives are included in later UniVerse versions.

* U2 UNIVERSE

* U2 UNIVERSEv1l

* U2 UNIVERSEv11.2
* U2 UNIVERSEv11.3

Functionality-specific names

Note: Not all functionality included with UniVerse has matching compiler directives.

* Local Subroutine Calls (added at UniVerse 11.2)
° U2 LOCALCALL (single underscore, added at 11.2.3)

° U2 LOCALCALL (double underscore, added at 11.3.2)
= Support for GCDISTANCE function
U2 GEOSPATIALand U2 GEOSPATIAL 1 (addedat11.3.2)

= Support for UTC Date Time functions (DATETIMEL, DATETIMEZ, NOW, TODATE, TODATETIME,
and TOTIME)

U2 UTCDATETIME and U2 UTCDATETIME 1 (addedat11.3.2)

For example, specifying SIFDEF U2__UNIVERSEv11.2, allows the use of 11.2 functionality within the
SIFDEF statement. The U2_LOCALCALL identifier can be used for local subroutines and variables
without being specific to 11.2. Using SIFDEF with the UniVerse supplied identifiers allows for compiling
a program on an earlier release where the code contained in the SIFDEF clause will be ignored.

23

Chapter 1: Statements and functions

Note: The SUNDEFINE statement cannot be used to remove the UniVerse supplied identifiers.

Example

The following example determines if the identifier “modified” is not defined:

SDEFINE modified 0

SIFNDEF modified

PRINT "modified is not defined."
SELSE

PRINT "modified is defined."
SENDIF

SINCLUDE statement

24

Use the SINCLUDE statement to direct the compiler to insert the source code in the record program
and compile it with the main program. The SINCLUDE statement differs from the SCHAIN statement in
that the compiler returns to the main program and continues compiling with the statement following
the SINCLUDE statement.

When program is specified without filename, program must be a record in the same file as the program
currently containing the SINCLUDE statement.

If program is a record in a different file, the file name must be specified in the SINCLUDE statement,
followed by the name of the program. The file name must specify a type 1 or type 19 file defined in the
VOC file.

You can nest SINCLUDE statements.
The SINCLUDE statement is a synonym for the #iNCLUDE and INCLUDE statements.

Syntax
$INCLUDE |[filename] program

$INCLUDE program FROM filename

Example

PRINT "START"
$INCLUDE END
PRINT "FINISH"

When this program is compiled, the SINCLUDE statement inserts code from the program END (see the
example in END statement, on page 148). This is the program output:

START
THESE TWO LINES WILL PRINT ONLY
WHEN THE VALUE OF 'A' IS 'YES'.

THIS IS THE END OF THE PROGRAM

SINSERT statement

SINSERT statement

Use the SINSERT statement to direct the compiler to insert the source code contained in the file
specified by primos.pathname and compile it with the main program. The difference between the
SINSERT statement and SINCLUDE statement (and its synonyms #INCLUDE and INCLUDE) is that
SINSERT takes a PRIMOS path name as an argument, whereas SINCLUDE takes a UniVerse file name
and record ID. The PRIMOS path is converted to a path; any leading *> is ignored.

SINSERT is included for compatibility with Prime INFORMATION programs; the SINCLUDE statement is
recommended for general use.

Syntax

$INSERT primos.pathname

If primos.pathname is the name of the program only, it is interpreted as a relative path. In this case, the
program must be a file in the same directory as the program containing the SINSERT statement.

You can nest SINSERT statements.

primos.pathname is converted to a valid path using the following conversion rules:

Conversion rules

/is converted to 7\

?is converted to ??

ASCII CHAR O (NUL) is converted to ?0
. (period) is converted to ?.

If you specify a full path name, the > between directory names changes to a / to yield:

[pathname/] program

SINSERT uses the transformed argument directly as a path of the file containing the source to be
inserted. It does not use the file definition in the VOC file.

Example

PRINT "START"
SINSERT END
PRINT "FINISH"

When this program is compiled, the SINSERT statement inserts code from the program END (see the
example in END statement, on page 148). This is the program output:

START
THESE TWO LINES WILL PRINT ONLY
WHEN THE VALUE OF 'A' IS 'YES'.

THIS IS THE END OF THE PROGRAM
FINISH

SMAP statement

In NLS mode, use the SMAP statement to direct the compiler to specify the map for the source code.
Use the SMAP statement if you use embedded literal strings that contain non-ASCIl characters.

25

Chapter 1: Statements and functions

Syntax

SMAP mapname

mapname must be the name of a map that has been built and installed.

You can use only one SMAP statement during compilation.

Note: You can execute programs that contain only ASCII characters whether NLS mode is on or off.
You cannot execute programs that contain non-ASCII characters that were compiled in NLS mode if
NLS mode is switched off.

For more information, see the NLS Guide.

Example

The following example assigns a string containing the three characters alpha, beta, and gamma to the
variable GREEKABG:

SMAP MNEMONICS

.GREEKABG = "<A*><B*>G*>"

SOPTIONS statement

26

Use the SOPTIONS statement to set compile-time emulation of any UniVerse flavor. This does not
allow object code compiled in one flavor to execute in another flavor. You can select individual
options in a program to override the default setting.

Note: You must specify SOPTIONS for each internal subroutine.

Syntax

SOPTIONS [flavor] [options]

Flavor keywords

Use the following keywords to specify flavor:

Keyword Flavor

PICK Generic Pick emulation
INFORMATION Prime INFORMATION emulation
REALITY REALITY emulation

IN2 Intertechnique emulation
DEFAULT IDEAL UniVerse

PIOPEN Pl/open emulation

For instance, the following statement instructs the compiler to treat all UniVerse BASIC syntax as if it
were running in a PICK flavor account:

SOPTIONS PICK

SOPTIONS statement

Another way to select compile-time emulation is to specify one of the following keywords in field 6 of
the VOC entry for the BASIC command:

INFORMATION.FORMAT
PICK.FORMAT
REALITY.FORMAT
IN2.FORMAT
PIOPEN.FORMAT

By default the VOC entry for the BASIC command corresponds with the account flavor specified when
your UniVerse account was set up.
Options keywords

options are specified by the keywords listed in following table. To turn off an option, prefix it with a
minus sign (-).

Option name Option letter Description

CASE none Differentiates between uppercase and lowercase
identifiers and keywords.

COMP.PRECISION none Rounds the number at the current precision value in
any comparison.

COUNT.OVLP (0] For the INDEX function and the COUNT function, the

count overlaps.

DIM,IN.SUM By default, arrays passed as argumentsin a
subroutine call cannot be redimensioned in

the subroutine. An attempt to redimension the
array is simply ignored. If you set the DIM.IN.SUB
option through the SOPTIONS statement, you can
redimension the array in a subroutine. See the
following example:

>AE BP CALLER SUBTEST

CALLER

0001 DIM A(10)

0002 CALL SUBTEST (MAT A)
0003 CRT A(100)

0004 END

SUBTEST

0001 SUBROUTINE SUBTEST (MAT A)
0002 $SOPTIONS DIM.IN.SUB

0003 DIM A(100)

0004 A(100) = 100

0005 RETURN

0006 END

>RUN BP CALLER
100

END.WARN R Prints a warning message if there is no final END
statement.

27

Chapter 1: Statements and functions

Option name Option letter Description
EXEC.EQ.PERF P Compiles the EXECUTE statement as the PERFORM
statement.

Note: If the syntax of the EXECUTE statement
is changed so it is no longer compatible with
the PERFORM statement, UniVerse ignores
EXEC.EQ.PERF. For example, UniVerse ignores
EXEC.EQ.PERF in the following program:

0001 “SOPTIONS EXEC.EQ.PERF
0002 EXECUTE 'DATE' CAPTURING RESULTS
0003 END

EXTRA.DELIM W For the INSERT function and the REPLACE function,
the compiler handles fields, values, and subvalues
that contain the empty string differently from

the way they are handled in the IDEAL flavor.

In particular, if you specify a negative one (-1)
parameter, INFORMATION and IN2 flavors add
another delimiter, except when starting with an

empty string.
FOR.INCR.BEF F Increments the index for FOR...NEXT loop before
instead of after the bound checking.
FORMAT.OCONV none Lets output conversion codes be used as format
masks (see the FMT function, on page 172).
FSELECT none Makes the SELECT statements return the total

number of records selected to the @SELECTED
variable. Using this option can result in slower
performance for the SELECT statement.

HEADER.BRK none Specifies the PIOPEN flavor for the | and P options
to the HEADING statement and FOOTING statement.
This is the default for the PIOPEN flavor.

HEADER.DATE D Displays times and dates in headings or footings in
fixed format (that is, they do not change from page to
page). Dates are displayed in 'D2-' format instead of
'D' format. Allows page number field specification by
multiple invocations of 'P' in a single set of quotation

marks.
HEADER.EJECT H HEADING statement causes initial page eject.
IN2.SUBSTR T Uses IN2 definitions for UniVerse BASIC substring

handling (string[n,m]). If a single parameter is
specified, a length of 1 is assumed. The size of the
string expands or contracts according to the length
of the replacement string.

INFO.ABORT J ABORT statement syntax follows Prime
INFORMATION instead of PICK.

INFO.CONVERT none Specifies that the FMT, ICONV, and OCONV functions
perform Pl/open style conversions.

INFO.ENTER none Specifies the PIOPEN flavor of the ENTER statement.

INFO.INCLUDE none Processes any PRIMOS paths specified with the

SINSERT statement.

28

SOPTIONS statement

Option name

Option letter

Description

INFO.LOCATE

L

LOCATE syntax follows Prime INFORMATION instead
of REALITY. The Pick format of the LOCATE statement
is always supported in all flavors.

INFO.MARKS

none

Specifies that the LOWER, RAISE, and REMOVE
functions use a smaller range of delimiters for PI/
open compatibility.

INFO.MOD

none

Specifies the PIOPEN flavor for the MOD function.
This is the default for the PIOPEN flavor.

INPUTAT

none

Specifies the PIOPEN flavor for the INPUT @
statement. This is the default for the PIOPEN flavor.

INPUT.ELSE

Accepts an optional THEN...ELSE clause on INPUT
statement.

INT.PRECISION

none

Rounds the integer at the current precision value in
an INT function.

LOCATE.R83

none

A LOCATE statement returns an “AR” or “DR”
sequence value compatible with Pick, Prime
INFORMATION, and Pl/open systems.

NO.CASE

none

Does not differentiate between uppercase and
lowercase in identifiers or keywords. This is the
default for the PIOPEN flavor.

NO.RESELECT

For the SELECT statements and SSELECT statement,
active select list 0 remains active; another selection
or sortis not performed. The next READNEXT
statement uses select list 0.

NO.RETURN.WARN

none

Suppresses display of warning messages from
ambiguous RETURN statements.

ONGO.RANGE

If the value used in an ON...GOTO or ON...GOSUB is
out of range, executes the next statement rather than
the first or last branch.

PCLOSE.ALL

The PRINTER CLOSE statement closes all print
channels.

PERF.EQ.EXEC

The PERFORM statement compiles as the EXECUTE
statement.

PIOPEN.EXECUTE

none

EXECUTE behaves similarly to the way it does on PI/
open systems.

PIOPEN.INCLUDE

none

Processes any PRIMOS paths specified with the
SINSERT statement and the SINCLUDE statement.

PIOPEN.MATREAD

none

Sets the elements of the matrix to empty strings
when the record ID is not found. MATREAD,
MATREADL, and MATREADU will behave as they do on
Pl/open systems.

PIOPEN.SELIDX

none

In the SELECTINDEX statement, removes multiple
occurrences of the same record ID in an index with a
multivalued field.

RADIANS

none

Calculates trigonometric operations using radians
instead of degrees.

RAW.OQUTPUT

none

Suppresses automatic mapping of system delimiters
on output. When an application handles terminal
control directly, RAW.OUTPUT turns off this
automatic mapping.

29

Chapter 1: Statements and functions

30

Option name

Option letter

Description

READ.RETAIN

Q

If READ statements, READU statement, READV
statement, READVL statement, or a READVU
statement fail, the resulting variable retains its value.
The variable is not set to an empty string.

REAL.SUBSTR

Uses REALITY flavor definitions for substring handling
(string[n,m]). If m or nis less than 0, the starting
position for substring extraction is defined as the
right side (the end) of the string.

RNEXT.EXPL

A READNEXT statement returns an exploded select
list.

SEQ.255

SEQ(" ") =255 (instead of 0).

STATIC.DIM

Creates arrays at compile time, not at run time. The
arrays are not redimensioned, and they do not have a
zero element.

STOP.MSG

Causes a STOP statement and an ABORT statement
to use the ERRMSG file to produce error messages
instead of using the specified text.

STRING.MATH

none

Causes UniVerse BASIC to automatically use the
SADD, SSUB, SDIV, and SMUL functions rather than
+,-,/,and *. This option also applies to the INT, ABS,
NEG, and MOD functions.

SUPP.DATA.ECHO

Causes input statements to suppress echo from data.

TIME.MILLISECOND

none

Causes the SYSTEM (12) function to return the
current system time in milliseconds, and the TIME
function to return the current system time in
seconds.

ULT.FORMAT

none

Format operations are compatible with Ult/ix. For
example, FMT("","MR2") returns an empty string, not
0.00.

USE.ERRMSG

The PRINTERR statement prints error messages from
ERRMSG.

VAR.SELECT

SELECT TO variable creates a local select variable
instead of using numbered select lists, and the
READLIST statement reads a saved select list instead
of an active numbered select list.

VEC.MATH

Uses vector arithmetic instructions for operating on
multivalued data. For performance reasons the IDEAL
flavor uses singlevalued arithmetic.

WIDE.IF

none

Testing numeric values for true or false uses the
wide zero test. In Release 6 of UniVerse, the WIDE.IF
option is OFF by default. In Release 7, WIDE.IF is ON
by default.

You can also set individual options by using special versions of some statements to override the

current setting. These are listed as follows:

Statement Equal to...

ABORTE The ABORT statement with SOPTIONS STOP.MSG
ABORTM ABORT with SOPTIONS -STOP.MSG

HEADINGE The HEADING statement with SOPTIONS HEADER.EJECT

SOPTIONS statement

Statement Equal to...

HEADINGN HEADING with SOPTIONS -HEADER.EJECT

SELECTV The SELECT statements with SOPTIONS VAR.SELECT
SELECTN SELECT with SOPTIONS -VAR.SELECT

STOPE The STOP statement with SOPTIONS STOP.MSG
STOPM STOP with SOPTIONS -STOP.MSG

The default settings for each flavor are listed in the following table:

IDEAL

PICK

INFO

REALITY

IN2 PIOPEN

CASE

X

COMP.PRECISION

COUNT.OVLP

END.WARN

EXEC.EQ.PERF

EXTRA.DELIM

FOR.INC.REF

FORMAT.OCONV

FSELECT

HEADER.BRK

HEADER.DATE

HEADER.EJECT

IN2.SUBSTR

INFO.ABORT

X[X| X[X]| X

INFO.CONVERT

INFO.ENTER

INFO.LOCATE

INFO.MARKS

INFO.MOD

INPUTAT

X | X| X[x| X

INPUT.ELSE

INT.PRECISION

LOCATE.R83

NO.CASE

NO.RESELECT

NO.SMA.COMMON

ONGO.RANGE

PCLOSE.ALL

PERF.EO.EXEC

PIOPEN.EXECUTE

PIOPEN.INCLUDE

PIOPEN.MATREAD

PIOPEN.SELIDX

RADIANS

RAW.OUTPUT

31

Chapter 1: Statements and functions

IDEAL PICK INFO REALITY IN2 PIOPEN
READ.RETAIN X X X
REAL.SUBSTR X X X
RNEXT.EXPL
SEQ.255 X X X
STATIC.DIM X X X
STOP.MSG X X X
SUPP.DATA.ECHO X X X
ULT.FORMAT
USE.ERRMSG X
VAR.SELECT X X
VEC.MATH X X
WIDE.IF X X X X X
Example
>ED BP OPT
4 lines long.
-——-: P
0001: $SOPTIONS INFORMATION
0002: A='12"
0003: B='14"

0004: PRINT A,B
Bottom at line 4

—_———— Q

>BASIC BP OPT

Compiling: Source = 'BP/OPT', Object = 'BP.O/OPT'

QEOF WARNING: Final 'END' statement not found.

Compilation Complete.
>ED BP OPT

4 lines long.

-——--: P

0001: $OPTIONS PICK
0002: A='12"

0003: B='14"

0004: PRINT A,B
Bottom at line 4

>BASIC BP OPT
Compiling: Source = 'BP/OPT', Object = 'BP.O/OPT'

Compilation Complete.

SPAGE statement

The $PAGE statement is a synonym for the SEJECT statement, on page 20.

32

SUNDEFINE statement

SUNDEFINE statement

Use the SUNDEFINE statement to remove the definition of identifiers set with the SDEFINE statement.
The SUNDEFINE statement removes the definition of identifier from the symbol table if it appeared in a
previous SDEFINE statement. If the identifier was not previously defined, SUNDEFINE has no effect.

Syntax

SUNDEFINE identifier

identifier is the identifier whose definition is to be deleted from the symbol table.

You can use SUNDEFINE with the SIFDEF statement or SIFNDEF statement to undefine an identifier
that controls conditional compilation. The syntax is as follows:

SUNDEFINE identifier

{ SIFDEF | S$IFNDEF }identifier
[statements]

SELSE

[statements]

SENDIF

The SIFDEF statement that begins the conditional compilation block tests identifier to determine
whether it is currently defined. Using this syntax, the SUNDEFINE statement deletes the definition of
identifier from the symbol table, and the statements between the $SELSE and the SENDIF statements
are compiled.

If you use the SIFNDEF statement, on the other hand, and identifier is undefined, the statements
between SIFDEF and SENDIF are compiled. If identifier is not defined, the statements between SIFDEF
and SELSE are compiled.

Note: UniVerse does not support nested SDEFINE/SUNDEFINE statements.

* statement

Use the * statement to insert a comment in a UniVerse BASIC program. Comments explain or
document various parts of a program. They are part of the source code only and are nonexecutable.
They do not affect the size of the object code.

A comment must be a separate UniVerse BASIC statement, and can appear anywhere in a program. A
comment must begin with one of the following comment designators:

* REM

- *

= !
n s*
Any text that appears between a comment designator and the end of a physical line is treated as part

of the comment, not as part of the executable program. If a comment does not fit on one physical line,
you can continue it on the next physical line only by starting the new line with a comment designator.

33

Chapter 1: Statements and functions

If a comment appears at the end of a physical line containing an executable statement, you must put a
semicolon (;) before the comment designator.

Syntax

* [comment. text]

Example

The PRINT statement at the end of the third line is not executed because it follows the asterisk on the
same line and is treated as part of the comment. Lines 4, 5, and 6 show how to include a comment in
the same sequence of executable statements.

PRINT "HI THERE"; * Anything after the * is a comment
* This line is also a comment and does not print.

IF 5<6 THEN PRINT "YES"; * A comment; PRINT "PRINT ME"
IF 5<6 THEN

PRINT "YES"; * A comment

PRINT "PRINT ME"

END

This is the program output:
HI THERE
YES

YES
PRINT ME

<>operator

Use the <> operator (angle brackets) to extract or replace elements of a dynamic array.

Syntax

variable < field# [,value# [,subvalue#]] >

Parameters

Parameter Description

variable Specifies the dynamic array containing the data to be changed.
field#, value#, subvalue # | Delimiter expressions.

Angle brackets to the left of an assignment operator change the specified data in the dynamic array
according to the assignment operator. For examples, see the REPLACE function, on page 331. Angle
brackets to the right of an assignment operator indicate that an EXTRACT function is to be performed.
For examples, see the FADD function, on page 159.

@ function

Use the @ function with the PRINT statement to control display attributes, screen display, and cursor
positioning.

34

@ function

Note: You can save processing time by assigning the result of a commonly used @ function, such
as @ (-1), to a variable, rather than reevaluating the function each time it is used.

Syntax
Q@ (column [, row])

Q(-code [,arg 1)

Parameters
Parameter Description

column Defines a screen column position.

row Defines a screen row position.

-code The terminal control code that specifies a particular screen or cursor
function.

arg Specifies further information for the screen or cursor function specified in -
code.

Cursor positioning

You position the cursor by specifying a screen column and row position using the syntax @ (column
[,row]). If you do not specify a row, the current row is the default. The top line is row 0, the leftmost
column is column 0. If you specify a column or row value that is out of range, the effect of the function
is undefined.

If you use the @ function to position the cursor, automatic screen pagination is disabled.

Screen and cursor controls

You can use the @ function with terminal control codes to specify various cursor and display
operations using the syntax @ (-code [,arg]).

If you want to use mnemonics rather than the code numbers, you can use an insert file of equate
names by specifying either of the following options when you compile your program:

SINCLUDE UNIVERSE.INCLUDE ATFUNCTIONS.H

$INCLUDE SYSCOM ATFUNCTIONS.INS.IBAS (PIOPEN flavoronly)

Note: Not all terminal control codes are supported by all terminal types. If the current terminal
type does not support the code you specified, the function returns an empty string. You can use
this to test whether your program operates correctly on a particular terminal, and whether you
need to code any alternative actions.

If you issue multiple video attributes (such as blink and reverse video) at the same time, the result
is undefined. See the description of the @ function, on page 34 for details of additive attributes.

The following table summarizes the characteristics of the terminal control codes, and the sections
following the table give more information on each equate name:

Integer | Equate name Function Argument
-1 ITSCS Screen clear and

home
-2 ITSCAH Cursor home

35

Chapter 1: Statements and functions

Integer | Equate name Function Argument
-3 ITSCLEOS Clear to end of
screen
-4 ITSCLEOL Clear to end of
line
-5 ITSSBLINK Start blink
-6 ITSEBLINK Stop blink
-7 ITSSPA Start protect
-8 ITSEPA Stop protect
-9 ITSCUB Back spaceone | Number of characters to back space
character
-10 ITSCUU Move up one line | Number of lines to move
-11 |IT$SSHALF Start half-
intensity
-12 |ITSEHALF Stop half-
intensity
-13 ITSSREV Start reverse
video
-14 ITSEREV Stop reverse
video
-15 ITSSUL Start underlining
-16 ITSEUL Stop underlining
-17 ITSIL Insert line Number of lines to insert
-18 ITSDL Delete line Number of lines to delete
-19 ITSICH Insert character | Number of lines to insert
-20 ITSSIRM Set insert/replace
mode
-21 ITSRIRM Reset insert/
replace mode
-22 ITSDCH Delete character | Number of characters to delete
-23 ITSAUXON Aucxiliary port on
=24 ITSAUXOFF Auxiliary port off
-25 ITSTRON Transparent
auxiliary port on
-26 ITSTROFF Transparent
auxiliary port off
=27 ITSAUXDLY Auxiliary port
delay time
-28 ITSPRSCRN Print screen
-29 ITSESO Enter 80-column
mode
-30 ITSE132 Enter 132-column
mode
-31 ITSRIC Reset inhibit
cursor
-32 ITSSIC Set inhibit cursor
-33 ITSCUD Cursor down Number of lines to move cursor

36

@ function

Integer | Equate name Function Argument
-34 ITSCUF Cursor forward Number of places to move cursor forward
-35 ITSVIDEO Set video Additive attribute value
attributes
-36 ITSSCOLPR Set color pair Predefined color pairing
=37 ITSFCOLOR Set foreground Foreground color code
color
-38 ITSBCOLOR Set background | Background color code
color
-39 ITSSLINEGRFX Start line graphics
-40 ITSELINEGRFX End line graphics
-41 ITSLINEGRFXCH Line graphics The required graphics character
character
-42 ITSDMI Disable manual
input
-43 ITSEMI Enable manual
input
-44 ITSBSCN Blank screen
-45 ITSUBS Unblank screen
-48 ITSSU Scroll up Number of lines to scroll
-49 ITSSD Scroll down Number of lines to scroll
-50 ITSSR Scroll right Number of columns to scroll
-51 ITSSL Scroll left Number of columns to scroll
-54 ITSSLT Set line truncate
-55 ITSRLT Reset line
truncate
-56 ITSSNK Set numeric
keypad
-57 ITSRNK Reset numeric
keypad
-58 ITSSBOLD Start bold
-59 ITSEBOLD End bold
-60 ITSSSECUR Start secure
mode
-61 ITSESECUR End secure mode
-62 ITSSSCRPROT Start screen
protect mode
-63 ITSESCRPROT End screen
protect mode
-64 ITSSLD System line
display
-65 ITSSLR System line reset
-66 ITSSLS System line set
=70 ITSCHA Cursor horizontal |Column number to position cursor
absolute
-71 ITSECH Erase character | Number of characters to erase

37

Chapter 1: Statements and functions

38

Integer | Equate name Function Argument
-74 ITSNPC Character to
substitute for
nonprinting
character
=75 ITSDISPLAY EDFS main
display attributes
-76 ITSMINIBUF EDFS mini-buffer
display attributes
=77 ITSLOKL Lock line The line number
-78 ITSUNLL Unlock line The line number
-79 ITSMARKSUBS Display marks
-80 Reserved for U2
through
-100
-101 |ITSUSERFIRST Available for
Eqrzosugh ITSUSERLAST general use

Screen clear and home @(ITSCS)

Clears the screen and positions the cursor in the upper-left corner.

Cursor home @(ITSCAH)

Moves the cursor to the upper-left corner of the screen.

Clear to end of screen @(ITSCLEQS)

Clears the current screen line starting at the position under the cursor to the end of that line and clears
all lines below that line. The cursor does not move.

Clear to end of line @(ITSCLEOL)

Clears the current screen line starting at the position under the cursor to the end of that line. The
cursor does not move.

Start blink @(ITSSBLINK)

Causes any printable characters that are subsequently displayed to blink. If you move the cursor
before issuing the stop blink function, @(ITSEBLINK), the operation of the @(ITSSBLINK) code is
undefined.

Stop blink @(ITSEBLINK)

Stops blink mode. If a start blink function, @(ITSSBLINK), was not transmitted previously, the effect of
this sequence is undefined.

Start protect @(ITSSPA)

Protects all printable characters that are subsequently displayed from update until the characters are
erased by one of the clear functions @(IT$CS), @(ITSCLEOS), or @(ITSCLEOL). If you move the cursor

@ function

before issuing the stop protect function, @(ITSEPA), the operation of this code is undefined. The start
protect function is useful only for terminals that are in block mode.

Stop protect @(ITSEPA)

Stops the protect mode. If a start protect string was not previously transmitted, the effect of this
sequence is undefined. The stop protect function is useful only for terminals that are in block mode.
Back space one char @(ITSCUB)

Moves the cursor one position to the left without deleting any data. For m greater than 0, the function
@(ITSCUB, m) moves the cursor m positions to the left. In moving to the left, the cursor cannot move
beyond the start of the line.

Move up one line @(ITSCUU)

Moves the cursor up one line toward the top of the screen. For m greater than 0, the function @(IT
$CUU, m) moves the cursor up m lines. The cursor remains in the same column, and cannot move
beyond the top of the screen.

Start half-intensity @(ITSSHALF)

Causes all printable characters that are subsequently displayed to be displayed at reduced intensity.

If a cursor-positioning sequence is used before the stop half-intensity function, @(ITSEHALF), the
operation of this function is undefined.

Stop half-intensity @(ITSEHALF)

Terminates half-intensity mode. The effect of this sequence is unspecified if a start half-intensity string
was not previously transmitted.

Start reverse video @(ITSSREV)

Causes printable characters that are subsequently displayed to be displayed with all pixels inverted.
If a cursor-positioning sequence is used before the stop reverse video function, @(ITSEREV), the
operation of this function is undefined.

Stop reverse video @(ITSEREV)

Terminates reverse video mode. If a start reverse video function, @(ITSSREV), was not previously
transmitted, the effect of this sequence is undefined.

Start underlining @(ITSSUL)

Causes all subsequent printable characters to be underlined when displayed. If a cursor-positioning
sequence is used before the stop underlining function, @(ITSEUL), the operation of this function is
undefined.

Stop underlining @(ITSEUL)

Terminates the underlining mode established by a start underlining function, @(ITSSUL). The effect of
this sequence is unspecified if a start underlining string was not previously transmitted.

Insert line @(ITSIL)

Inserts a blank line at the current cursor position. For m greater than 0, the function @(ITSIL, m) inserts
m blank lines at the current cursor position. If m is omitted, the default is 1. The effect when mis less

39

Chapter 1: Statements and functions

40

than 1is undefined. All lines from the current cursor position to the end of the screen scroll down. The
bottom m lines on the screen are lost.

Delete line @(ITSDL)

Deletes the line at the current cursor position; the function @(ITSDL, 1) has the same effect. For m
greater than 1, the lines above the current line are deleted until m minus 1 lines have been deleted or
the top of the file has been reached, whichever occurs first. All lines below the current cursor position
scroll up. The last lines on the screen are cleared.

Insert character @(ITSICH)

Inserts a space at the current cursor position. All characters from the cursor position to the right edge
of the screen are shifted over one character to the right. Any character at the rightmost edge of the
screen is lost. For m greater than 0, the function @(ITSICH, m) inserts m spaces at the current cursor
position, shifting the other characters accordingly.

Set insert/replace mode @(ITSSIRM)

Starts insert character mode. Characters sent to the terminal screen are inserted at the current cursor
position instead of overwriting the character under the cursor. The characters under and to the right of
the cursor are shifted over one character to the right for each character transmitted, and any character
at the rightmost edge of the screen is lost.

Reset insert/replace mode @(ITSRIRM)

Turns off insert character mode. Characters sent to the terminal screen overwrite the characters at the
current cursor position.

Delete character @(ITSDCH)

Deletes the character at the current cursor position. All characters to the right of the cursor move
one space to the left, and the last character position on the line is made blank. For m greater than

1, the function @(ITSDCH, m) deletes further characters, to the right of the original position, until m
characters have been deleted altogether or until the end of the display has been reached, whichever
occurs first.

Auxiliary port on @(ITSAUXON)

Enables the auxiliary (printer) port on the terminal. All characters sent to the terminal are displayed on
the screen and also copied to the auxiliary port.

Auxiliary port off @(ITSAUXOFF)

Disables the auxiliary (printer) port on the terminal, and stops the copying of the character stream to
the auxiliary port.

Transparent auxiliary port on @(ITSTRON)

Places the auxiliary (printer) port on the terminal in transparent mode. All characters sent to the
terminal are sent only to the auxiliary port and are not displayed on the terminal screen.

Transparent auxiliary port off @(ITSTROFF)

Disables the auxiliary (printer) port on the terminal and enables the display of the character stream on
the terminal screen.

@ function

Auxiliary delay time @(ITSAUXDLY)

Sets a time, in milliseconds, that an application should pause after enabling or disabling the auxiliary
port. The value of this function is an integer in the range 0 through 32,767. The function is used in
conjunction with the ISLEEPS subroutine; for example:

PRINT @ (ITSAUXON) :;CALL !SLEEPS (@ (ITSAUXDLY))

Print screen @(ITSPRSCRN)

Copies the contents of the screen to the auxiliary port. The function does not work for some terminals
while echo delay is enabled.

Enter 80-column mode @(ITSE80)

Starts 80-column mode. On some terminals it can also clear the screen.

Enter 132-column mode @(ITSE132)

Starts 132-column mode. On some terminals it can also clear the screen.

Reset inhibit cursor @(ITSRIC)

Turns the cursor on.

Set inhibit cursor @(ITSSIC)

Turns the cursor off.

Cursor down @(ITSCUD)

Moves the cursor down one line. For m greater than 0, the function @(ITSCUD, m) moves the cursor
down m lines. The cursor remains in the same column, and cannot move beyond the bottom of the
screen.

Cursor forward @(ITSCUF)

Moves the cursor to the right by one character position without overwriting any data. For m greater
than 0, the function @(ITSCUF, m) moves the cursor m positions to the right. The cursor cannot move
beyond the end of the line.

Set video attributes @(ITSVIDEO)

Is an implementation of the ANSI X3.64-1979 and ISO 6429 standards for the video attribute portion of
Select Graphic Rendition. It always carries an argument m that is an additive key consisting of one or
more of the following video attribute keys:

Value Name Description

0 ITSNORMAL Normal

1 ITSBOLD Bold

2 ITSHALF Half-intensity
4 ITSSTANDOUT Enhanced

4 ITSITALIC Italic

8 ITSULINE Underline

16 ITSSLOWBLINK Slow blink

41

Chapter 1: Statements and functions

42

Value Name Description

32 ITSFASTBLINK Fast blink

64 ITSREVERSE Reverse video

128 ITSBLANK Concealed

256 ITSPROTECT Protected

572 ITSALTCHARSET Alternative character set
For example:

PRINT @ (ITSVIDEO, ITSHALF+ITSULINE+ITSREVERSE)

In this example, m is set to 74 (2 + 8 + 64) for half-intensity underline display in reverse video. Bold,
italic, fast blink, and concealed are not supported on all terminals. To set the video attributes half-
intensity and underline, specify the following:

@(-35,10)

In this example, 10 is an additive key composed of 2 (half-intensity) plus 8 (underline).

Set color pair @(ITSSCOLPR)

Sets the background and foreground colors to a combination that you have previously defined in your
system terminfo file.

Set foreground color @(ITSFCOLOR)

Sets the color that is used to display characters on the screen. @(ITSFCOLOR,arg) always takes an
argument that specifies the foreground color to be chosen, as follows:

Value Name Description
0 ITS63 Black

1 ITSRED Red

2 ITSGREEN Green

3 ITSYELLOW Yellow

4 ITSBLUE Blue

5 ITSMAGENTA Magenta

6 ITSCYAN Cyan

7 ITSWHITE White

8 ITSDARK.RED Dark red

9 ITSCERISE Cerise

10 ITSORANGE Orange

11 ITSPINK Pink

12 ITSDARK.GREEN Dark green
13 ITSSEA.GREEN Sea green
14 ITSLIME.GREEN Lime green
15 ITSPALE.GREEN Pale green
16 ITSBROWN Brown

17 ITSCREAM Cream

18 ITSDARK.BLUE Dark blue
19 ITSSLATE.BLUE Slate blue
20 ITSVIOLET Violet

@ function

Value Name Description
21 ITSPALE.BLUE Pale blue
22 ITSPURPLE Purple

23 ITSPLUM Plum

24 ITSDARK.CYAN Dark cyan
25 ITSSKY.BLUE Sky blue
26 ITSGREY Grey

The color attributes are not additive. Only one foreground color at a time can be displayed. If a
terminal does not support a particular color, a request for that color should return an empty string.

Set background color @(ITSBCOLOR)

Sets the background color that is used to display characters on the screen. The @(ITSBCOLOR,
arg) function always has an argument that specifies the background color to be chosen. (See Set
foreground color @(ITSFCOLOR) on page 65 for a list of available colors.)

Start line graphics @(ITSSLINEGRFX)

Switches on the line graphics mode for drawing boxes or lines on the screen.

End line graphics @(ITSELINEGRFX)

Switches off the line graphics mode.

Line graphics character @(ITSLINEGRFXCH)

Specifies the line graphics character required. The argument can be one of the following:

Value Token Description

0 ITSGRFX.CROSS Cross piece

1 ITSGRFX.H.LINE Horizontal line

2 ITSGRFX.V.LINE Vertical line

3 ITSGRFX.TL.CORNER Top-left corner

4 ITSGRFX.TR.CORNER Top-right corner

5 ITSGRFX.BL.CORNER Bottom-left corner
6 ITSGRFX.BR.CORNER Bottom-right corner
7 ITSGRFX.TOP.TEE Top-edge tee piece
8 ITSGRFX.LEFT.TEE Left-edge tee piece
9 ITSGRFX.RIGHT.TEE Right-edge tee piece
10 ITSGRFX.BOTTOM.TEE Bottom-edge tee piece

Disable manual input @(ITSDMI)

Locks the terminal’s keyboard.

Enable manual input @(ITSEMI)

Unlocks the terminal’s keyboard.

43

Chapter 1: Statements and functions

44

Blank screen @(ITSBSCN)

Blanks the terminal’s display. Subsequent output to the screen is not visible until the unblank screen
function, @(ITSUBS), is used.

Unblank screen @(ITSUBS)

Restores the terminal’s display after it was blanked. The previous contents of the screen, and any
subsequent updates, become visible.

Scroll up @(ITSSU)

Moves the entire contents of the display up one line. For m greater than 0, the function @(IT$SU, m)
moves the display up m lines or until the bottom of the display is reached, whichever occurs first. For
each line that is scrolled, the first line is removed from sight and another line is moved into the last
line. This function works only if the terminal is capable of addressing character positions that do not
all fit on the screen, such that some lines are not displayed. This normally requires the terminal to be
set to vertical two-page mode in the initialization string. The effect of attempting to scroll the terminal
too far is undefined.

Scroll down @(ITSSD)

Moves the entire contents of the display down one line. For m greater than 0, the function @(IT$SD,

m) moves the display down m lines or until the top of the display is reached, whichever occurs first.
For each line that is scrolled, the last line is removed from sight and another line is moved into the top
line. This function works only if the terminal is capable of addressing character positions that do not
all fit on the screen, such that some lines are not displayed. This normally requires the terminal to be
set to vertical two-page mode in the initialization string. The effect of attempting to scroll the terminal
too far is undefined.

Scroll right @(ITSSR)

Moves the entire contents of the display one column to the right. For m greater than 0, the function
@(ITSSR, m) moves the display m columns to the right or until the left edge of the display is reached,
whichever occurs first. For each column scrolled, the rightmost column is removed from sight and
another leftmost column appears. This function works only if the terminal is capable of addressing
character positions that do not fit on the screen, such that some columns are not displayed. This
normally requires the terminal to be set to horizontal two-page mode in the initialization string. The
effect of attempting to scroll the terminal too far is undefined.

Scroll left @(ITSSL)

Moves the entire contents of the display one column to the left. For m greater than 0, the function
@(ITSSL, m) moves the display m columns to the left or until the right edge of the display is reached,
whichever happens first. For each column scrolled, the leftmost column is removed from sight and
another rightmost column appears. This function works only if the terminal is capable of addressing
character positions that do not fit on the screen, such that some columns are not displayed. This
normally requires the terminal to be set to horizontal two-page mode in the initialization string. The
effect of attempting to scroll the terminal too far is undefined.

Set line truncate @(ITSSLT)

Makes the cursor stay in the last position on the line when characters are printed past the last
position.

@ function

Reset line truncate @(ITSRLT)

Makes the cursor move to the first position on the next line down when characters are printed past the
last position.

Set numeric keypad @(ITSSNK)

Sets keys on the numeric keypad to the labeled functions instead of numbers.

Reset numeric keypad @(ITSRNK)

Resets keys on the numeric keypad to numbers.

Start bold @(ITSSBOLD)

Starts bold mode; subsequently, any characters entered are shown more brightly on the screen.

End bold @(ITSEBOLD)

Ends bold mode; characters revert to normal screen brightness.

Start secure mode @(ITSSSECUR)

Characters entered in this setting are not shown on the screen. This function can be used when
entering passwords, for example.

End secure mode @(ITSESECURE)

Switches off secure mode; characters appear on the screen.

Start screen protect mode @(ITSSSCRPROT)

Switches on start protect mode. Characters entered in this mode are not removed when the screen is
cleared.

End screen protect mode @(ITSESCRPROT)

Switches off screen protect mode.

System line display @(ITSSLD)

Redisplays the user-defined characters that were sent by the system line set function, @(ITSSLS).
The system line is defined as an extra line on the terminal display but is addressable by the normal
cursor positioning sequence. On most terminals the system line normally contains a terminal status
description. The number of usable lines on the screen does not change.

System line reset @(ITSSLR)

Removes from the display the characters that were set by the @(IT$SSLS) function and replaces them
with the default system status line. The number of usable lines on the screen does not change.

System line set @(ITSSLS)

Displays the user-defined status line, and positions the cursor at the first column of the status line.
Subsequent printing characters sent to the terminal are displayed on the status line. Issuing a system
line reset function, @(ITSSLR), terminates printing on the status line, and leaves the cursor position

45

Chapter 1: Statements and functions

46

undefined. The characters printed between the issuing of @(IT$SLS) and @(ITSSLR) can be recalled
subsequently and displayed on the line by issuing an @(IT$SLD) function.

Cursor horizontal absolute @(ITSCHA)

Positions the cursor at column m of the current line. If m is omitted, the default is 0. The @(ITSCHA, m)
function must have the same effect as @(m).

Erase character @(ITSECH)

Erases the character under the cursor and replaces it with one or more spaces, determined by the
argument m. If you do not specify m, or you specify a value for m that is less than 2, only the character
under the cursor is replaced. If you specify an argument whose value is greater than 1, the function
replaces the character under the cursor, and m -1 characters to the right of the cursor, with spaces.
The cursor position is unchanged.

ITSNPC, ITSDISPLAY, and ITSMINIBUF

Reserved for EDFS attributes.

Lock line @(ITSLOKL)

Locks line n of the screen display (top line is 0). The line cannot be modified, moved, or deleted from
the screen until it is unlocked.

Unlock line @(ITSUNLL)

Unlocks line n of the screen display allowing it to be modified, moved, or deleted.

Display marks @(ITSMARKSUBS)

Returns the characters used to display UniVerse delimiters on screen. From left to right, the delimiters
are: item, field, value, subvalue, and text.

Allocated for U2 @(-80) to @(-100)

These functions are reserved for U2.

Allocated for general use @(-101) to @(-128)

These functions are available for any additional terminal definition strings that you require.

Video attributes: points to note

Terminals whose video attributes are described as embedded or on-screen use a character position
on the terminal screen whenever a start or stop video attribute is received. Programs driving such
terminals must not change an attribute in the middle of a contiguous piece of text. You must leave

at least one blank character position at the point where the attribute changes. The field in the
terminal definition record called xmc is used to specify the number of character positions required

for video attributes. A program can examine this field, and take appropriate action. To do this, the
program must execute GET.TERM.TYPE and examine the @SYSTEM.RETURN.CODE variable, or use the
definition VIDEO.SPACES from the TERM INFO.H file.

Many terminals do not clear video attributes automatically when the data on a line is cleared or
deleted. The recommended programming practice is to reposition to the point at which a start
attribute was emitted, and overwrite it with an end attribute, before clearing the line.

@ function

On some terminals you can set up the Clear to End of Line sequence to clear both data and video
attributes. This is done by combining the strings for erase data from active position to end of line,
selecting Graphic Rendition normal, and changing all video attributes from active position to end
of line. Sending the result of the @(ITSCLEOL) function causes both the visible data on the line to be
cleared, and all video attributes to be set to normal, after the cursor position.

Note: Where possible, you should try to ensure that any sequences that clear data also clear video
attributes. This may not be the case for all terminal types.

An exception is @(ITSCS) clear screen. The sequence associated with this function should always
clear not only all data on the screen but also reset any video attributes to normal.

Examples

The following example displays “Demonstration” at column 5, line 20:
PRINT @ (5,20) :"Demonstration"

In the next example, the PRINT statement positions the cursor to home, at the top-left corner of the
screen, and clears the screen:

PRINT @ (ITSCS):

The SINCLUDE statement is used to include the ATFUNCTIONS insert file of equate names. Assignment
statements are used to assign the evaluated @ functions to variables. The variables are used in PRINT
statements to produce code that clears the screen and returns the cursor to its original position;
positions the cursor at column 5, line 20; turns on the reverse video mode; prints the string; and turns
off the reverse video mode.

$INCLUDE UNIVERSE.INCLUDE ATFUNCTIONS.H
CLS = @(ITSCS)

REVERSE.ON = @ (IT$SREV)

REVERSE.OFF = Q@ (ITSEREV)

éRINT CLS: @(5,20):

PRINT REVERSE.ON:"THIS IS REVERSE VIDEO":REVERSE.OFF
The next example displays any following text in yellow letters:
PRINT @ (ITSFCOLOR, ITSYELLOW)
The next example displays any following text on a cyan background:
PRINT @ (IT$SBCOLOR, ITSCYAN)

The next example gives a yellow foreground, not a green foreground, because color changes are not
additive:

PRINT @ (ITSFCOLOR, ITSBLUE) :@(IT$FCOLOR, ITSYELLOW)

If you have a terminal that supports colored letters on a colored background, the next example
displays the text “Hello” in yellow on a cyan background. All subsequent output is in yellow on cyan
until another color @ function is used. If your color terminal cannot display colored foreground on
colored background, only the last color command is used, so that this example displays the text
“Hello” in yellow on a black background.

PRINT @ (ITSBCOLOR,ITSCYAN) :@(ITSFCOLOR, ITSYELLOW) :"Hello"

If your color terminal cannot display colored foreground on colored background, the previous
example displays the text “Hello” in black on a cyan background.

47

Chapter 1: Statements and functions

The next example gives the same result as the previous example for a terminal that supports colored
letters on a colored background. Strings containing the @ functions can be interpreted as a sequence
of instructions, which can be stored for subsequent frequent reexecution.

PRINT @ (ITSFCOLOR, ITSYELLOW) : @ (ITSBCOLOR, ITSCYAN) : "Hello"

In the last example, the screen is cleared, the cursor is positioned to the tenth column in the tenth line,
and the text “Hello” is displayed in foreground color cyan. The foreground color is then changed to
white for subsequent output. This sequence of display instructions can be executed again, whenever it
is required, by a further PRINT SCREEN statement.

SCREEN = @(IT$CS):@(10,10):Q@(ITSFCOLOR, ITSCYAN) : "Hello"

SCREEN = SCREEN:Q@ (ITSFCOLOR, ITSWHITE)
PRINT SCREEN

[] operator

Use the [] operator (square brackets) to extract a substring from a character string. The bold brackets
are part of the syntax and must be typed.
Syntax

expression [[start,] length]

expression [delimiter, occurrence, fields]

Parameters

Parameter Description

expression Evaluates to any character string.

start An expression that evaluates to the starting character position of the
substring. If start is 0 or a negative number, the starting position is assumed
to be 1. If you omit start, the starting position is calculated according to the
following formula:
string.length - substring.length + 1
This lets you specify a substring consisting of the last n characters of a string
without having to calculate the string length.

length is an expression that evaluates to the length of the substring.

If start exceeds the number of characters in expression, an empty string results. An empty string
also results if length is 0 or a negative number. If the sum of start and length exceeds the number of
characters in the string, the substring ends with the last character of the string.

Use the second syntax to return a substring located between the specified number of occurrences of
the specified delimiter. This syntax performs the same function as the FIELD function, on page 160.

Parameter Description

delimiter Any string, including field mark, value mark, and subvalue mark characters.
It delimits the start and end of the substring (all that appears within the two
delimiters). If delimiter consists of more than one character, only the first
character is used.

occurrence Specifies which occurrence of the delimiter is to be used as a terminator. If
occurrence is less than 1, 1 is assumed.

48

ABORT statement

Parameter Description

fields Specifies the number of successive fields after the delimiter specified by
occurrence that are to be returned with the substring. If the value of fields is
less than 1, 1 is assumed. The delimiter is part of the returned value in the
successive fields.

If the delimiter or the occurrence specified does not exist within the string, an empty string is returned.
If occurrence specifies 1 and no delimiter is found, the entire string is returned.

If expression is the null value, any substring extracted from it will also be the null value.

Examples
In the following example (using the second syntax) the fourth # is the terminator of the substring to be
extracted, and one field is extracted:

A="4#4##DHHH#KK"
PRINT A["#",4,1]
This is the result:
DHHH
The following syntaxes specify substrings that start at character position 1:
expression [0, length]expression [-1, length]
The following example specifies a substring of the last five characters:
"1234567890" [5]
This is the result:
67890
All substring syntaxes can be used in conjunction with the assignment operator (=). The new value

assigned to the variable replaces the substring specified by the [] operator. For example:

A='12345"
A[3]=1212
PRINT "A=",6A

returns the following:
A= 12121

A[3] replaces the last three characters of A (345) with the newly assigned value for that substring
(1212).

The FIELDSTORE function provides the same functionality as assigning the three-argument syntax of
the [] operator.

ABORT statement

Use the ABORT statement to terminate execution of a BASIC program and return to the UniVerse
prompt. ABORT differs from STOP in that a STOP statement returns to the calling environment (for
example, a menu, a paragraph, another UniVerse BASIC program following an EXECUTE statement,
and so on), whereas ABORT terminates all calling environments as well as the UniVerse BASIC
program. You can use it as part of an IF...THEN statement to terminate processing if certain conditions
exist.

49

Chapter 1: Statements and functions

Syntax
ABORT [expression ..]
ABORTE [expression ..]

ABORTM [expression ..]

If expression is used, it is printed when the program terminates. If expression evaluates to the null
value, nothing is printed.

The ABORTE statement is the same as the ABORT statement except that it behaves as if SOPTIONS
statement STOP.MSG were in force. This causes ABORT to use the ERRMSG file to produce error
messages instead of using the specified text. If expression in the ABORTE statement evaluates to the
null value, the default error message is printed:

Message ID is NULL: undefined error

For information about the ERRMSG file, see the ERRMSG statement, on page 152.

The ABORTM statement is the same as the ABORT statement except that it behaves as if SOPTIONS -
STOP.MSG were in force. This causes ABORT to use the specified text instead of text from the ERRMSG
file.

Example

PRINT "DO YOU WANT TO CONTINUE?":
INPUT A
IF A="NO" THEN ABORT

This is the program output:

DO YOU WANT TO CONTINUE?

ABS function

50

Use the ABS function to return the absolute value of any numeric expression. The absolute value of an
expression is its unsigned magnitude. If expression is negative, the value returned is:

-expression
For example, the absolute value of -6 is 6.

If expression is positive, the value of expression is returned. If expression evaluates to the null value,
nullis returned.

Syntax
ABS (expression)
Example

Y = 100
X = ABS (43-Y)
PRINT X

This is the program output:

ABSS function

57

ABSS function

Use the ABSS function to return the absolute values of all the elements in a dynamic array. If an
element in dynamic.array is the null value, nullis returned for that element.

Syntax

ABSS (dynamic.array)

Example
Y = REUSE (300)
Z = 500:@VM:400:@VM:300:@SM:200:@SM:100

A = SUBS(Z,Y)
PRINT A
PRINT ABSS (A)

This is the program output:

200v100v0S-100S-200
200v100v0s100S200

acceptConnection function

Use the acceptConnection() function to accept an incoming connection attempt on the server
side socket.

Syntax

acceptConnection (svr socket, blocking mode, timeout, in addr, in name,
socket handle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

svr_socket The handle to the server side socket which is returned by
initServerSocket().

blocking_mode blocking_mode is one of the following:

= 0:using current mode.

= 1:blocking mode (default). If this mode and the current blocking
mode of svr_socket is set to blocking, acceptConnection() blocks
the caller until a connection request is received or the specified
time_out has expired.

= 2:non-blocking mode. In this mode, if there are no pending
connections present in the queue, acceptConnection() returns an
error status code. If this mode, time_out is ignored.

time_out Timeout in milliseconds.

51

Chapter 1: Statements and functions

Parameter Description

in_addr The buffer that receives the address of the incoming connection. If NULL,
it will return nothing.

in_name The variable that receives the name of the incoming connection. If NULL,
it will return nothing.

socket_handle The handle to the newly created socket on which the actual connection
will be made. The server will use readSocket(), writeSocket(), and
so forth with this handle to communicate with the client.

Return codes

The following table describes the status of each return code.

Return code Description

0 Success.

1-41 See Socket function error return codes, on page 599.
102 SSL Handshake failure.

103 No client certificate.

105 Client authentication failure.

106 Peer not speaking SSL.

ACQOS function

Use the ACOS function to return the trigonometric arc-cosine of expression. expression must be a
numeric value. The result is expressed in degrees. If expression evaluates to the null value, null is
returned. The ACOS function is the inverse of the COS function.

Syntax

ACOS (expression)

Example

PRECISION 5
PRINT "ACOS(0.707106781) = ":AC0S(0.707106781):" degrees"

This is the program output:
ACOS(0.707106781) = 45 degrees

ACTIVATEKEY statement

52

Use the ACTIVATEKEY command to activate a key. It is necessary to activate a key if you want to
supply a password for key protection.

Syntax

ACTIVATEKEY <key.id>, <password> [ON <hostname>]

addAuthenticationRule function

Parameters

The following table describes each parameter of the syntax.

Parameter Description

key.id The key ID to activate.

password The password corresponding to key.id.

ON hostname The name of the remote host on which you want to activate the encryption key.

Note: You can activate only keys with password protection with this command. Keys that do not
have password protection are automatically activated. Also, you can activate only keys to which
you are granted access.

Use the STATUS function after an ACTIVATEKEY statement is executed to determine the result of the

operation, as follows:

Value Description

0 Operation successful.

1 Key is already activated. This applies to a single key, not a wallet operation.
2 Operation failed. This applies to a single key, not a wallet operation.

3 Invalid key or wallet ID or password.

4 No access to wallet.

5 Invalid key ID or password in a wallet.

6 No access to one of the keys in the wallet.

9 Other error.

addAuthenticationRule function

The addAuthenticationRule() function adds an authentication rule to a security context. The
rules are used during SSL negotiation to determine whether the peer is to be trusted.

Syntax

addAuthenticationRule (context, ServerOrClient, Rule, RuleString)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
context The security context handle.
ServerOrClient Flag:

1- Server (SSL_SERVER)
2- Client (SSL_CLIENT)

Any other value is treated as a value of 1.

53

Chapter 1: Statements and functions

54

Parameter Description

Rule The rule name string. Valid settings are:
= SSL_RULE_STRENGTH

* SSL_RULE_PEER_NAME

* SSL_RULE_CERTPATH

= SSL_RULE_SERVER_NAME

RuleString Rule content string. Can be attribute-mark separated.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.

1 Invalid security context handle.
2 Invalid rule name.

3 Invalid rule content.

VerificationStrength rule

This VerificationStrength rule (SSL_RULE_STRENGTH) governs the SSL negotiation and determines
whether an authentication process is considered successful. There are two levels of security: generous
and strict. If you specify generous, the certificate need only contain the subject name (common

name) that matches one specified by “PeerName”, to be considered valid. There is no need to have

its complete certificate chain established. If you specify strict, the incoming certificate must pass

a number of checks, including signature check, expiry check, purpose check, and issuer check. A
complete certificate chain must be established.

Note: Setting the rule to generous is recommended only for development or testing purposes.

PeerName rule

By specifying the PeerName rule (SSL_RULE_PEER_NAME) and attribute-mark separated common
names in ruleString, trusted server/client names will be stored into the context.

During the SSL handshake negotiation, the server will send its certificate to the client. By specifying
trusted server names, the client can control which server or servers it should communicate with.
During the handshake, once the server certificate has been verified by way of the establishment of the
complete certificate chain, the subject name contained in the certificate will be compared against the
trusted server names set in the context. If the server subject name matches one of the trusted names,
communication will continue, otherwise the connection will not be established.

If no trusted peername is set, then any peer is considered legitimate.

CertificatePath rule

The CertificatePath rule (SSL_RULE_CERTPATH) enables you to specify locations in which to search for
certificates. From the list of options, choose a CertificatePath rule to specify the search path:

= Default - When you add a certificate to a security context record, the full path for that certificate is
registered in the security context record. This path is derived from the current directory in which
UniData or UniVerse is running. When the certificate is loaded into memory to establish the SSL
connection, UniData or UniVerse by default uses this registered full path to retrieve the certificate.

addCertificate function

= Relative - With this option, UniData or UniVerse looks for the certificate in the current directory in
which itis running.

Note: Some of the UniData or UniVerse processes, such as the Telnet server processes, run
from the system directory.

= Path - With this option, UniData or UniVerse uses the path you specify for loading the certificate
added to this security context record. You can specify either an absolute path or a relative path.

= Env-Ifyou select this option, enter an environment variable name in the Env text box. With this
option, the UniData or UniVerse process first obtains the value of the environment variable you
specify, and then uses that value as the path to load the certificates.

Note: UniData or UniVerse evaluates the environment variable only when the first SSL connection
is made. The value is cached for later reference.

ServerName rule

The ServerName rule (SSL_RULE_SERVER_NAME or Server Name Indication - SNI) is an extension to
the TLS computer networking protocol by which a client indicates which hostname it is attempting to
connect to at the start of the handshaking ("client hello") process. This rule allows a server to present
multiple certificates on the same IP address and TCP port number. As a result, it allows multiple
secure (HTTPS) websites or any other service over TLS to be served off the same IP address without
requiring all those sites to use the same certificate.

See the RFC 6066 standard for more information. In order to provide any of the server names, clients
can include an extension of type "server_name" in the extended "client hello."

If a secure HTTP request is requested and the specified protocols include at least one TLS version, and
a ServerName rule exists in the SCR, then an SNI extension will be added to the protocol handshake,
allowing users to connect to a server that serves different virtual hosts on a single IP address.

addCertificate function

The addCertificate() function stores a certificate (or multiple certificates) into a security context
to be used as a UniData or UniVerse server or client certificate. Alternatively, it can specify a certificate
or a directory which contains the certificates that are either used as CA (Certificate Authority)
certificates to verify incoming certificates or act as a Revocation list to check against expired or
revoked certificates.

There are three kinds of certificates:

= Self-signed root certificate, or root CA certificate - these certificates are used to sign other
certificates as a means to vouch for the authenticity of holders of those certificates.

= Intermediate CA certificates - these certificates are signed by a root CA certificate or another
intermediate CA certificate and are used to sign other certificates.

= Server/client certificates - these certificates are signed by root CA or intermediate CA certificates,
and are used by a server or client to provide its identity.

Root CA or Intermediate certificates are sometimes also called Issuer certificates.

For a server/client certificate, a complete certificate chain contains all the certificates starting from
the server/client certificate to its immediate intermediate CA certificate (and the intermediate CA
certificate’s immediate intermediate CA certificates, if any), up to the root CA certificate. To verify

a server/client certificate, the complete certificate chain needs to be established. For UniData and
UniVerse, this means that all intermediate root CA certificates must be specified in the security context

55

Chapter 1: Statements and functions

record. Note that sometimes the intermediate CA certificates can be sent from a server or client,
along with the server client certificate. In this case, you only need to add the root CA certificate to the
security context record.

A certificate’s purpose is to bind an entity’s name with its public key. It is a means of distributing
public keys. A certificate always contains three pieces of information: a name that identifies the owner
of this certificate, a public key of this owner, and a digital signature signed by a trusted third party
called a Certificate Authority (CA) with its private key. If you have the CA’s public key, you can verify
that the certificate is authentic, that is, whether the public key contained in the certificate is indeed
associated with the entity specified with the name in the certificate. In practice, a certificate can and
often does contain more information, for example, the period of time the certificate is valid.

SSL protocol specifies that when two parties start an SSL handshake, the server must always send its
certificate to the client for authentication. It might optionally require the client to send its certificate
to the server for authentication as well. Therefore, UniData and UniVerse applications that act as
HTTPS clients are not required to maintain a client certificate. The application should work with web
servers that do not require client authentication, while UniData and UniVerse applications that do act
as SSL servers must install a server certificate.

Regardless of which role the application is going to assume, it needs to install a CA certificate or a CA
certificate chain to be able to verify an incoming certificate.

Syntax

addCertificate (certPath, usedAs, format, algorithm, context, plZpass)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

certPath A string containing the name of the OS level file that holds the
certificate, or the directory containing certificates.

usedAs Flag

1- Used as a client/server certificate (SSL_CERT_SELF)
2- Used as an issuer certificate (SSL_CERT_CA)

3- Used as a certificate revocation list (SSL_CERT_CRL)

format 1- PEM (Base64 encoded) format (SSL_FMT_PEM)
2 - DER (ASN.1 binary) format (SSL_FMT_DER)
3 - PKCS #12 format (SSL_FMT_P12)

algorithm Flag
1- RSA key (SSL_KEY_RSA)
2- DSA key (SSL_KEY_DSA)

context The security context handle.

pl2pass Optional. Sets a password on the PKCS #12 file. This parameter should
only be included if using a PKCS #12 certificate that has a password.
Otherwise the parameter should be omitted.

Note: To use the predefined constants, you must include SSL.H in your program. The value for
PKCS #12 file format is 3. If you include the SSL.H shipped with UniVerse in your BASIC program,
you can also use the predefined format constant SSL_FMT_P12.

56

addRequestParameter function

Return code status

The following table describes the status of each return code.

Return code Status

Success.

Invalid security context handle.

Certificate file could not be opened or directory does not exist.

Unrecognized format.
Corrupted or unrecognized certificate contents.

|l bh|lwWIN| =] O

Invalid parameter value(s).

addRequestParameter function

The addRequestParameter function adds a parameter to the request.

Syntax

addRequestParameter (request handle, parameter name, parameter value,
content handling)

Parameters
Parameter Description
request_handle The handle to the request.

parameter_name | The name of the parameter.

parameter_value | The value of the parameter.

content_handling | The dynamic MIME type for the parameter value.

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.

Invalid request handle.

1
2 Invalid parameter.
3 Bad content type.

Note: For a GET request, content_handling is ignored.

For a POST request with default content type, the default for content handling is “ContentType:text/
plain” if content_handling is not specified. For a POST request with “Multipart/*” content-type,
content_handling is a dynamic array containing Content-* strings separated by field marks (@FM).
They will be included in the multipart message before the data contained in parameter_value is sent.

An example of content_handling:
Content-Type: application/XML @FM

Content-Dispostion: attachment; file="”C:\drive\test.dat @FM
Content-Length: 1923

57

Chapter 1: Statements and functions

Specifically, for a POST request with content type “multipart/form-data,” a “Content-
Disposition:form-data” header will be created (or, in the case of Content-Dispostion already in
content_handling, “form-data” will be added to it).

For both a GET and a POST request with either no content type specified or specified as “application/
x-www-form-urlencoded,” as described in createRequest(), URL encoding is performed on data in
parameter_value automatically. Basically, any character other than alphanumeric is considered
“unsafe” and will be replaced by %HH, where HH is the ASCII value of the character in question. For
example, “#” is replaced by %23, and “/” is replaced by %2F, and so forth. One exception is that by
convention, spaces (‘ ‘) are converted into “+”.

For a POST method with other MIME-type specified, no encoding is done on data contained in
parameter_value.

ADDS function

Use the ADDS function to create a dynamic array of the element-by-element addition of two dynamic
arrays.

Each element of arrayl is added to the corresponding element of array2. The result is returned in

the corresponding element of a new dynamic array. If an element of one array has no corresponding
element in the other array, the existing element is returned. If an element of one array is the null value,
nullis returned for the sum of the corresponding elements.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Syntax
ADDS (arrayl, array?)
CALL -ADDS (return.array, arrayl, arrayZz)

CALL !'ADDS (return.array, arrayl, arrayZ2)

Example

A = 2:QVM:4:Q@QVM:6:@SM:10
B = 1:QVM:2:@VM:3:QVM:4
PRINT ADDS (A, B)

This is the program output:

3vevos10v4

ALPHA function

58

Use the ALPHA function to determine whether expression is an alphabetic or non-alphabetic string.
If expression contains the characters a through z or A through Z, it evaluates to true and a value of 1
is returned. If expression contains any other character or an empty string, it evaluates to false and a
value of 0 is returned. If expression evaluates to the null value, null is returned.

If NLS is enabled, the ALPHA function uses the characters in the Alphabetics field in the NLS.LC.CTYPE
file. For more information, see the NLS Guide.

amlnitialize function

Syntax

ALPHA (expressi

Example

PRINT "ALPHA ('ABCDEFG')

on)

":ALPHA ('ABCDEFG"')

PRINT "ALPHA('abcdefg') = ":ALPHA ('abcdefg')
PRINT "ALPHA ('ABCDEFG.') = ":ALPHA ('ABCDEFG."'")
PRINT "ALPHA('SEE DICK') = ":ALPHA('SEE DICK'")
PRINT "ALPHA('4 SCORE') = ":ALPHA('4 SCORE')
PRINT "ALPHA('') = ":ALPHA('")

This is the program output:

ALPHA ('ABCDEFG') = 1
ALPHA ('abcdefg') =1
ALPHA ('ABCDEFG.') = 0
ALPHA('SEE DICK') =0
ALPHA('4 SCORE') = 0
ALPHA('') =0

aminitialize function

TheamInitialize

function creates and opens an AMI session. The hSession output parameter is

a session handle which is valid unless the session is terminated. The function returns a status code
indicating success, warning, or failure. You can also use the STATUS () function to obtain this value.

Syntax

amInitialize (hSession, appName, policyName, reasonCode)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

hSession Upon successful return, holds a handle to a session. You can then use this
handle in other UniData and UniVerse WebSphere MQ API calls. [OUT]

appName An optional name you can use to identify the session. [IN]

policyName The name of a policy. If you specify "" (null), the system default policy name is
used. [IN]

reasonCode Holds an AMI Reason Code when the function returns a status indicating an AMI
warning or an AMI error occurred. The AMI Reason Code can be used to obtain
more information about the cause of the warning or error. See the MQSeries
Application Messaging Interface manual for a list of AMI Reason Codes and their
descriptions. [OUT]

Return codes

The following table describes the status of each return code.

Return code

Status

0- AMCC_SUCCESS

Function completed successfully.

59

Chapter 1: Statements and functions

Return code Status

1 - AMCC_WARNING A warning was returned from AMI. The reasonCode output
parameter contains an AMI reason code with further details about
the warning.

2 - AMCC_FAILED An error was returned from AMI. The reasonCode output parameter

contains an AMI| reason code with further details about the error.

99 - IPHANTOM_LICN_ERROR Failed to get an IPHANTOM license.

100 - MQ AMI libraries are not available.
U2AMI_ERR_MQUNAVAILABLE

101 - U2AMI_ERR_UNKNOWN Unknown error.

102 - U2AMI_ERR_NOBINDIR The UVBIN environment variable was not found.

103 - U2AMI_ERR_FORK Error during the execution of AMI pipes to AMI process.
104 - U2AMI_ERR_PIPECREATE | Error creating pipes to AMI process.

105 - Error writing to pipe of AMI process.
U2AMI_ERR_PIPEWRITETOAMI

106 - Error reading pipe from AMI process.
U2AMI_ERR_PIPEREADFROMAMI

107 - Error writing to pipe of U2 process.
U2AMI_ERR_PIPEWRITETOU2

108 - Error reading pipe from U2 process.
U2AMI_ERR_PIPEREADFROMU2

109 - U2AMI_ERR_EXEC Error during execution of AMI process.
110 - Variable does not match required format.

U2AMI_ERR_INVALIDFORMAT

111 - U2AMI_ERR_NOT_HANDLE | Variable not of type MQShandle.

112 - Uninitialized handle.

U2SAMI_ERR_NULL_HANDLE

113 - Handle has been closed with amTermnate.

U2AMI_ERR_INVALID_HANDLE

114 - Unexpected handle value reported.

U2AMI_ERR_UNKNOWN_HANDLE

115- An active session already exists (under a different hSession

U2AMI_ERR_SESSION_IN_USE |variable than the one being passed in. See Usage Notes for more
details).

116 - Error creating U2AMI session handle.

U2AMI_ERR_CREATE_HANDLE

117 - U2AMI_ERR_DL_OPEN Error opening MQ AMI library.

118 - U2AMI_ERR_DL_FUNC Error calling function in MQ AMI library.

119 - Invalid amRcvMsgOptions passed in.
U2AMI_ERR_RCVMSGOPTS
Other A non-AMI error occurred.

Usage Notes

Only one session can be active at one time. If you call amInitialize while another session is active,
AMI returns an error code of U2AMI_ERR_SESSION_IN_USE. The one exception to this case is if the
subsequent call to amlnitialize uses the same hSession variable from the first call. In this case, the

60

amReceiveMsg function

session is automatically terminated using the same AMI policy with which it was initialized, and a new
session is started in its place.

amReceiveMsg function

The amReceiveMsg function receives a message sent by the amSendMsg function.

Syntax

amReceiveMsg (hSession, receiverName, policyName, selMsgName, maxMsgLen,

dataLen, data,

Parameters

rcvMsgName, reasonCodel, recMsgOption])

The following table describes each parameter of the syntax.

Parameter

Description

hSession

The session handle returned by the amInitialize function. [IN]

receiverName

The name of a receiver service. If you specify
is used. [IN]

(null), the system default name

policyName

The name of a policy. If you specify
used. [IN]

(null), the system default policy name is

selMsgName

An optional parameters specifying the name of a message object containing
information (such as a Correl ID) that will be used to retrieve the required
message from the queue. See Usage Notes for additional information about
the use of this parameter. [IN]

maxMsglLen

The maximum message length the application will accept. Specify as -1 to
accept messages of any length, or use the optional parameter U2AMI_RESIZE
BUFFER. See Usage Notes for additional information about the use of this
parameter. [IN]

datalen

The length of the received message data, in bytes. If this parameter is not
required, specify as "" (null). [OUT]

data

The received message data. [OUT]

rcvMsgName

The name of a message object for the retrieved message. If you

specify "" (null) for this parameter, the system default name (constant
AMSD_RCV_MSG) is used. See Usage notes for additional information about
the use of this parameter. [IN]

reasonCode

Holds an AMI Reason Code when the function returns a status indicating an
AMI warning or an AMI error occurred. The AMI Reason Code can be used to
obtain more information about the cause of the warning or error. See the
MQSeries Application Messaging Interface manual for a list of AMI Reason
Codes and their descriptions. [OUT]

61

Chapter 1: Statements and functions

62

Parameter

Description

recMsgOption

U2AMI_RECEIVEMSG

This is the default behavior. It returns both
the message and the message length into
the respective output parameters of the
amReceiveMsg function.

U2AMI_LEAVEMSG

If you specify U2AMI_LEAVEMSG for this
parameter, and Accept Truncated Messages is
not set in the policy receive attributes, UniVerse
returns the message length in the datalen
parameter, but the message itself remains on
the queue.

U2AMI_DISCARDMSG

If you specify U2AMI_DISCARDMSG for this
parameter and Accept Truncated Messages is
set in the policy receive attributes, UniVerse
discards the message at the MQSeries level
with an AMRC_MSG_TRUNCATED warning.
This behavior is preferable to discarding the
message at the UniVerse level.

U2AMI_RESIZEBUFFER

If you specify U2AMI_RESIZEBUFFER for this
parameter, UniVerse handles the details of
the buffer size used to retrieve the message.
If you do not specify this parameter, you must
specify the buffer size. See Usage Notes for
more information about this option.

Return codes

The following table describes the status of each return code.

Return code

Description

0- AMCC_SUCCESS

Function completed successfully.

1 - AMCC_WARNING

A warning was returned from AMI. The reasonCode output parameter
contains an AMI reason code with further details about the warning.

2 - AMCC_FAILED

An error was returned from AMI. The reasonCode output parameter
contains an AMI reason code with further details about the error.

Other

A non-AMI error occurred.

Usage notes

The selMsgtName parameter:

You can use the selMsgName parameter in Request/Reply messaging to tell amReceiveMsg to retrieve
only those messages from the queue that correlate with a message previously placed on the queue
with the amSendRequest function. When you use selMsgName in this manner, you should use the
sndMsgName parameter of the amSendRequest call as the value for selMsgName in amReceiveMsg.

Message correlation occurs here due to the following:

* The underlying message object created when the request message was sent, and referenced by
the name sndMsgName, holds information about the sent message, such as its Correlation ID and

Message ID.

= When you use this message object (sndMsgName) as the selMsgName parameter to
amReceiveMsg, the information held in this message object is used to ensure that the function
retrieves only correlating response messages from the queue.

The maxMsgLen parameter:

amReceiveRequest function

You can use the maxMsgLen parameter to define the maximum length message that the
amReceiveMsg function retrieves from the queue. If the value of maxMsgLen is less than the length
of the message to retrieve, behavior depends on the value of the Accept Truncated Message parameter
in the policy receive attribute. If Accept Truncated Message is set to true, the amReceiveMsg function
truncates the data, and there is an AMRC_MSG_TRUNCATED warning in the reasonCode parameter. If
Accept Truncated Message is set to false, the default, the amReceiveMsg function fails with return
status AMCC_FAILED(2), and the reason code is AMRC_RECEIVE_BUFF_LEN_ERR.

Note: If amReceiveMsqg returns AMRC_RECEIVE_BUFF_LEN_ERR as the reasonCode, the
datalen parameter contains the message length, even though the call failed with return value
MQCC_FAILED.

If you do not specify the U2AMI_RESIZE BUFFER optional parameter and the buffer

size you specify with the maxMsgLen parameter is too small, the function fails with the
AMRC_RECEIVE_BUFF_LEN_ERR. If this happens, UniVerse returns the necessary buffer size in the
datalen parameter so you can reissue the request with the correct size.

If you specify the U2AMI_RESIZEBUFFER parameter, UniVerse uses a default buffer size of 8K. If this
buffer size is too small, UniVerse automatically reissues the request with the correct buffer size. While
convenient, this behavior can result in performance degradation for the following reasons:

= If the default buffer size is larger than necessary for the received message, UniVerse incurs an
unnecessary overhead.

= Ifthe default buffer size is too small for the received message, UniVerse must issue to requests to
the queue before successfully retrieving the message.

For performance reasons, we recommend you set the maxMsgLen parameter to the expected size of
the message whenever possible.

The rcvMsgName parameter:

The rcvMsgName parameter enables the application to attach a name to the underlying message
object used to retrieve the message. Although UniVerse supports this parameter, it is mainly intended
for future additions to the WebSphere MQ for UniData and UniVerse API.

amReceiveRequest function

The amReceiveRequest function receives a request message.

Syntax

amReceiveRequest (hSession, receiverName, policyName, maxMsglLen,
datalLen, data, rcvMsgName, senderName, reasonCode [, recReqOption])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

hSession The session handle returned by the amInitialize function. [IN]

receiverName The name of a receiver service. If you specify "" (null), the system default
name is used. [IN]

policyName The name of a policy. If you specify "" (null), the system default policy name
is used. [IN]

63

Chapter 1: Statements and functions

64

Parameter

Description

maxMsglLen

The maximum message length the application will accept. Specify as

-1to accept messages of any length, or use the optional parameter
U2AMI_RESIZE BUFFER. See Usage Notes for additional information about
the use of this parameter. [IN]

datalen

The length of the received message data, in bytes. If this parameter is not
required, specify as "" (null). [OUT]

data

The received message data. [OUT]

rcvMsgName

The name of the message object for the retrieved message. If you specify
"" (null), the system default receiver name is used. amReceiveRequest uses
the value of rcvMsgName in the subsequent call to the amSendResponse
function. [OUT]

senderName

The name of a special type of sender service known as a response sender, to
which the response message will be sent. If you do not specify a name, the
system default response sender service is used. [IN]

Note: The sender name you specify must not exist in your AMI repository.

reasonCode

Holds an AMI Reason Code when the function returns a status indicating an
AMI warning or an AMI error occurred. The AMI Reason Code can be used to
obtain more information about the cause of the warning or error. See the
MQSeries Application Messaging Interface manual for a list of AMI Reason
Codes and their descriptions. [OUT]

recReqOption

U2AMI_RECEIVEMSG This is the default behavior. It returns both
the message and the message length into
the respective output parameters of the
amReceiveReq function.

U2AMI_LEAVEMSG If you specify U2AMI_LEAVEMSG for this
parameter, and Accept Truncated Messages is
not set in the policy receive attributes, UniVerse
returns the message length in the datalLen
parameter, but the message itself remains on the
queue.

U2AMI_DISCARDMSG If you specify U2AMI_DISCARDMSG for this
parameter and Accept Truncated Messages is
set in the policy receive attributes, UniVerse
discards the message at the MQSeries level

with an AMRC_MSG_TRUNCATED warning. This
behavior is preferable to discarding the message
at the UniVerse level.

U2AMI_RESIZEBUFFER If you specify U2AMI_RESIZEBUFFER for this
parameter, UniVerse handles the details of

the buffer size used to retrieve the message.

If you do not specify this parameter, you must
specify the buffer size. See Usage Notes for more
information about this option.

Return codes

The following table describes the status of each return code.

Return code

Description

0 - AMCC_SUCCESS

Function completed successfully.

amSendMsg function

Return code Description

1- AMCC_WARNING A warning was returned from AMI. The reasonCode output parameter
contains an AMI reason code with further details about the warning.

2 - AMCC_FAILED An error was returned from AMI. The reasonCode output parameter
contains an AMI reason code with further details about the error.

Other A non-AMI error occurred.

Usage notes

The maxMsgLen parameter:

You can use the maxMsgLen parameter to define the maximum length message the amReceiveRequest
will retrieve from the queue. If the value of maxMsgLen is less than the length of the message to
retrieve, behavior depends on the value of Accept Truncated Message in the policy receive attributes.

If the value of Accept Truncated Message is true, amReceiveRequest truncates the data and there is

an AMRC_MSG_TRUNCATED warning in the reasonCode parameter. If the value of Accept Truncated
Message is false, the default, amReceiveRequest fails with a return status AMCC_FAILED (2), and
reason code AMRC_RECEIVE_BUFF_LEN_ERR.

Note: If amReceiveRequest returns AMRC_RECEIVE_BUFF_LEN_ERR as the reasonCode, the
message length is contained in the datalen parameter, even thought the call failed with return
value MQCC_FAILED.

If you do not specify the U2AMI_RESIZE BUFFER optional parameter and the buffer

size you specify with the maxMsgLen parameter is too small, the function fails with the
AMRC_RECEIVE_BUFF_LEN_ERR. If this happens, UniVerse returns the necessary buffer size in the
datalen parameter so you can reissue the request with the correct size.

If you specify the U2AMI_RESIZEBUFFER parameter, UniVerse uses a default buffer size of 8K. If this
buffer size is too small, UniVerse automatically reissues the request with the correct buffer size. While
convenient, this behavior can result in performance degradation for the following reasons:

= If the default buffer size is larger than necessary for the received message, UniVerse incurs an
unnecessary overhead.

= If the default buffer size is too small for the received message, UniVerse must issue to requests to
the queue before successfully retrieving the message.

For performance reasons, we recommend you set the maxMsglLen parameter to the expected size of
the message whenever possible.

amSendMsg function

The amSendMsg function sends a datagram (send and forget) message.

Syntax

amSendMsg (hSession, senderName, policyName, data, sndMsgName,
reasonCode)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

hSession The session handle returned by the amInitialize function. [IN]

65

Chapter 1: Statements and functions

Parameter Description

senderName The name of a sender service. If you specify "" (null), the system default sender
name is used. [IN]

policyName The name of a policy. If you specify "" (null), the system default policy name is
used. [IN]

data The message data to be sent. [IN]

sndMsgName The name of a message object for the message being sent. If you specify
"" (null), the system default policy name is used. [IN]

reasonCode Holds an AMI Reason Code when the function returns a status indicating an AMI
warning or an AMI error occurred. The AMI Reason Code can be used to obtain
more information about the cause of the warning or error. See the MQSeries
Application Messaging Interface manual for a list of AMI Reason Codes and their
descriptions. [OUT]

Return codes

The following table describes the status of each return code.

Return code Description

0- Function completed successfully.

AMCC_SUCCESS

1- A warning was returned from AMI. The reasonCode output parameter contains

AMCC_WARNING |an AMI reason code with further details about the warning.

2 - AMCC_FAILED |An error was returned from AMI. The reasonCode output parameter contains an
AMI reason code with further details about the error.

Other A non-AMI error occurred.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

amSendRequest function

The amSendRequest function sends a request message.

Syntax

amSendRequest (hSession, senderName, policyName, responseName, data,
sndMsgName, reasonCode)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

hSession The session handle returned by the amInitialize function. [IN]

senderName The name of a sender service. If you specify "" (null), the system default sender
name is used. [IN]

policyName The name of a policy. If you specify "" (null), the system default policy name is
used. [IN]

responseName The name of the receiver service to which the response to this send request
should be sent. Specify as ““ (null) if no response is required. [IN]

data The message data to be sent. [IN]

66

amSendResponse function

Parameter Description

sndMsgName The name of a message object for the message being sent. If you specify
““(null), amSendRequest uses the system default message name (constant
AMSD_SND_MSG). [IN]

reasonCode Holds an AMI Reason Code when the function returns a status indicating an AMI

warning or an AMI error occurred. The AMI Reason Code can be used to obtain
more information about the cause of the warning or error. See the MQSeries
Application Messaging Interface manual for a list of AMI Reason Codes and their
descriptions. [OUT]

Return codes

The following table describes the status of each return code.

Return code

Description

0- AMCC_SUCCESS

Function completed successfully.

1- AMCC_WARNING

Awarning was returned from AMI. The reasonCode output parameter
contains an AMI reason code with further details about the warning.

2 - AMCC_FAILED

An error was returned from AMI. The reasonCode output parameter
contains an AMI reason code with further details about the error.

Other

A non-AMI error occurred.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

amSendResponse function

The amSendResponse function sends a request message.

Syntax

amSendResponse (hSession, senderName, policyName, rcvMsgName, data,
sndMsgName, reasonCode)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

hSession The session handle returned by the amInitialize function. [IN]

senderName The name of a sender service. If you specify "" (null), the system default sender
name is used. [IN]

policyName The name of a policy. If you specify "" (null), the system default policy name is
used. [IN]

rcvMsgName The name of the received message to which this message is a response. You
must set this parameter to the rcvMsgName specified for the amReceiveRequest
function. [IN]

data The message data to be sent. [IN]

sndMsgName The name of a message object for the message being sent. If you specify
"" (null), the system default message name (constant AMSD_SND_MSG) is used.
[IN]

67

Chapter 1: Statements and functions

Parameter

Description

reasonCode

Holds an AMI Reason Code when the function returns a status indicating an AMI
warning or an AMI error occurred. The AMI Reason Code can be used to obtain
more information about the cause of the warning or error. See the MQSeries
Application Messaging Interface manual for a list of AMI Reason Codes and their

descriptions. [OUT]

Return codes

The following table d

escribes the status of each return code.

Return code

Description

0 - AMCC_SUCCESS

Function completed successfully.

1-AMCC_WARNING

A warning was returned from AMI. The reasonCode output parameter
contains an AMI reason code with further details about the warning.

2 - AMCC_FAILED

An error was returned from AMI. The reasonCode output parameter
contains an AMI reason code with further details about the error.

Other

A non-AMI error occurred.

You can also use the

UniVerse BASIC STATUS() function to obtain the return status from the function.

amTerminate function

68

The amTerminate

Syntax

function closes a session.

amTerminate (hSession, policyName, reasonCode)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

hSession The session handle returned by the aminitialize function. [IN/OUT]

policyName The name of a policy. If you specify "" (null), the system default policy name is
used. [IN]

reasonCode Holds an AMI Reason Code when the function returns a status indicating an AMI

warning or an AMI error occurred. The AMI Reason Code can be used to obtain
more information about the cause of the warning or error. See the MQSeries
Application Messaging Interface manual for a list of AMI Reason Codes and their

descriptions. [OUT]

Return codes

The following table

describes the status of each return code.

Return code Description

0- AMCC_SUCCESS Function completed successfully.

1 - AMCC_WARNING A warning was returned from AMI. The reasonCode output parameter
contains an AMI reason code with further details about the warning.

analyzeCertificate function

Return code Description

2 - AMCC_FAILED An error was returned from AMI. The reasonCode output parameter
contains an AMI reason code with further details about the error.

Other A non-AMI error occurred.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

analyzeCertificate function

The analyzeCertificate() function decodes a certificate and puts plain text into the result
parameter. The result parameter will then contain such information as the subject name, location,
institute, issuer, public key, other extensions, and the issuer’s signature.

Syntax

analyzeCertificate(cert, format, result, plZpass)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
cert A string containing the certificate file name.
format 1- PEM (Base64 encoded) format (SSL_FMT_PEM)

2 - DER (ASN.1 binary) format (SSL_FMT_DER)

3-PKCS #12 format (SSL_FMT_P12)
result A dynamic array containing parsed cert data, in ASCII format.

pl2pass Optional. Sets a password on the PKCS #12 file. This parameter should
only be included if using a PKCS #12 certificate that has a password.
Otherwise the parameter should be omitted.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.

Failed to open cert file.

Invalid format.

Unrecognized cert.

Dl wN| -

Other errors.

ANDS function

Use the ANDS function to create a dynamic array of the logical AND of corresponding elements of two
dynamic arrays.

Each element of the new dynamic array is the logical AND of the corresponding elements of arrayl and
array2. If an element of one dynamic array has no corresponding element in the other dynamic array,
a false (0) is returned for that element.

69

Chapter 1: Statements and functions

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

If both corresponding elements of arrayl and array2 are the null value, null is returned for those
elements. If one element is the null value and the other is 0 or an empty string, a false is returned for
those elements.

Syntax
ANDS (arrayl, array?2)
CALL -ANDS (return.array, arrayl, arrayZ2)

CALL !ANDS (return.array, arrayl, arrayZ2)

Example

A = 1:@SM:4:@VM:4:@5M:1
B = 1:@SM:1-1:QVM:2
PRINT ANDS (A, B)

This is the program output:

1s0v1s0

ASCI| function

Use the ASCIT function to convert each character of expression from its EBCDIC representation value
to its ASClI representation value. If expression evaluates to the null value, null is returned.

The ASCIT function and the EBCDIC function perform complementary operations.

Syntax

ASCII (expression)

Example

X = EBCDIC ('ABC 123')
Y = ASCII (X)
PRINT "EBCDIC", "ASCII", " Y "
PRINT "-————- (LI S LI
FOR I = 1 TO LEN (X)
PRINT SEQ(X[I,1]) , SEQ(Y[I,11),Y[I,1]
NEXT I

This is the program output:

EBCDIC ASCII Y
193 65 A
194 66 B
195 67 C
64 32

241 49 1
242 50 2
243 51 3

70

ASIN function

ASIN function

Use the ASTN function to return the trigonometric arc-sine of expression. expression must be a
numeric value. The result is expressed in degrees. If expression evaluates to the null value, null is
returned. The ASIN function is the inverse of the STN function.

Syntax
ASIN (expression)
Example

PRECISION 5
PRINT "ASIN(0.707106781) = ":ASIN(0.707106781) :" degrees"

This is the program output:

ASIN(0.707106781) = 45 degrees

ASSIGNED function

Use the ASSTGNED function to determine if variable is assigned a value. ASSTGNED returns 1 (true)
if variable is assigned a value, including common variables and the null value. It returns 0 (false) if
variable is not assigned a value.

Syntax

ASSIGNED (variable)

PICK Flavor

When you run UniVerse in a PICK flavor account, all common variables are initially unassigned.
ASSIGNED returns 0 (false) for common variables until the program explicitly assigns them a value.

Example

A = "15 STATE STREET"
C =23

X = ASSIGNED (A)

Y = ASSIGNED (B)

7 = ASSIGNED (C)

PRINT X,Y,Z

This is the program output:

1 0 1

assignment statements

Use assignment statements to assign a value to a variable. The variable can be currently unassigned
(that is, one that has not been assigned a value by an assignment statement, READ statements, or
any other statement that assigns values to variables) or have an old value that is to be replaced. The

71

Chapter 1: Statements and functions

assigned value can be a constant or an expression. It can be any data type (that is, numeric, character
string, or the null value).

Syntax

variable = expression

variable += expression

variable -= expression
variable := expression
Use the operators +=,-=, and := to alter the value of a variable. The += operator adds the value of

expression to variable. The -= operator subtracts the value of expression from variable. The := operator
concatenates the value of expression to the end of variable.

Use the system variable @NULL to assign the null value to a variable:
variable = @NULL

Use the system variable @NULL.STR to assign a character string containing only the null value (more
accurately, the character used to represent the null value) to a variable:

variable = @NULL.STR

Example

EMPL=86

A="22 STAGECOACH LANE"

X='$4,325"

B=999

PRINT "A= ":A,"B= ":B,"EMPL= ":EMPL
B+=1

PRINT "X= ":X,"B= ":B

This is the program output:

A= 22 STAGECOACH LANE B= 999 EMPL= 86
X= $4,325 B= 1000

ATAN function

2

Use the ATAN function to return the trigonometric arc-tangent of expression. expression must be a
numeric value. The result is expressed in degrees. If expression evaluates to the null value, null is
returned. The ATAN function is the inverse of the TAN function.

Syntax

ATAN (expression)

Examples

The following example prints the numeric value 135 and the angle, in degrees, that has an arc-tangent
of 135:

PRINT 135, ATAN (135)

AuditLog() function

This is the program output:
135 89.5756
The next example finds what angle has an arc-tangent of 1:

X = ATAN (1)
PRINT 1, X

This is the program output:

1 45

AuditLog() function

To reduce unnecessary or excessive logging, the UniVerse BASIC AuditLog () function has been
added to allow for application-driven audit. For example, instead of enabling system-wide UniVerse
BASIC READ auditing, which could create a huge number of audit log records, you can choose to have
your application call this function at a strategic point to have the action recorded in the system audit
file.

Syntax

Auditlog (Originator, Action, File, Record, Info, Status, {OldData},
{NewData})

Parameters

The following table describes each parameter of the syntax.

Parameter Description

Originator The ID of the originator of the event.

Action The action taken.

File The file name to audit.

Record The record ID to audit.

Info Additional details about this logged action. The content specified in this
parameter goes into the Details field of the audit log file.

Status An integer indicating the status of the logged actions. 0 usually
indicates success, and nonzero values indicate errors.

OldData Optional. The data before the change was made.

NewData Optional. The data after the change was made.

All parameters are expressions that evaluate to text strings (Originators, Action, File, and Info) or
dynamic arrays (Record, OldData, NewData), except for Status, which must be an integer.

73

Chapter 1: Statements and functions

Note: OldData and NewData are optional parameters. You can omit them if you do not need to
store these values. Also, if you do not need File or RecordID, you can supply empty strings instead.
For example:

0ldAddr = Rec.addr

NewAddr = "1234 Main St Cape Town MA 02021"

CALL ChangeAddr ("filel", "ID1", Rec, NewAddr)

Status = AuditLog ("myappl", "ChangeAddr", "filel", "ID1","replaced
billing address", 0, OldAddr, NewAddr)

AUTHORIZATION statement

Use the AUTHORIZATION statement to specify or change the effective runtime user of a program. After
an AUTHORIZATION statement is executed, any SQL security checking acts as if username is running
the program.

Syntax

AUTHORIZATION "username"

username is a valid login name on the machine where the program is run. username must be a
constant. username is compiled as a character string whose user identification (UID) number is looked
up in the /etc/passwd file at run time.

If your program accesses remote files across UVNet, username must also be a valid login name on the
remote machine.

An AUTHORIZATION statement changes only the user name that is used for SQL security checking
while the program is running. It does not change the actual user name, nor does it change the
user’s effective UID at the operating system level. If a program does not include an AUTHORIZATION
statement, it runs with the user name of the user who invokes it.

You can change the effective user of a program as many times as you like. The username specified by
the most recently executed AUTHORIZATION statement remains in effect for a subsequent EXECUTE
statement and PERFORM statement as well as for subroutines.

When afile is opened, the effective user’s permissions are stored in the file variable. These permissions
apply whenever the file variable is referenced, even if a subsequent AUTHORIZATION statement
changes the effective user name.

The effective user name is stored in the system variable @AUTHORIZATION.

A program using the AUTHORIZATION statement must be compiled on the machine where the
program is to run. To compile the AUTHORIZATION statement, SQL DBA privilege is required. If the
user compiling the program does not have DBA privilege, the program will not be compiled. You
cannot run the program on a machine different from the one where it was compiled. If you try, the
program terminates with a fatal error message.

Example

AUTHORIZATION "susan"

OPEN "","SUES.FILE" TO FILE.S ELSE PRINT "CAN'T OPEN SUES.FILE"
AUTHORIZATION "bill"

OPEN "","BILLS.FILE" TO FILE.B ELSE PRINT "CAN'T OPEN BILLS.FILE"
FOR ID = 5000 TO 6000

READ SUE.ID FROM FILE.S, ID THEN PRINT ID ELSE NULL

READ BILL.ID FROM FILE.B, ID THEN PRINT ID ELSE NULL

74

AUXMAP statement

NEXT ID

AUXMAP statement

In NLS mode, use the AUXMAP statement to associate an auxiliary device with a terminal.

Syntax

AUXMAP { ON | OFF | expression }

AUXMAP ON causes a subsequent PRINT statement directed to print channel 0 to use the auxiliary
map. If no auxiliary map is defined, the terminal map is used. AUXMAP OFF causes subsequent PRINT
statements to use the terminal map. OFF is the default. If expression evaluates to true, AUXMAP is
turned on. If expression evaluates to false, AUXMAP is turned off.

A program can access the map for an auxiliary device only by using the AUXMAP statement. Other
statements used for printing to the terminal channel, such as a CRT statement, a PRINT statement, or
a INPUTERR statement, use the terminal map.

If NLS is not enabled and you execute the AUXMAP statement, the program displays a run-time error
message. For more information, see the NLS Guide.

BEGIN CASE statement

Use the BEGIN CASE statement to begin a set of CASE statements.

For details, see CASE statements, on page 86.

BEGIN TRANSACTION statement

Use the BEGIN TRANSACTION statement to indicate the beginning of a transaction.

Syntax
BEGIN TRANSACTION [ISOLATION LEVELIevel]

[statements]

The ISOLATION LEVEL clause sets the transaction for isolation level for the duration of that
transaction. The isolation level reverts to the original value at the end of the transaction.

level is an expression that evaluates to one of the following:

75

Chapter 1: Statements and functions

= Aninteger from 0 through 4

= One of the following keywords

Integer Keyword Effect on this transaction

0 NO.ISOLATION Prevents lost updates.

Lost updates are prevented if the ISOMODE
configurable parameteris setto 1 or 2.

READ.UNCOMMITTED Prevents lost updates.
READ.COMMITTED Prevents lost updates and dirty reads.
REPEATABLE.READ Prevents lost updates, dirty reads, and nonrepeatable
reads.
4 SERIALIZABLE Prevents lost updates, dirty reads, nonrepeatable

reads, and phantom writes.

Examples

The following examples both start a transaction at isolation level 3:

BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE.READ
BEGIN TRANSACTION ISOLATION LEVEL 3

BITAND function

Use the BITAND function to perform the bitwise AND comparison of two integers specified by numeric
expressions. The bitwise AND operation compares two integers bit by bit. It returns a bit of 1 if both
bits are 1; otherwise it returns a bit of 0.

Syntax

BITAND (expressionl, expressionZ2)

If either expressionl or expression2 evaluates to the null value, null is returned.
Noninteger values are truncated before the operation is performed.

The BITAND operation is performed on a 32-bit twos-complement word.

Note: Differencesin hardware architecture can make the use of the high-order bit nonportable.

Example

PRINT BITAND(6,12)
* The binary value of 6 = 0110
* The binary value of 12 = 1100

This results in 0100, and the following output is displayed:
4

76

BITNOT function

BITNOT function

Use the BITNOT function to return the bitwise negation of an integer specified by any numeric
expression.

Syntax

BITNOT (expression [,bit#])

bit# is an expression that evaluates to the number of the bit to invert. If bit# is unspecified, BITNOT
inverts each bit. It changes each bit of 1 to a bit of 0 and each bit of 0 to a bit of 1. This is equivalent to
returning a value equal to the following:

(-expression)-1

If expression evaluates to the null value, null is returned. If bit# evaluates to the null value, the BITNOT
function fails and the program terminates with a run-time error message.

Noninteger values are truncated before the operation is performed.

The BITNOT operation is performed on a 32-bit twos-complement word.

Note: Differences in hardware architecture can make the use of the high-order bit nonportable.

Example
PRINT BITNOT (6),BITNOT (15,0),BITNOT (15,1),BITNOT (15,2)

This is the program output:

=7 14 13 11

BITOR function

Use the BITOR function to perform the bitwise OR comparison of two integers specified by numeric
expressions. The bitwise OR operation compares two integers bit by bit. It returns the bit 1 if the bitin
either or both numbers is 1; otherwise it returns the bit 0.

Syntax

BITOR (expressionl, expressionZ?)

If either expressionl or expression2 evaluates to the null value, null is returned.
Noninteger values are truncated before the operation is performed.

The BITOR operation is performed on a 32-bit twos-complement word.

Note: Differences in hardware architecture can make the use of the high-order bit nonportable.

Example

PRINT BITOR(6,12)
* Binary value of 6 = 0110
* Binary value of 12 = 1100

7

Chapter 1: Statements and functions

This results in 1110, and the following output is displayed:
14

BITRESET function

Use the BITRESET function to reset to 0 the bit number of the integer specified by expression. Bits are
counted from right to left. The number of the rightmost bit is 0. If the bit is 0, it is left unchanged.

Syntax
BITRESET (expression, bit#)

If expression evaluates to the null value, nullis returned. If bit# evaluates to the null value, the
BITRESET function fails and the program terminates with a run-time error message.

Noninteger values are truncated before the operation is performed.

Example

PRINT BITRESET (29,0) ,BITRESET (29, 3)
* The binary value of 29 = 11101
* The binary value of 28 11100
* The binary value of 21 10101

PRINT BITRESET (2,1),BITRESET (2,0)
* The binary value of 2 = 10
* The binary value of 0 = 0

This is the program output:

28 21
0 2

BITSET function

Use the BITSET function to set to 1 the bit number of the integer specified by expression. The number
of the rightmost bit is 0. If the bit is 1, it is left unchanged.

Syntax
BITSET (expression, bit#)

If expression evaluates to the null value, null is returned. If bit# evaluates to the null value, the BITSET
function fails and the program terminates with a run-time error message.

Noninteger values are truncated before the operation is performed.

Example

PRINT BITSET (20,0),BITSET (20, 3)

* The binary value of 20 10100
* The binary value of 21 10101
* The binary value of 28 = 11100

78

BITTEST function

PRINT BITSET(2,0),BITSET(2,1)
* The binary value of 2 = 10
* The binary value of 3 = 11

This is the program output:

21 28
3 2

BITTEST function

Use the BITTEST function to test the bit number of the integer specified by expression. The function
returns 1 if the bit is set; it returns 0 if it is not. Bits are counted from right to left. The number of the
rightmost bit is 0.

Syntax

BITTEST (expression, bit#)

If expression evaluates to the null value, nullis returned. If bit# evaluates to null, the BITTEST
function fails and the program terminates with a runtime error message.

Noninteger values are truncated before the operation is performed.
Example

PRINT BITTEST(11,0),BITTEST(11,1),BITTEST(11,2),BITTEST (11, 3)
* The binary value of 11 = 1011

This is the program output:

1 1 0 1

BITXOR function

Use the BITXOR function to perform the bitwise XOR comparison of two integers specified by numeric
expressions. The bitwise XOR operation compares two integers bit by bit. It returns a bit 1 if only one of
the two bits is 1; otherwise it returns a bit 0.

Syntax

BITXOR (expressionl, expressionZ?)

If either expressionl or expression2 evaluates to the null value, null is returned.
Noninteger values are truncated before the operation is performed.

The BITXOR operation is performed on a 32-bit twos-complement word.

Note: Differences in hardware architecture can make the use of the high-order bit nonportable.

79

Chapter 1: Statements and functions

Example

PRINT BITXOR(6,12)
* Binary value of 6 = 0110
* Binary value of 12 = 1100

This results in 1010, and the following output is displayed:
10

BREAK statement

80

Use the BREAK statement to enable or disable the Intr, Quit, and Susp keys on the keyboard.

Syntax

BREAK [KEY] { ON | OFF | expression }

When the BREAK ON statement is in effect, pressing Intr, Quit, or Susp causes operations to pause.

When the BREAK OFF statement is in effect, pressing Intr, Quit, or Susp has no effect. This prevents a
break in execution of programs that you do not want interrupted.

When expression is used with the BREAK statement, the value of expression determines the status of
the Intr, Quit, and Susp keys. If expression evaluates to false (0, an empty string, or the null value), the
Intr, Quit, and Susp keys are disabled. If expression evaluates to true (not 0, an empty string, or the null
value), the Intr, Quit, and Susp keys are enabled.

A counter is maintained for the BREAK statement. It counts the number of executed BREAK ON and
BREAK OFF commands. When program control branches to a subroutine, the value of the counter is
maintained; it is not set back to 0. For each BREAK ON statement executed, the counter decrements by
1; for each BREAK OFF statement executed, the counter increments by 1. The counter cannot go below
0. The Intr, Quit, and Susp keys are enabled only when the value of the counter is 0. The following
example illustrates the point:

Statement from Command Counter Key status
— — 0 ON

Main program BREAK OFF +1 OFF
Subroutine BREAK OFF +2 OFF
Subroutine BREAK ON +1 OFF

Main program BREAK ON 0 ON
Examples

The following example increases the counter by 1:
BREAK KEY OFF

The following example decreases the counter by 1:
BREAK KEY ON

The following example disables the Intr, Quit, and Susp keys if QTY is false, 0, an empty string, or the
null value; it enables them if QTY is true, not 0, not an empty string, or not the null value:

BREAK QTY ;*

BSCAN statement

BSCAN statement

Use the BSCAN statement to scan the leaf nodes of a B-tree file (type 25) or of a secondary index. The
record ID returned by the current scan operation is assigned to ID.variable. If you specify rec.variable,
the contents of the record whose ID is ID.variable is assigned to it.

Syntax

BSCAN ID.variable [, rec.variable]l [FROM file.variable [, record]]
[USING indexname] [RESET] [BY seq] {THEN statements [ELSE statements] |
ELSE statements}

file.variable specifies an open file. If file.variable is not specified, the default file is assumed (for more
information on default files, see the OPEN statement, on page 283). If the file is neither accessible
nor open, the program terminates with a runtime error message.

record is an expression that evaluates to a record ID of a record in the B-tree file. If the USING clause is
used, record is a value in the specified index. record specifies the relative starting position of the scan.

record need not exactly match an existing record ID or value. If it does not, the scan finds the next or
previous record ID or value, depending on whether the scan is in ascending or descending order. For
example, depending on how precisely you want to specify the starting point at or near the record ID or
value SMITH, record can evaluate to SMITH, SMIT, SMI, SM, or S.

If you do not specify record, the scan starts at the leftmost slot of the leftmost leaf, or the rightmost
slot of the rightmost leaf, depending on the value of the seq expression. The scan then moves in the
direction specified in the BY clause.

indexname is an expression that evaluates to the name of a secondary index associated with the file.

RESET resets the internal B-tree scan pointer. If the scanning order is ascending, the pointer is set

to the leftmost slot of the leftmost leaf; if the order is descending, the pointer is set to the rightmost
slot of the rightmost leaf. If you do not specify seq, the scan is done in ascending order. If you specify
record in the FROM clause, RESET is ignored.

seq is an expression that evaluates to A or D; it specifies the direction of the scan. "A", the default,
specifies ascending order. "D" specifies descending order.

If the BSCAN statement finds a valid record ID, or a record ID and its associated data, the THEN
statements are executed; the ELSE statements are ignored. If the scan does not find a valid record
ID, or if some other error occurs, any THEN statements are ignored, and the ELSE statements are
executed.

Any file updates executed in a transaction (that is, between a BEGIN TRANSACTION statement and a
COMMIT statement) are not accessible to the BSCAN statement until after the COMMIT statement has
been executed.

The STATUS function returns the following values after the BSCAN statement is executed:

Value Description

0 The scan proceeded beyond the leftmost or rightmost leaf node. ID.variable and
rec.variable are set to empty strings.

1 The scan returned an existing record ID, or a record ID that matches the record
ID specified by record.

2 The scan returned a record ID that does not match record. ID.variable is either
the next or the previous record ID in the B-tree, depending on the direction of
the scan.

81

Chapter 1: Statements and functions

Value Description

3 The file is not a B-tree (type 25) file, or, if the USING clause is used, the file has
no active secondary indexes.

indexname does not exist.

seq does not evaluate to A or D.

The index specified by indexname needs to be built, or is currently being built
concurrently.

10 An internal error was detected.

If NLS is enabled, the BSCAN statement retrieves record IDs in the order determined by the active
collation locale; otherwise, BSCAN uses the default order, which is simple byte ordering that uses the
standard binary value for characters; the Collate convention as specified in the NLS.LC.COLLATE file
for the current locale is ignored. For more information about collation, see the NLS Guide.

Example

The following example shows how you might indicate that the ELSE statements were executed
because the contents of the leaf nodes were exhausted:

BSCAN ID,REC FROM FILE,MATCH USING "PRODUCT" BY "A" THEN
PRINT ID,REC

END ELSE

ERR = STATUS()

BEGIN CASE

CASE ERR = 0

PRINT "Exhausted leaf node contents."

CASE ERR = 3

PRINT "No active indices, or file is not type 25."
CASE ERR = 4

PRINT "Index name does not exist."

CASE ERR = 5

PRINT "Invalid BY clause value."

CASE ERR = 6

PRINT "Index must be built."

CASE ERR = 10

PRINT "Internal error detected."

END CASE
GOTO EXIT.PROGRAM:
END

BYTE function

82

In NLS mode, use the BYTE function to generate a byte from the numeric value of expression. BYTE
returns a string containing a single byte.

Syntax

BYTE (expression)

If expression evaluates to a value in the range 0 to 255, a single-byte character is returned. If expression
evaluates to a value in the range 0x80 to OxF7, a byte that is part of a multibyte character is returned.

If NLS is not enabled, BYTE works like the CHAR function, on page 90. For more information, see the
NLS Guide.

BYTELEN function

Example

When NLS is enabled, the BYTE and CHAR functions return the following:

Function Value

BYTE(32) Returns a string containing a single space.

CHAR(32) Returns a string containing a single space.

BYTE(230) Returns a string containing the single byte 0xe6.

CHAR(230) Returns a string containing the multibyte characters a (small ligature £).

BYTELEN function

In NLS mode, use the BYTELEN function to generate the number of bytes contained in the ASCII string
value in expression.

Syntax

BYTELEN (expression)

The bytes in expression are counted, and the count is returned. If expression evaluates to the null
value, null is returned.

If NLS is not enabled, BY TELEN works like the LEN function, on page 241. For more information, see
the NLS Guide.

BYTETYPE function

In NLS mode, use the BYTETYPE function to determine the function of a byte in value.

Syntax

BYTETYPE (value)

If value is from 0 to 255, the BYTETYPE function returns a number that corresponds to the following:

Return value Description

-1 value is out of bounds

Trailing byte of a 2-, 3-, or > 3-byte character

Single-byte character

Leading byte of a 2-byte character

Leading byte of a 3-byte character

Reserved for the leading byte of a 4-byte character

b wWIN|+=]| O

System delimiter

If value evaluates to the null value, null is returned.

BYTETYPE behaves the same whether NLS is enabled or not. For more information, see the NLS
Guide.

83

Chapter 1: Statements and functions

BYTEVAL function

In NLS mode, use the BYTEVAL function to examine the bytes contained in the internal string value
of expression. The BY TEVAL function returns a number from 0 through 255 as the byte value of nin
expression. If you omit n, 1is assumed.

Syntax
BYTEVAL (expression [, n])

If an error occurs, the BYTEVAL function returns -1 if expression is the empty string or has fewer than
n bytes, or if n is less than 1. If expression evaluates to the null value, BYTEVAL returns null.

BYTEVAL behaves the same whether NLS is enabled or not. For more information, see the NLS Guide.

CALL statement

84

Use the CALL statement to transfer program control from the calling program to an external
subroutine or program that has been compiled and cataloged.

Syntax

CALL name [([MAT] argument [, [MAT] argument ..])]

variable = 'name'
CALL (Qvariable [([MAT] argument [, [MAT] argument ..])]

Locally cataloged subroutines can be called directly. Specify name using the exact name under which
it was cataloged. For more details, see the CATALOG command.

External subroutines can be called directly or indirectly. To call a subroutine indirectly, the name
under which the subroutine is cataloged must be assigned to a variable or to an element of an array.
This variable name or array element specifier, prefixed with an at sign (@), is used as the operand of
the CALL statement.

The first time a CALL is executed, the system searches for the subroutine in a cataloged library and
changes a variable that contains the subroutine name to contain its location information instead. This
procedure eliminates the need to search the catalog again if the same subroutine is called later in the
program. For indirect calls, the variable specified in the CALL as the @variable is used; for direct calls,
an internal variable is used. With the indirect method, it is best to assign the subroutine name to the
variable only once in the program, not every time the indirect CALL statement is used.

arguments are variables, arrays, array variables, expressions, or constants that represent actual
values. You can pass one or more arguments from the calling program to a subroutine. The number
of arguments passed in a CALL statement must equal the number of arguments specified in the
SUBROUTINE statement, on page 400 that identifies the subroutine. If multiple arguments are
passed, they must be separated by commas. If an argument requires more than one physical line, use
a comma at the end of the line to indicate that the list continues.

If argument is an array, it must be preceded by the MAT keyword, and the array should be named and
dimensioned in both the calling program and the subroutine before using this statement. If the array
is not dimensioned in the subroutine, it must be declared using the MAT keyword in the SUBROUTINE
statement. Other arguments can be passed at the same time regardless of the size of the array.

The actual values of arguments are not passed to the subroutine. Instead, a pointer to the location of
each argument is passed. Passing a pointer instead of the values is more efficient when many values

CALL statement

need to be passed to the subroutine. This method of passing arguments is called passing by reference;
passing actual values is called passing by value.

All scalar and matrix variables are passed to subroutines by reference. If you want to pass variables

by value, enclose them in parentheses. When data is passed by value, the contents of the variable in
the main program do not change as a result of manipulations to the data in the subroutine. When data
is passed by reference, the memory location of the variable is changed by manipulations in both the
main program and the subroutines. Constants are passed to subroutines by value.

When an array is passed to an external subroutine as an argument in a CALL statement, any
dimensions assigned to the array in the subroutine are ignored. The dimensions of the original array
as it exists in the calling program are maintained. Therefore, it is a common and acceptable practice
to dimension the array in the subroutine with subscripts or indices of one. For example, you could
dimension the arrays in the subroutine as follows:

piMm A (1), B (1, 1), C (1, 1)

When the corresponding array arguments are passed from the calling program to the subroutine at
run time, arrays A, B, and C inherit the dimensions of the arrays in the calling program. The indices in
the DIMENSION statement are ignored.

A better way to declare array arguments in a subroutine is to use the MAT keyword of the SUBROUTINE
statement in the first line of the subroutine. The following example tells the subroutine to expect the
three arrays A, B, and C:

SUBROUTINE X (MAT A, MAT B, MAT C)

When a RETURN statement is encountered in the subroutine, or when execution of the subroutine
ends without encountering a RETURN statement, control returns to the statement following the CALL
statement in the calling program. For more details, see the RETURN statement, on page 334.

Examples

The following example calls the local subroutine SUB. It has no arguments.

CALL SUB

The following example calls the local subroutine QTY.ROUTINE with three arguments:

CALL QTY.ROUTINE (X, Y, 2)

The following example calls the subroutine cataloged as *PROGRAM.1 with six arguments. The

argument list can be expressed on more than one line.

AAA="*PROGRAM. 1"
CALL QAAA(QTY,SLS,ORDER,ANS,FILE.O, SEQ)

The following example calls the subroutine *MA with three arguments. Its index and three arguments
are passed.

STATE.TAX (1,2)="*MA"
CALL QSTATE.TAX(1,2) (EMP.NO,GROSS,NET)

The following example calls the subroutine cataloged as *SUB and two matrices are passed to two
subroutine matrices. A third, scalar, argument is also passed.

GET.VALUE="*SUB"

DIM QTY (10)

DIM PRICE (10)

CALL QGET.VALUE (MAT QTY,MAT PRICE,COST)

85

Chapter 1: Statements and functions

The following example shows the SUBROUTINE statement in the subroutine SUB that is called by the
preceding example. The arrays Q and P need not be dimensioned in the subroutine.

SUBROUTINE SUB (MAT Q,MAT P,C)

CASE statements

Use the CASE statement to alter the sequence of instruction execution based on the value of one or
more expressions. If expression in the first CASE statement is true, the following statements up to the
next CASE statement are executed. Execution continues with the statement following the END CASE
statement.

Syntax

BEGIN CASE
CASE expression
statements
[CASE expression
statements

-]
END CASE

If the expression in a CASE statement is false, execution continues by testing the expression in the
next CASE statement. If it is true, the statements following the CASE statement up to the next CASE or
END CASE statement are executed. Execution continues with the statement following the END CASE
statement.

If more than one CASE statement contains a true expression, only the statements following the first
such CASE statement are executed. If no CASE statements are true, none of the statements between
the BEGIN CASE and END CASE statements are executed.

If an expression evaluates to the null value, the CASE statement is considered false.

Use the ISNULL function with the CASE statement when you want to test whether the value of a
variable is the null value. This is the only way to test for the null value since null cannot be equal to any
value, including itself. The syntax is:

CASE ISNULL (expression)

Use an expression of the constant "1" to specify a default CASE to be executed if none of the other
CASE expressions evaluate to true.

Examples

In the following example NUMBER is equal to 3. CASE 1 is always true, therefore control is transferred
to subroutine 30. Once the subroutine RETURN is executed, control proceeds to the statement
following the END CASE statement.

NUMBER=3
BEGIN CASE
CASE NUMBER=1
GOTO 10

CASE 1

GOSUB 30

CASE NUMBER<3
GOSUB 20

86

CATS function

END CASE

PRINT 'STATEMENT FOLLOWING END CASE'
GOTO 50

10*

PRINT 'LABEL 10'
STOP

20%*

PRINT 'LABEL 20'
RETURN

30%*

PRINT 'LABEL 30'
RETURN

50%*

This is the program output:

LABEL 30
STATEMENT FOLLOWING END CASE

In the following example, control proceeds to the statement following the END CASE because 'NAME'
does not meet any of the conditions:

NAME="MICHAEL"
BEGIN CASE

CASE NAME([1l,2]='DA'
PRINT NAME

GOTO 10

CASE NAME[1l,2]='RI'
PRINT NAME

GOSUB 20

CASE NAME([1l,2]='BA'
PRINT NAME

GOSUB 30

END CASE

PRINT 'NO MATCH'
STOP

This is the program output:
NO MATCH

CATS function

Use the CATS function to create a dynamic array of the element-by-element concatenation of two
dynamic arrays.

Syntax
CATS (arrayl, arrayZ2)
CALL -CATS (return.array, arrayl, arrayZz)

CALL !CATS (return.array, arrayl, arrayZ2)

Each element of arrayl is concatenated with the corresponding element of array2. The result is
returned in the corresponding element of a new dynamic array. If an element of one dynamic array has
no corresponding element in the other dynamic array, the existing element is returned. If an element
of one dynamic array is the null value, null is returned for the concatenation of the corresponding
elements.

87

Chapter 1: Statements and functions

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Example

A="A":@VM:"B":@SM:"C"
B="D":@SM:"E":QVM:"F"
PRINT CATS (A, B)

This is the program output:

ADSEVBFSC

CENTURY.PIVOT function

88

Use the CENTURY . PIVOT function to override the system-wide century pivot year defined in the
uvconfigfile.

Syntax

CENTURY.PIVOT (year | nn)

In UniVerse, when you enter as input a year in two-digit format (for example, 99 or 01), UniVerse by
default assumes the following:

= Yearsentered in the range 30 through 99 stand for 1930 through 1999
= Years entered in the range 00 through 29 stand for 2000 through 2029
Administrators can change these default ranges in three ways:

= Setting or changing the CENTURYPIVOT configurable parameter in the uvconfig file (for
information about configurable parameters, see Administering UniVerse).

= Usingthe CENTURY.PIVOT UniVerse command (see User Reference Guide).
* Usingthe CENTURY.PIVOT function

The CENTURYPIVOT configurable parameter sets the system-wide century pivot year for UniVerse. You
can use the CENTURY . PIVOT command to override the century pivot year for the current session.

You can set the century pivot year in two ways:

Static century pivot year

If you specify the century pivot year with four digits, the first two digits specify the century, and the last
two digits specify the pivot year.

For example, if you specify year as 1940, two-digit years specified in the range of 40 through 99 stand
for 1940 though 1999, and two-digit years specified in the range of 00 through 29 stand for 2000
through 2039. These ranges remain fixed until you explicitly change them.

Sliding century pivot year

If you enter the century pivot year as a two-digit code (nn), the century pivot year changes relative to
the current year. The formula for determining the century pivot year is as follows:

current.year - (100 - nn)

For example, if the current year is 2000 and nn is 05, the century pivot year is 1905. This means that
two-digit years specified in the range of 05 through 99 stand for 1905 through 1999, and two-digit
years specified in the range of 00 through 04 stand for 2000 through 2004.

CHAIN statement

If the current year is 2005 and nn is 05, the century pivot year is 1910. Two-digit years specified in the
range of 10 through 99 stand for 1910 through 1999, and two-digit years specified in the range of 00
through 09 stand for 2000 through 2009.

If the current year is 2001 and nn is 30, the century pivot year is 1931. Two-digit years specified in the
range of 31 through 99 stand for 1931 through 1999, and two-digit years specified in the range of 00
through 30 stand for 2000 through 2030.

CHAIN statement

Use the CHAIN statement to terminate execution of a UniVerse BASIC program and to execute the
value of command. command is an expression that evaluates to any valid UniVerse command. If
command evaluates to the null value, the CHAIN statement fails and the program terminates with a
runtime error message.

Local variables belonging to the current program are lost when you chain from one program to
another. Named and unnamed common variables are retained.

CHAIN differs from the EXECUTE statement or PERFORM statement in that CHAIN does not return
control to the calling program. If a program chains to a proc, any nested calling procs are removed.
Syntax

CHAIN command

PICK, IN2, and REALITY flavors

Unnamed common variables are lost when a chained program is invoked in a PICK, IN2, or
REALITY flavor account. If you want to save the values of variables in unnamed common, use the
KEEP.COMMON keyword to the RUN command at execution.

Example
The following program clears the screen, initializes the common area, and then runs the main
application:

PRINT @ (-1)

PRINT "INITIALIZING COMMON, PLEASE WAIT"
GOSUB INIT.COMMON
CHAIN "RUN BP APP.MAIN KEEP.COMMON"

CHANGE function

Use the CHANGE function to replace a substring in expression with another substring. If you do not
specify occurrence, each occurrence of the substring is replaced.

Syntax

CHANGE (expression, substring, replacement [,occurrence [,begin]])

occurrence specifies the number of occurrences of substring to replace. To change all occurrences,
specify occurrence as a number less than 1.

begin specifies the first occurrence to replace. If begin is omitted or less than 1, it defaults to 1.

89

Chapter 1: Statements and functions

If substring is an empty string, the value of expression is returned. If replacement is an empty string, all
occurrences of substring are removed.

If expression evaluates to the null value, nullis returned. If substring, replacement, occurrence, or begin
evaluates to the null value, the CHANGE function fails and the program terminates with a run-time
error message.

The CHANGE function behaves like the EREPLACE function except when substring evaluates to an
empty string.

Example

A = "AAABBBCCCDDDBBB"

PRINT CHANGE (A, "BBB","ZzZZ")
PRINT CHANGE (A,"","Z22")
PRINT CHANGE (A, "BBB","")

This is the program output:

AAAZZ77ZCCCDDDZZZ
AAABBBCCCDDDBBB
AAACCCDDD

CHAR function

Use the CHAR function to generate an ASCII character from the numeric value of expression.

If expression evaluates to the null value, null is returned. If expression evaluates to 128, CHAR(128) is
returned, not the null value. CHAR(128) is the equivalent of the system variable @NULL.STR.

The CHAR function is the inverse of the SEQ function.

If NLS mode is enabled, and if expression evaluates to a number from 129 through 247, the CHAR
function generates Unicode characters from x0081 through x00F7. These values correspond to the
equivalent ISO 8859-1 (Latin 1) multibyte characters. The evaluation of numbers from 0 through 127,
128, and 248 through 255 remains the same whether NLS is enabled or not.

The UNICHAR function is the recommended method for generating Unicode characters. For more
information, see the NLS Guide.

Note: In order to run programs using the CHAR function in NLS mode, you must first recompile
them in NLS mode.

Syntax
CHAR (expression)
Example

X = CHAR(38)
Y = CHAR(32)
PRINT X:Y:X

CHAR(38) is an ampersand (&). CHAR(32) is a space. This is the program output:

& &

90

CHARS function

CHARS function

Use the CHARS function to generate a dynamic array of ASCII characters from the decimal numeric
value of each element of dynamic.array.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

If any element in the dynamic array is the null value, null is returned for that element. If any element
in the dynamic array evaluates to 128, CHAR(128) is returned, not the null value. CHAR(128) is the
equivalent of the system variable @NULL.STR.

If NLS mode is enabled, and if any element in the dynamic array evaluates to a number from 129
through 247, the CHARS function generates Unicode characters from x0081 through x00F7. These
values correspond to the equivalent ISO 8859-1 (Latin 1) multibyte characters. The evaluation of
numbers from 0 through 127, 128, and 248 through 255 remains the same whether NLS is enabled or
not.

The UNICHARS function is the recommended method for generating a dynamic array of Unicode
characters. For more information, see the NLS Guide.

Syntax

CHARS (dynamic.array)
CALL -CHARS (return.array, dynamic.array)

CALL !CHARS (return.array, dynamic.array)

Example

X = CHARS (38:@VM:32:Q@VM:38)
PRINT X

The dynamic array X comprises three elements: CHAR(38) (an ampersand (&)), CHAR(32) (a space),
and another CHAR(38). The program prints a dynamic array of these elements separated by value
marks:

&V V&

CHECKSUM function

Use the CHECKSUM function to return a cyclical redundancy code (a checksum value).

If string is the null value, null is returned.

Syntax

CHECKSUM (string)

Example

A = "THIS IS A RECORD TO BE SENT VIA SOME PROTOCOL"
REC = A:W@FM:CHECKSUM (A)

PRINT REC

This is the program output:

91

Chapter 1: Statements and functions

THIS IS A RECORD TO BE SENT VIA SOME PROTOCOLF30949

CLEAR statement

Use the CLEAR statement at the beginning of a program to set all assigned and unassigned values of
variables outside of the common area of the program to 0. This procedure avoids run-time errors for
unassigned variables. If you use the CLEAR statement later in the program, any values assigned to
noncommon variables (including arrays) are lost.

Use the COMMON option to reset the values of all the variables in the unnamed common area to 0.
Variables outside the common area or in the named common area are unaffected.

Syntax

CLEAR [COMMON]

Example

A=100

PRINT "The value of A before the CLEAR statement:"
PRINT A

CLEAR

PRINT "The value of A after the CLEAR statement:"
PRINT A

PRINT

*

COMMON B, C,D

D="HI"

PRINT "The values of B, C, and D"

PRINT B,C,D

CLEAR COMMON

PRINT B,C,D

This is the program output:

The value of A before the CLEAR statement: 100

The value of A after the CLEAR statement: 0

The values of B, C, and D

0 0 HI
0 0 0

CLEARCOMMON

The UniVerse BASIC CLEARCOMMON command sets all variables in a named common area to zero. If
you do not specify common.label, CLEARCOMMON sets all variables specified in the unnamed common
area to zero.

Syntax

CLEARCOMMON [/common.label/]

Examples
In the following example, the program statement sets to zero all variables named in COM_1:

CLEARCOMMON /COM 1/

92

CLEARDATA statement

In the next example, the program statement sets to zero all variables held in common areas if the
variable INITIALIZE.COMMON is true:

IF INITIALIZE.COMMON THEN CLEAR COMMON

CLEARDATA statement

Use the CLEARDATA statement to flush all data that has been loaded in the input stack by the DATA
statement. No expressions or spaces are allowed with this statement. Use the CLEARDATA statement
when an error is detected, to prevent data placed in the input stack from being used incorrectly.

Syntax

CLEARDATA

Example

The following program is invoked from a paragraph. A list of file names and record IDs is passed to
it from the paragraph with DATA statements. If a file cannot be opened, the CLEARDATA statement
clears the data stack since the DATA statements would no longer be valid to the program.

TEN:

INPUT FILENAME

IF FILENAME="END" THEN STOP

OPEN FILENAME TO FILE ELSE

PRINT "CAN'T OPEN FILE ":FILENAME
PRINT "PLEASE ENTER NEW FILENAME "
CLEARDATA

GOTO TEN:

END

TWENTY :

INPUT RECORD

READ REC FROM FILE,RECORD ELSE GOTO TEN:
PRINT REC<1>

GOTO TEN:
TEST.FILE.

0 records listed.

CLEARFILE statement

Use the CLEARFILE statement to delete all records in an open dictionary or data file. You cannot use
this statement to delete the file itself. Each file to be cleared must be specified in a separate CLEARFILE
statement.

Syntax
CLEARFILE [file.variable] [ON ERROR statements] [LOCKED statements]

file.variable specifies an open file. If file.variable is not specified, the default file is assumed (for more
information on default files, see the OPEN statement).

The CLEARFILE statement fails and the program terminates with a runtime error message if:
= Thefileis neither accessible nor open.

= file.variable evaluates to the null value.

93

Chapter 1: Statements and functions

94

= Adistributed file contains a part file that cannot be accessed, but the CLEARFILE statement clears
those part files still available.

= Atransactionis active. That is, you cannot execute this statement between a BEGIN TRANSACTION
statement (or TRANSACTION START statement and the COMMIT statement (or TRANSACTION
START statement) or ROLLBACK statement that ends the transaction.

The ON ERROR clause

The ON ERROR clause is optional in the CLEARFILE statement. The ON ERROR clause lets you specify
an alternative for program termination when a fatal error is encountered during processing of the
CLEARFILE statement.

If a fatal error occurs and the ON ERROR clause was not specified or was ignored, the following occurs:
= An error message appears.
= The current program terminates.

= Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number. If a
CLEARFILE statement is used when any portion of a file is locked, the program waits until the file is
released. The ON ERROR clause is not supported if the CLEARFILE statement is within a transaction.

The LOCKED clause

The LOCKED clause is optional, but recommended.

The LOCKED clause handles a condition caused by a conflicting lock (set by another user) that
prevents the CLEARFILE statement from processing. The LOCKED clause is executed if one of the
following conflicting locks exists:

= Exclusive file lock

= Intent file lock

= Shared file lock

= Update record lock
= Shared record lock

If the CLEARFILE statement does not include a LOCKED clause, and a conflicting lock exists, the
program pauses until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the terminal number of the
user who owns the conflicting lock.

Example

OPEN "","TEST.FILE" ELSE PRINT "NOT OPEN"
EXECUTE "LIST TEST.FILE"

CLEARFILE

CHAIN "LIST TEST.FILE"

This is the program output:

LIST TEST.FILE 11:37:45am 03-22-94 PAGE 1
TEST.FILE

ONE

TWO

THREE

CLEARPROMPTS statement

3 records listed.

LIST TEST.FILE 11:37:46am 03-22-94 PAGE 1
TEST.FILE.

0 records listed.

CLEARPROMPTS statement

Use the CLEARPROMPTS statement to clear the value of the inline prompt. Once a value is entered

for anin-line prompt, the prompt continues to have that value until a CLEARPROMPTS statement is
executed, unless the in-line prompt control option A is specified. CLEARPROMPTS clears all values that
have been entered for inline prompts.

Syntax
CLEARPROMPTS
CALL !CLEAR.PROMPTS

For information about in-line prompts, see the ILPROMPT function, on page 214,

CLEARSELECT statement

Use the CLEARSELECT statement to clear an active select list. This statement is normally used when
one or more select lists have been generated but are no longer needed. Clearing select lists prevents
remaining select list entries from being used erroneously.

Syntax

CLEARSELECT [ALL | list.number]

Use the keyword ALL to clear all active select lists. Use list. n umber to specify a numbered select list
to clear. list. n umber must be a numeric value from 0 through 10. If neither ALL nor list.number is
specified, select list 0 is cleared.

If list. number evaluates to the null value, the CLEARSELECT statement fails and the program
terminates with a run-time error message.

PICK, REALITY, and IN2 flavors

PICK, REALITY, and IN2 flavor accounts store select lists in list variables instead of numbered select
lists. In those accounts, and in programs that use the VAR.SELECT option of the SOPTIONS statement,
the syntax of CLEARSELECT is:

CLEARSELECT [ALL | Iist.variablel

Example

The following program illustrates the use of CLEARSELECT to clear a partially used select list. The
report is designed to display the first 40-odd hours of lessons. A CLEARSELECT is used so that all the
selected records are not printed. Once the select list is cleared, the READNEXT statement ELSE clause
is executed.

OPEN 'SUN.SPORT' TO FILE ELSE STOP "CAN'T OPEN FILE"
HOURS=0

*

95

Chapter 1: Statements and functions

EXECUTE 'SSELECT SUN.SPORT BY START BY INSTRUCTOR'
*

START:

READNEXT KEY ELSE

PRINT 'FIRST WEEK', HOURS

STOP

END

READ MEMBER FROM FILE,KEY ELSE GOTO START:
HOURS=HOURS+MEMBER<4>

PRINT MEMBER<1>,MEMBER<4>

IF HOURS>40 THEN

* ok ok ok kK

CLEARSELECT
* ok kK kK

GOTO START:
END

GOTO START:
END

This is the program output:

14 records selected to Select List #0
4309
6100
3452
6783
5390
4439
6203
FIRST WEEK 477

[N R VS RN
)

CLOSE statement

96

Use the CLOSE statement after opening and processing a file. Any file locks or record locks are
released.

Syntax

CLOSE [file.variable] [ON ERROR statements]

file.variable specifies an open file. If file.variable is not specified, the default file is assumed. If the file
is neither accessible nor open, or if file.variable evaluates to the null value, the CLOSE statement fails
and the program terminates with a run-time error message.

The ON ERROR clause

The ON ERROR clause is optional in the CLOSE statement. The ON ERROR clause lets you specify an
alternative for program termination when a fatal error is encountered during processing of the CLOSE
statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

* Anerror message appears.

= Any uncommitted transactions begun within the current execution environment roll back.

CLOSESEQ statement

= The current program terminates.

= Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

= Afileis not open.

= file.variable is the null value.

= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

Example

CLEAR

OPEN '', "EX.BASIC' TO DATA ELSE STOP
READ A FROM DATA, 'XYZ' ELSE STOP
AL3>="*"

WRITE A ON DATA, 'XYZ'

CLOSE DATA

CLOSESEQ statement

Use the CLOSESEQ statement after opening and processing a file opened for sequential processing.
CLOSESEQ makes the file available to other users.

Syntax

CLOSESEQ file.variable [ON ERROR statements]

file.variable specifies a file previously opened with an OPENSEQ statement. If the file is neither

accessible nor open, the program terminates with a runtime error message. If file.variable is the null
value, the CLOSESEQ statement fails and the program terminates with a run-time error message.

The ON ERROR clause

The ON ERROR clause is optional in the CLOSESEQ statement. The ON ERROR clause lets you specify
an alternative for program termination when a fatal error is encountered during processing of the
CLOSESEQ statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

= Anerror message appears.
* Any uncommitted transactions begun within the current execution environment roll back.
= The current program terminates.

= Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:
= Afileis not open.
= file.variable is the null value.

= Adistributed file contains a part file that cannot be accessed.

97

Chapter 1: Statements and functions

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

Example
In this example, the CLOSESEQ statement closes FILE.E, making it available to other users:

OPENSEQ 'FILE.E', 'RECORD1' TO FILE ELSE ABORT
READSEQ A FROM FILE THEN PRINT A ELSE STOP
CLOSESEQ FILE

END

closeSocket function

Use the closeSocket() function to close a socket connection.

Syntax
closeSocket (socket handle)

Where socket_handle is the handle to the socket you want to close.

Return codes

The following table describes the status of each return code.

Return code Description
0 Success.
See Socket function error return codes, on page 599.

Non-zero

CloseXMLData function

98

After you finish using an XML data, use CloseXMLData to close the dynamic array variable.

Syntax
Status=CloseXMLData (xml data handle)

Parameter

The following table describes each parameter of the syntax.

Parameter Description
The name of the XML data file handle created by the OpenxMLData() function.

xml_data_handle

Return values
The return value is one of the following:
XML.SUCCESS: Success.

XML.ERROR: Failed
XML.INVALID.HANDLE2: Invalid xml_data_handle

COL1 function

Example

The following example illustrates use of the CloseXMLData function:

status = CloseXMLData (STUDENT XML)

COLT function

Use the COL1 function after the execution of a FIELD function to return the numeric value for the
character position that immediately precedes the selected substring. Although the COL1 function
takes no arguments, parentheses are required to identify it as a function.

The value obtained from COL1 is local to the program or subroutine executing the FIELD function.
Before entering a subroutine, the current value of COL1 in the main program is saved. The value of
COL1 in the subroutine is initialized as 0. When control is returned to the calling program, the saved
value of COL1 is restored.

If no FIELD function precedes the COL1 function, a value of 0 is returned. If the delimiter expression
of the FIELD function is an empty string or the null value, or if the string is not found, the COL1
function returns a 0 value.

Syntax

COL1l ()

Examples

The FIELD function in the following example returns the substring CCC. COL1() returns 8, the position
of the delimiter ($) that precedes CCC.

SUBSTRING=FIELD ("AAASBBBSCCC", 'S$"', 3)
POS=COL1 ()
PRINT POS

In the following example, the FIELD function returns a substring of 2 fields with the delimiter (.) that
separates them: 4.5. COL1() returns 6, the position of the delimiter that precedes 4.

SUBSTRING=FIELD("1.2.3.4.5",'.',4,2)
POS=COL1 ()
PRINT POS

COL2 function

Use the COL2 function after the execution of a FIELD function to return the numeric value for the
character position that immediately follows the selected substring. Although the COL2 function takes
no arguments, parentheses are required to identify it as a function.

The value obtained from COL2 is local to the program or subroutine executing the FIELD function.
Before entering a subroutine, the current value of COL2 in the main program is saved. The value of
COLZ2 in the subroutine is initialized as 0. When control is returned to the calling program, the saved
value of COL2 is restored.

If no FIELD function precedes the COL2 function, a value of 0 is returned. If the delimiter expression
of the FIELD function is an empty string or the null value, or if the string is not found, the COL2
function returns a 0 value.

99

Chapter 1: Statements and functions

Syntax

COL2 ()

Examples

The FIELD function in the following example returns the substring 111. COL2() returns 4, the position
of the delimiter (#) that follows 111.

SUBSTRING=FIELD ("111#222#3","#",1)
P=COL2 ()
PRINT P

In the following example, the FIELD function returns a substring of two fields with the delimiter (&)
that separates them: 7&8. COL2() returns 5, the position of the delimiter that follows 8.

SUBSTRING=FIELD("&7&8&B&","&",2,2)
S=COL2 ()
PRINT S

In the next example, FIELD() returns the whole string, because the delimiter (.) is not found. COL.2()
returns 6, the position after the last character of the string.

SUBSTRING=FIELD("9*8*7",".", 1)
Y=COL2 ()
PRINT Y

In the next example, FIELD() returns an empty string, because there is no tenth occurrence of the
substring in the string. COL2() returns 0 because the substring was not found.

SUBSTRING=FIELD ("9*8*7","*" 10)
0=COL2 ()
PRINT O

COMMAND.EDITOR

100

The COMMAND . EDITOR command enables or disables the Command Editor in Pl/open. The
Command Editor provides you with facilities for simple command line editing and command stack
manipulation.

You can turn on the Command Editor in either insert or overlay mode, and you can specify a prompt to
use in place of the PERFORM colon prompt while command editing is enabled.

Note: If a single character only is expected by the prompt from a PERFORM command or by an
INFO or BASIC INPUT statement, the Command Editor is not enabled for that prompt.

Syntax

COMMAND .EDITOR [{ON | OFF} [INSERT | OVERLAY] [VERBS | ALL] “prompt”}]
COMMAND .EDITOR [OFF]

Parameters

The following table describes each parameter of the syntax.

COMMAND.EDITOR

Parameter

Description

ON | OFF

Enables or disables the Command Editor. If ON, you must specify the other
parameters. If OFF, disables the Command Editor and restores the PERFORM
colon prompt, if you previously used the command editor to define a
different prompt string.

INSERT | OVERLAY

Specifies what mode to use - insert or overlay. INSERT is the default setting.
In insert mode, you can edit the command line or manipulate the stack while
at the PERFORM colon prompt.

VERBS | ALL Specifies what type of editing to perform. If VERBS, it enables the editing of
text in answer to a prompt from a PERFORM command. If ALL, it enables the
full editing facilities, including editing of text entered in response to an INFO
or BASIC INPUT statement.

"prompt" Specifies the prompt that you want to replace the PERFORM colon prompt

while the Command Editor is enabled. The prompt string must be enclosed in
single or double quotation marks.

Command Editor line editing functions

When the Command Editor is enabled, an ordinary text character is accepted and displayed on the line
that you are editing. You can use the keybindings supplied for your terminal or use the fundamental
keybindings to execute any line-editing command.

The Command Editor supports the following line editing functions.

Function

Description

Backspace

The backspace function has no effect if the cursor is already at the beginning
of the line.

In insert mode, the backspace function moves one character position to the
left and deletes the character in the new cursor position. Any text on the line
to the right of the cursor is moved one position to the left with the cursor.

In overlay mode, the backspace function replaces the character to the left of
the cursor with a space. Text to the right of the cursor does not move.

Cursor left

Moves the cursor one position to the left unless the cursor is already at the
beginning of the line.

Cursor right

Moves the cursor one position to the right unless the cursor is already at the
end of the line.

Next word

Moves the cursor to the beginning of the next word or to the end of the
line if there is no next word. Any combination of alphabetic characters is
considered a word. Any nonalphabetic character terminates a word.

Previous word

Moves the cursor to the first character of the word that begins to the left of
the current cursor position. It has no effect if the cursor is at the beginning of
the line.

Toggle cursor start/
end of line

Moves the cursor to the beginning or end of the line, depending on the
current cursor position within the line. The cursor always moves to
whichever position is farthest from the current position.

Toggle insert/overlay
mode

Switches between insert and overlay mode.

Insert space

Inserts a space at the current cursor position. Any text to the right of the
cursor is moved to the right. Its main use is in overlay mode, in which typing
a space overwrites the current character.

101

Chapter 1: Statements and functions

102

Function

Description

Delete character

Deletes the character at the current cursor position. All text to the right of the
cursor is moved to the left. It has no effect if the cursor is at the end of the
line.

Delete word Deletes the text from the current cursor position to the end of the first word
that terminates to the right of that position. It has no effect if the cursor is at
the end of the line.

Delete line Deletes the current line, and places the cursor at the start of the resulting

blank line.

Truncate line

Deletes text from the current cursor position to the end of the line. It has no
effect if the cursor is at the end of the line.

Exchange previous
two characters

Swaps the positions of the two characters that immediately precede
the current cursor position. If the cursor is placed on the first or second
character of the line, the function has no effect.

Restore deleted text

If a delete word, delete line, or truncate line function has been used, this
function restores the display of the deleted text beginning at the current
cursor position. The cursor is placed immediately after the end of the restore
text. Any text that was to the right of the current cursor position is moved to
the right by the restored text.

If a delete word, delete line, or truncate line function has not yet been used,
this function has no effect.

Refresh

Rewrites the current command line on a new display line. It is useful when
the current screen display has been disturbed, for example, by an operator
message.

Convert line to

Redisplays the command line with each lowercase alphabetic character

uppercase changed to an uppercase character. The cursor is then placed at the end of
the line.
Cancel Discards the line that you are editing and returns you to the PERFORM colon

prompt. This function has no effect if you are editing input to a PERFORM
command prompt or input into an INFO or BASIC INPUT statement.

Stack manipulation functions

The PERFORM command stack retains the last 98 commands numbered from 01, the most recent
command, to 98. The command numbered 00 is the current line. The PERFORM command stack is a
ring. When you cycle through the stack of the 98th command, the first command is then shown.

The following stack manipulation functions enable you to display, and recall commands from your
stack so that you can use the Command Editor's line editing capabilities to edit those commands, if
required, before re-executing them. All of the line editing functions described in the previous section
are available to make changes to commands from your stack.

Re-execution copies the command to the bottom off the stack and places you at the bottom of the
stack, unless if you execute command 01. In this case, no new stack entry is made even though you

edited the command.

Function

Description

Cancel

When you are manipulating the stack, the Cancel function clears the
command line, repositions to the bottom of the PERFORM command stack,
and returns you to the PERFORM colon prompt. You can use this function
to escape from a Next command or Previous command sequence without
executing a command, and alto to abort Search and Goto commands.

COMMAND.EDITOR

Function

Description

Cycle up command
stack function

Allows you display your PERFORM command stack one command at a time
starting at the command numbered 01 and displaying the next command in
ascending numerical order each time the function is executed.

Cycle down command
stack function

Allows you to display the PERFORM command stack one command at a time
starting at the command numbered 98 and displaying the next command in
descending numerical order each time the function is executed.

Scroll up command
stack

Displays the previous 20 PERFORM stack commands in ascending numerical
order each time the function is executed. The stack is treated as a ring.
During a consecutive sequence of scroll commands, the current position
within the command stack is recorded, so that you can scroll through the
entire stack. Any command other than a scroll command returns you to the
bottom of the PERFORM command stack.

Scroll down
command stack

Displays 20 PERFORM stack commands in descending numerical order each
time the function is executed. It works similarly to the scroll up command
stack function.

Goto command
number

Prompts you for a command number. If you supply a valid number, the
command is displayed for editing and/or execution. If the supplied number is
invalid, an error message is displayed, and no further action is taken. Use the
Cancel function to exit from the Goto function.

Search command
stack

Prompts you for a search string, and conducts a case-sensitive search of the
PERFORM command stack for a command which contains that string. The
stack is treated as a ring, so that the complete stack is scanned if necessary.
If a match is found, the command containing the search string is displayed
for editing and/or execution. If no match is found, a warning message is
displayed.

If you press only Return in response to the search string prompt, the previous
search string is used again.

Use the Cancel function to exit from the Search function.

Stack commands

The following table provides a summary of stack commands that you might need when editing the

stack.

Command Description

.D[n] Deletes a command or paragraph from the stack. n is the command
number that you want to delete. If n is omitted, command number
01is deleted by default.

.? Displays a list of the stack commands.

.D[paragraph.name | Deletes a sentence or paragraph from the VOC file. paragraph.name

command. name] and command.name are the names of the paragraph or command
to be deleted.

103

Chapter 1: Statements and functions

Command

Description

.I[n] [any.text]

Inserts a command into any location in the stack. You can insert a
new command into the PERFORM command stack by specifying ? at
the end of the command to be inserted or using the . T command.
Inserting a command into the stack is often used to place a
command within a group of related commands that you might want
to save in the VOC as a paragraph.

If 7 is specified at the end of the command to be inserted, the
command is inserted into the stack as command number 01.

nis the command stack number that you want the inserted text

to become. If nis omitted, any.text is inserted into the stack as
command number 01 by default. A space must appear between the
command stack number and the text that you want to insert.

Commands already in the stack with a number equal to or greater
than the number inserted have their number increased by one.

All commands in the stack with numbers lower than the number
inserted retain their original numbers.

The . T command is often used with the . S command to place
several stack commands into a paragraph in the VOC.

.L [paragraph.name
command .name]

Lists a paragraph or sentence from the VOC. paragraph.name and
command.name are the record IDs of the paragraph or command in
the VOC to be displayed.

.R[n]
or

.R[{paragraph.name
sentence.name]

Recalls or repositions to a command number 01 or paragraph. nis
the stack number of the command that you want to recall. If you
omit n, command number 01 is the default.

The command .R and .R1 do not change the order of commands in
the stack. Stack command number 01 is not rewritten.

Additionally, the . R command can be used to place a sentence or
group of commands from a stored paragraph into the stack using
the second syntax listed.

.S name [s# [e#]]

Saves the command or paragraph in the VOC as a sentence or
paragraph. name is the name you are assigning to the command

or group of commands that you want to save. If you only save one
line, it is saved as a sentence, not as a paragraph. The command
line number that you want to start with is s#, and the command line
number you want to end with is ef#.

COMMIT statement

104

Use the COMMIT statement to commit all file I/O changes made during a transaction. The WORK
keyword is provided for compatibility with SQL syntax conventions; it is ignored by the compiler.

Syntax

COMMIT [WORK] [THEN statements] [ELSE statements |

A transaction includes all statements between a BEGIN TRANSACTION statement and the COMMIT
statement or ROLLBACK statement that ends the transaction. Either a COMMIT or a ROLLBACK

statement ends the current transaction.

The COMMIT statement can either succeed or fail.

COMMON statement

When a subtransaction commits, it makes the results of its database operations accessible to its
parent transaction. The subtransaction commits to the database only if all of its predecessors up to
the top-level transaction are committed.

If a top-level transaction succeeds, all changes to files made during the active transaction are
committed to disk.

If a subtransaction fails, all its changes are rolled back and do not affect the parent transaction. If the
top-level transaction fails, none of the changes made during the active transaction are committed,
and the database remains unaffected by the failed transaction. This ensures that the database is
maintained in a consistent state.

If the COMMIT statement succeeds, the THEN statements are executed; any ELSE statements are
ignored. If COMMIT fails, any ELSE statements are executed. After the THEN or the ELSE statements are
executed, control is transferred to the statement following the next END TRANSACTION statement.

All locks obtained during a transaction remain in effect for the duration of the active transaction;
they are not released by a RELEASE statement, WRITE statements, WRITEV statement, or MATWRITE
statements that are part of the transaction. The parent transaction adopts the acquired or promoted
locks. If a subtransaction rolls back, any locks that have been acquired or promoted within that
transaction are demoted or released.

The COMMIT statement that ends the top-level transaction releases locks set during that transaction.
Locks obtained outside the transaction are not affected by the COMMIT statement.

If no transaction is active, the COMMIT statement generates a runtime warning, and the ELSE
statements are executed.

Example

This example begins a transaction that applies locks to recl and rec2. If no errors occur, the COMMIT
statement ensures that the changes to recl and rec2 are written to the file. The locks on recl and rec2
are released, and control is transferred to the statement following the END TRANSACTION statement.

BEGIN TRANSACTION
READU datal FROM filel,recl ELSE ROLLBACK
READU data2 FROM file2,rec2, ELSE ROLLBACK

WRITE new.datal ON filel,recl ELSE ROLLBACK
WRITE new.data2 ON file2,rec2 ELSE ROLLBACK
COMMIT WORK

END TRANSACTION

The update record lock on recl is not released on completion of the first WRITE statements but on
completion of the COMMIT statement.

COMMON statement

Use the COMMON statement to provide a storage area for variables. Variables in the common area are
accessible to main programs and external subroutines. Corresponding variables can have different
names in the main program and in external subroutines, but they must be defined in the same order.
The COMMON statement must precede any reference to the variables it names.

Syntax

COM[MON] [/name/] variable [,variable ..]

105

Chapter 1: Statements and functions

A common area can be either named or unnamed. An unnamed common area is lost when the
program completes its execution and control returns to the UniVerse command level. A named
common area remains available for as long as the user remains in the UniVerse environment.

The common area name can be of any length, but only the first 31 characters are significant.

Arrays can be dimensioned and named with a COMMON statement. They can be redimensioned

later with a DIMENSION statement, but the COMMON statement must appear before the DIMENSION
statement. When an array is dimensioned in a subroutine, it takes on the dimensions of the array in
the main program regardless of the dimensions stated in the COMMON statement. For a description of
dimensioning array variables in a subroutine, see the CALL statement, on page 84.

When programs share a common area, use the SINCLUDE statement to define the common area in
each program.

Example

Program:

COMMON NAME, ADDRESS (15, 6), PHONE
Subroutine:

COMMON A, B (15, 6), C

In this example the variable pairs NAME and A, ADDRESS and B, PHONE and C are stored in the same
memory location.

COMPARE function

106

Use the COMPARE function to compare two strings and return a numeric value indicating the result.

Syntax

COMPARE (stringl, string2 [, justification])

string1, string2 specify the strings to be compared.

justification is either L for left-justified comparison or R for right-justified comparison. (Any other value
causes a run-time warning, and 0 is returned.)

The comparison can be left-justified or right-justified. A right-justified comparison compares numeric
substrings within the specified strings as numbers. The numeric strings must occur at the same
character position in each string. For example, a right-justified comparison of the strings AB100

and AB99 indicates that AB100 is greater than AB99 since 100 is greater than 99. A right-justified
comparison of the strings AC99 and AB100 indicates that AC99 is greater since C is greater than B.

If neither L nor R is specified, the default comparison is left-justified.

The following list shows the values returned:

Value Description

-1 string1 is less than string2.

0 string1 equals string2 or the justification expression is not valid.
string1 is greater than string2.

CONVERT function

If NLS is enabled, the COMPARE function uses the sorting algorithm and the Collate convention
specified in the NLS.LC.COLLATE file in order to compare the strings. For more information about
conventions, see the NLS Guide.

Examples

In the following example, the strings AB99 and AB100 are compared with the right-justified option and
the result displayed. In this case the result displayed is -1.

PRINT COMPARE ('AB99', 'AB100', 'R")

An example in NLS mode follows. It compares the strings anilno and anillo, returning the result as 1. It
sets the locale to Spanish and compares the strings again. In this case, the result displayed is -1.

SINCLUDE UNIVERSE.INCLUDE UVNLSLOC.H
x=SETLOCALE (UVLCSALL, 'OFF')

PRINT COMPARE ('anilno', 'anillo', 'L')
x=SETLOCALE (UVLCSALL, 'ES-SPANISH')
PRINT COMPARE ('anilno', 'anillo', 'L')

This is the program output:

1
-1

The CONTINUE statement is a loop-controlling statement. For syntax details, see the FOR statement,
on page 181 and the LOOP statement, on page 254.

CONVERT function

Use the CONVERT function to return a copy of variable with every occurrence of specified characters
in variable replaced with other specified characters. Every time a character to be converted appears in
variable, it is replaced by the replacement character.

Syntax

CONVERT (expressionl, expression2, variable)

expressionl specifies a list of characters to be converted. expression2 specifies the corresponding
replacement characters. The first character of expression2 replaces all instances of the first character
of expressionl, the second character of expression2 replaces all instances of the second character of
expressionl, and so on.

If expression2 contains more characters than expressionl, the extra characters are ignored. If
expressionl contains more characters than expression2, the characters with no corresponding
expression2 characters are deleted from the result.

If variable is the null value, null is returned. If either expressionl or expression2 is the null value, the
CONVERT function fails and the program terminates with a run-time error message.

The CONVERT function works similarly to the CONVERT statement.

Example

A="NOW IS THE TIME"
PRINT A

A=CONVERT ('TI', 'XY',A)
PRINT A

107

Chapter 1: Statements and functions

A=CONVERT ('XY', 'T',A)
PRINT A

This is the program output:

NOW IS THE TIME
NOW YS XHE XYME
NOwW S THE TME

CONVERT statement

Use the CONVERT statement to replace every occurrence of specific characters in a string with other
characters. Every time the character to be converted appears in the string, it is replaced by the
replacement character.

Syntax

CONVERT expressionl TO expression2 IN variable

expressionl specifies a list of characters to be converted. expression2 specifies a list of replacement
characters. The first character of expression2 replaces all instances of the first character of expression1,
the second character of expression2 replaces all instances of the second character of expression1, and
soon.

If expression2 contains more characters than expressionl, the extra characters are ignored. If
expressionl contains more characters than expression2, the characters with no corresponding
expression2 characters are deleted from the variable.

If variable is the null value, null is returned. If either expressionl or expression2 evaluates to the null
value, the CONVERT statement fails and the program terminates with a run-time error message.

Example

A="NOW IS THE TIME"

PRINT A

CONVERT 'TI' TO 'XY' IN A
PRINT A

CONVERT 'XY' TO 'T' IN A
PRINT A

This is the program output:

NOW IS THE TIME
NOW YS XHE XYME
NOW S THE TME

COS function

108

Use the COS function to return the trigonometric cosine of an angle. expression is an angle expressed
as a numeric value in degrees. The COS function is the inverse of the ACOS function.

Values outside the range of 0 to 360 degrees are interpreted as modulo 360. Numbers greater than
1E17 produce a warning message and 0 is returned. If expression evaluates to the null value, null is
returned.

COSH function

Syntax

COS (expression)

Example

PRINT "COS(45) = " : COS(45)
END

This is the program output:

COs (45) = 0.7071

COSH function

Use the COSH function to return the hyperbolic cosine of expression. expression must be a numeric
value.

If expression evaluates to the null value, nullis returned.

Syntax

COSH (expression)

Example

PRINT "COSH (2) = ":COSH(2)
This is the program output:
COSH(2) = 1.0006

COUNT function

Use the COUNT function to return the number of times a substring is repeated in a string value.

Syntax

COUNT (string, substring)

string is an expression that evaluates to the string value to be searched. substring is an expression that
evaluates to the substring to be counted. substring can be a character string, a constant, or a variable.

If substring does not appear in string, a 0 value is returned. If substring is an empty string, the number
of characters in string is returned. If string is the null value, null is returned. If substring is the null
value, the COUNT function fails and the program terminates with a run-time error message.

By default, each character in string is matched to substring only once. Therefore, when substring is
longer than one character and a match is found, the search continues with the character following the
matched substring. No part of the matched string is recounted toward another match. For example,
the following statement counts two occurrences of substring TT and assigns the value 2 to variable C:

C = COUNT ('TTTT', 'TT")

109

Chapter 1: Statements and functions

PICK, IN2, and REALITY flavors

In PICK, IN2, and REALITY flavors, the COUNT function continues the search with the next character
regardless of whether it is part of the matched string. For example, the following statement counts
three occurrences of substring TT:

C = COUNT ('TTTT', 'TT'")

Use the COUNT.OVLP option of the SOPTIONS statement to get this behavior in IDEAL and
INFORMATION flavor accounts.

Example

A=COUNT ('ABCAGHDALL', 'A")
PRINT "A= ",A

*

Z="SH#FF##G#ITTT#'
Q=COUNT (Z, "#')

PRINT "Q= ",0Q

*

Y=COUNT ('11111111',"'11")
PRINT "Y= ", Y

This is the program output:

A= 3
o= 5
Y= 4

COUNTS function

110

Use the COUNTS function to count the number of times a substring is repeated in each element of a
dynamic array. The result is a new dynamic array whose elements are the counts corresponding to the
elements in dynamic.array.

Syntax
COUNTS (dynamic.array, substring)
CALL -COUNTS (return.array, dynamic.array, substring)

CALL !COUNTS (return.array, dynamic.array, substring)

dynamic.array specifies the dynamic array whose elements are to be searched.

substring is an expression that evaluates to the substring to be counted. substring can be a character
string, a constant, or a variable.

Each character in an element is matched to substring only once. Therefore, when substring is longer
than one character and a match is found, the search continues with the character following the
matched substring. No part of the matched element is recounted toward another match.

If substring does not appear in an element, a 0 value is returned. If substring is an empty string, the
number of characters in the element is returned. If substring is the null value, the COUNTS function
fails and the program terminates with a runtime error message.

If any element in dynamic.array is the null value, null is returned.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

CREATE statement

PICK, IN2, and REALITY flavors

In PICK, IN2, and REALITY flavors, the COUNTS function continues the search with the next character
regardless of whether it is part of the matched string. Use the COUNT.OVLP option of the SOPTIONS
statement to get this behavior in IDEAL and INFORMATION flavor accounts.

Example

ARRAY="A":Q@VM:"AA" :@SM: "AAAAA"
PRINT COUNTS (ARRAY, "A")
PRINT COUNTS (ARRAY, "AA")

This is the program output:

1v2S5
0v1ls2

CREATE statement

Use the CREATE statement after an OPENSEQ statement to create a record in a type 1 or type

19 UniVerse file or to create a UNIX or DOS file. CREATE creates the record or file if the OPENSEQ
statement fails. An OPENSEQ statement for the specified file.variable must be executed before the
CREATE statement to associate the path or record ID of the file to be created with the file.variable. If
file.variable is the null value, the CREATE statement fails and the program terminates with a runtime
error message.

Use the CREATE statement when OPENSEQ cannot find a record or file to open and the next operation
is to be a NOBUF statement, READSEQ statement, or READBLK statement. You need not use the
CREATE statement if the first file operation is a WRITESEQ statement, since WRITESEQ creates the
record or file if it does not exist.

If the record or file is created, the THEN statements are executed, and the ELSE statements are
ignored. If no THEN statements are specified, program execution continues with the next statement.

If the record or file is not created, the ELSE statements are executed; any THEN statements are
ignored.
Syntax

CREATE file.variable {THEN statements [ELSE statements] | ELSE
statements}

File buffering

Normally UniVerse uses buffering for sequential input and output operations. Use the NOBUF
statement after an OPENSEQ statement to turn off buffering and cause all writes to the file to be
performed immediately. For more information about file buffering, see the NOBUF statement.

Example

In the following example, RECORD4 does not yet exist. When OPENSEQ fails to open RECORD4 to the
file variable FILE, the CREATE statement creates RECORD4 in the type 1 file FILE.E and opens it to the
file variable FILE.

OPENSEQ 'FILE.E', 'RECORD4' TO FILE
ELSE CREATE FILE ELSE ABORT
WEOFSEQ FILE

111

Chapter 1: Statements and functions

WRITESEQ 'HELLO, UNIVERSE' TO FILE ELSE STOP

createCertificate function

112

The createCertificate() function generates a certificate. The certificate can either be a self-
signed certificate as a root CA that can then be used later to sign other certificates, or it can be a CA
signed certificate. The generated certificate conforms to X509V3 standard.

Syntax

createCertificate (action, req, signKey, keyPass, CAcert, days,

extensions, certout,

Parameters

signAlg)

The following table describes each parameter of the syntax.

Parameter Description

action 1- Creating a self-signed root certificate (SSL_CERT_SELF_SIGN)
2 - Creating an intermediate CA certificate (SSL_CERT_CA_SIGN)
3 - Creating a server/client certificate (SSL_CERT_LEAF_SIGN)

req A string containing the certificate signing request file name.

signKey A string containing the private key file name.

keyPass A string containing the pass phrase to protect the private key.

CAcert A string containing the CA certificate.

days The number of days the certificate is valid for. The default is 365 days.

extensions A string containing extension specifications.

certOut A string containing the generated certificate file.

signAlg Allows users to specify a signing digest algorithm. The value can

beany digest algorithm supported by OpenSSL. For example, MD5,
SHA1,SHA224, SHA256, SHA384, SHA512 or SHA3 related algorithms.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.

1 Cannot read certificate request file.
2 Cannot read the key file.

3 Cannot read the CA certificate file.
4 Cannot generate the certificate.

As input, a certificate request file must be specified by req. Three actions can be chosen:

= Creating a self-signed root certificate

= Creating an intermediate CA certificate

= Creating a server/client certificate

createCertRequest function

For self-signed root certificates, a key file must be specified by signKey. For the other two actions, a
CA certificate file must be specified by CAcert, along with the CA private key specified by signKey. The
output certificate file is specified by certOut. The format for these files should all be in PEM format.

The difference between intermediate CA certificates and server/client certificates is that the
intermediate CA certificate can be used to sign other certificates, while a server/client certificate
cannot be used to sign other certificates.

The days parameter specifies the number of days the generated certificate is valid. The certificate is
valid starting from the current date until the number of days specified expires. If an invalid days value
is provided (0 or negative) the default value of 365 (one year) will be used.

Note: This function is provided mainly for the purpose of enabling application development and
testing. As such, the certificate generated contains only a minimum amount of information and
does not allow all permissible extensions specified by the X509 standard that are supported by
many other vendors. You can use XAdmin. It is recommended that you implement a complete PKI
solution partnered with a reputed PKI solution vendor.

createCertRequest function

The createCertRequest() function generates a PKCS #10 certificate request from a private key in
PKCS #8 form and a set of user specified data. The request can be sent to a CA or used as a parameter
to createCertificate()toobtain an X.509 public key certificate.

Syntax

createCertRequest (key, inFormat, keyLoc, algorithm, digest, passPhrase,
subjectbData, outFile, outFormat)

The private key and its format, type, algorithm, and pass phrase are specified the same.

The certificate request will typically contain the information described in the following table.

Parameters

The following table describes each parameter of the syntax.

Parameter Description
key A string containing the key or name of the file storing the key.
inFormat The key format.

1- PEM (SSL_FMT_PEM)
2 - DER (SSL_FMT_DER)

keyLoc 1- Put the key into string privKey/pubKey (SSL_LOC_STRING).
2 - Put the key into a file (SSL_LOC_FILE).
algorithm Flag

1- RSA key (SSL_KEY_RSA)
2- DSA key (SSL_KEY_DSA)

113

Chapter 1: Statements and functions

Parameter Description
digest 1-MD5 (SSL_DIGEST_MD5)

2 - SHA1 (SSL_DIGEST_SHAL)
3-SHA224 (SSL_DIGEST_SHA224

()
4 - SHA256 (SSL_DIGEST_SHA256)
()
(

5-SHA384 (SSL_DIGEST_SHA384

6 - SHA512 (SSL_DIGEST_SHA512)

7 - SHA512-224 (SSL_DIGEST_SHA512_224)
8 - SHA512-256 (SSL_DIGEST_SHA512_256)
9 - SHA3-224 (SSL_DIGEST_SHA3_224)

10 - SHA3-256 (SSL_DIGEST_SHA3_256)

11 - SHA3-384 (SSL_DIGEST_SHA3_384)

12 - SHA3-512 (SSL_DIGEST_SHA3_512)

passPhrase A string storing the passPhrase to protect the private key.

subjectData The requester’s identification information.

outFile A string containing the path name of the file where the certificate
request is stored. By convention, this file should have a . reqg as its
extension.

outFormat The generated certificate format.

1- PEM (SSL_FMT_PEM)
2 - DER (SSL_FMT_DER)

Return code status

The following table describes the status of each return code.

Return code Status

Success.

Private key file cannot be opened.

Unrecognized key or certificate format.

Unrecognized key type.

Unrecognized encryption algorithm.

Unrecognized key (corrupted key or algorithm mismatch).

Invalid pass phrase.

Invalid subject data (illegal format or unrecognized attribute, and so forth).

Invalid digest algorithm.

|| N[O W|N|H]|O

Output file cannot be created.

Y]
(o]

Cert request cannot be generated.

The request can be sent to a CA or used as a parameterto createCertificate() to obtain an X.509
public key certificate.

The private key and its format, type, algorithm and pass phrase are specified the same.

The certificate signing request typically contains the information described in the following table.

114

createRequest function

Item Description
Version Defaults to 0.
Subject The certificate holder’s identification data. This includes country,

state/province, locality (city), organization, unit, common name, email
address, and so on.

Public key The key’s algorithm (RSA or DSA) and value.

Signature The requester’s signature, (signed by the private key).

The subject data must be provided by the requester through the dynamic array, subjectData. It
contains @FM separated attributes in the form of “attri=value”.

The commonly used subjectData attributes are described in the following table.

Item Description Example

C Country C=US

ST State ST=Colorado

L Locality L=Denver

0] Organization O=MyCompany

ou Organization Unit OU=Sales

CN Common Name CN=service@mycompany.com
Email Email Address Email=john.doe@mycompany.com

Be aware that since the purpose of a certificate is to associate the certificate’s bearer with his or

her identity, in order for the outside party to verify the identity of the certificate’s holder, some
recognizable characteristics should be built between the holder and verifier. For example, itis a
general practice that a server’s certificate uses its DNS name (such as myServer.com) as its common
name (CN).

Digest specifies what algorithm is going to be used to generate a Message Authentication Code (MAC)
which will then be signed with the provided private key as a digital signature as part of the request.
Currently only two algorithms, MD5 and SHAL, are supported. SHA1 is recommended.

Note: For a DSA request, SHA1 will always be used.

For more information on certificates, see the references for X.509 and PKCS #10, and PKCS # 12.

createRequest function

The createRequest function creates an HTTP request and returns a handle to the request.

Syntax

createRequest (URL, http method, request handle)

URL is a string containing the URL for a resource on a web server. An accepted URL must follow

the specified syntax defined in RFC 1738. The general format is: http://<host>:<port>/<path>?
<searchpart>. The host can be either a name string or IP address. The port is the port number to
connect to, which usually defaults to 80 and is often omitted, along with the preceding colon. The
path tells the web server which file you want, and, if omitted, means “home page” for the system. The
searchpart can be used to send additional information to a web server.

http_method is a string which indicates the method to be performed on the resource. See the table
below for the available (case-sensitive) methods.

115

Chapter 1: Statements and functions

request_handle is a handle to the request object.

The following table describes the available methods for http_method.

Method Description

GET Retrieves whatever information, in the form of an entity, identified by the
Request-URI. If the Request-URI refers to a data-producing process, it is the
produced data which shall be returned as the entity in the response and not
the source text of the process, unless that text happens to be the output of the
process.

POST [:<MIME-type>] For this method, it can also have an optional MIME-type to
indicate the content type of the data the request intends to send. If no MIME-
type is given, the default content type will be “application/x-www-form-
urlencoded.” Currently, only “multipart/form-data” is internally supported, as
described in function addRequestParameter() and submitRequest(), although
other “multipart/*” data can also be sent if the user can assemble it on his/
her own. (The multipart/form-data format itself is thoroughly described in RFC
2388).

HEAD The HEAD method is identical to GET except that the server MUST NOT return

a message-body in the response. The metainformation contained in the HTTP
headers in response to a HEAD request SHOULD be identical to the information
sent in response to a GET request. This method can be used for obtaining
metainformation about the entity implied by the request without transferring
the entity-body itself. This method is often used for testing hypertext links for
validity, accessibility, and recent modification.

OPTIONS The OPTIONS method represents a request for information about the
communication options available on the request/response chain identified by
the Request-URI. This method allows the client to determine the options and/or
requirements associated with a resource, or the capabilities of a server, without
implying a resource action or initiating a resource retrieval. HTTP 1.1 and later.

DELETE The DELETE method requests that the origin server delete the resource
identified by the Request-URI. HTTP 1.1 and later.

TRACE The TRACE method is used to invoke a remote, application-layer loop- back of
the request message. HTTP 1.1 and later.

PUT The PUT method requests that the enclosed entity be stored under the supplied
Request-URI. HTTP 1.1 and later but not supported.

CONNECT /* HTTP/1.1 and later but not supported */

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.

1 Invalid URL (Syntactically).

2 Invalid method (For HTTP 1.0, only GET/POST/HEAD)

createSecureRequest function

The createSecureRequest function behaves exactly the same as the createRequest()
function, except for the fourth parameter, a handle to a security context, which is used to associate the

116

createSecureRequest function

security context with the request. If the URL does not start with “https” then the parameter is ignored.
If the URL starts with “https” but an invalid context handle or no handle is provided, the function will
abort and return with an error status.

Syntax

createSecureRequest (URL, http method, request handle, security context)

Parameters

The following table describes each parameter of the syntax.

Parameter

Description

URL

A string containing the URL for a resource on a web server. An accepted URL
must follow the specified syntax defined in RFC 2818. The general format is:
https://<host>:<port>/<path>?<searchpart>.

The host can be either a name string or IP address. The port is the port number
to connect to, which usually defaults to 443 and is often omitted, along with
the preceding colon. The path tells the web server which file you want, and, if
omitted, means “home page” for the system. The searchpart can be used to
send additional information to a web server.

http_method

A string which indicates the method to be performed on the resource. See the
table below for the available (case-sensitive) methods.

request_handle

A handle to the request object.

securityContext

A handle to the security context.

The following table describes the available methods for http_method.

Method

Description

GET

Retrieves whatever information, in the form of an entity, identified by the
Request-URI. If the Request-URI refers to a data-producing process, it is the
produced data which shall be returned as the entity in the response and not
the source text of the process, unless that text happens to be the output of the
process.

POST

[:<MIME-type>] For this method, it can also have an optional MIME-type to
indicate the content type of the data the request intends to send. If no MIME-
type is given, the default content type will be “application/x-www-form-
urlencoded”. Currently, only “multipart/form-data” is internally supported, as
described in function addRequestParameter() and submitRequest(), although
other “multipart/* data can also be sent if the user can assemble it on his/her
own. (The multipart/form-data format itself is thoroughly described in RFC
2388).

HEAD

The HEAD method is identical to GET except that the server MUST NOT return

a message-body in the response. The metainformation contained in the HTTP
headers in response to a HEAD request SHOULD be identical to the information
sent in response to a GET request. This method can be used for obtaining
metainformation about the entity implied by the request without transferring
the entity-body itself. This method is often used for testing hypertext links for
validity, accessibility, and recent modification.

117

Chapter 1: Statements and functions

Method Description

OPTIONS The OPTIONS method represents a request for information about the
communication options available on the request/response chain identified by
the Request-URI. This method allows the client to determine the options and/or
requirements associated with a resource, or the capabilities of a server, without
implying a resource action or initiating a resource retrieval. HTTP 1.1 and later.

DELETE The DELETE method requests that the origin server delete the resource
identified by the Request-URI. HTTP 1.1 and later.

TRACE The TRACE method is used to invoke a remote, application-layer loop- back of
the request message. HTTP 1.1 and later.

PUT The PUT method requests that the enclosed entity be stored under the supplied
Request-URI. HTTP 1.1 and later but not supported.

CONNECT /*HTTP/1.1 and later but not supported */

Note: Prior to UniVerse 11.3.2, the colon (:) characterin a BASIC Cal1HTTP request would be
encoded to '%3A". This could cause failures when connecting to certain sites. The default behavior
now is to not encode the colon character.If there is a requirement to encode the colon character,
the environment variable COLON_ENCODES can be set.

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.

1 Invalid URL (Syntactically).

2 Invalid method (For HTTP 1.0, only GET/POST/HEAD)

Note: If URL does include a searchpart, it must be in its encoded format (space is converted

into +, and other non-alphanumeric characters are converted into %HH format. See
addRequestParameter() for more details). However, host and path are allowed to have these
“unsafe” characters. UniVerse BASIC will encode them before communicating with the web server.

createSecurityContext function

The createSecurityContext() function creates a security context and returns a handle to the
context.

Syntax

createSecurityContext (context, “protocol version:[rule],...”)

A security context is a data structure that holds all aspects of security characteristics that the
application intends to associate with a secured connection. Specifically, the following information can
be held for each context:

= Protocol version
= Sender’s certificate to be sent to the peer
= Sender’s private key for signature and key exchange

= Issuer’s certificate or certificate chain to be used to verify incoming certificate

118

createSecurityContext function

= Certificate verification depth, strength and other rules
= Certificate Revocation List
= Flagto perform client authentication (useful for server socket only)

= Context ID and time stamp

For any given connection, not all of the information is required.

Aversion (SSL version 2 or 3 or TLS version 1) can be associated with a security context. It specifies
what protocol or protocols are allowed for an SSL connection using the security context record. The
version string is a list of version specifications separated by commas. Each version specification
contains a protocol version and an optional rule, separated by a colon.

Currently there are six supported protocol versions: SSLv2, SSLv3, TLSv1, TLSv1.1, TLSv1.2 and
TLSv1.3, listed in order of security strength. For all practical purposes, SSLv2 should never be used. To
comply with the latest regulations, only TLSv.1.2 and TLSv.1.3 should be used.

If the version contains only one protocol version without a rule, it means the minimal protocol
allowed. For example, createSecurityContext(myctx, "TLSv1”) means that the allowed
protocols are TLSv1, TLSv1.1, TLSv1.2 and TLSv1.3. If no version is provided (for example, a null string
is specified), the default version will be SSLv3, TLSv1, TLSv1.1, TLSv1.2 and TLSv1.3.

Rule example 1

In this example, SSLv3, TLSv1.1 and TLSv1.2 are allowed:

createSecurityContext (myctx, "SSLv3:min,TLSv1l:no,TLSv1.2:max")

Rule example 2

In this example, only TLSv1.1 is allowed:

createSecurityContext (myctx, "TLSvl.l:only")

Note that the actual protocols allowed during an SSL session are determined at runtime based on the
versions specified by the createSecurityContext() function and the SSL_PROTOCOLS value
defined in the uvconfig (UniVerse) orudtconfig (UniData) file. Only protocol strings that are
specified by both the Basic APl and the configuration files are considered.

For example, if the SSL_PROTOCOLS parameter contains “TLSv1.1,TLSv1.2”, the actual protocols
allowed during negotiation are TLSv1.1 and TLSv1.2, if the SCR created in rule examplel (above) is
used.

In rule example 2 (above), the actual protocol allowed is “TLSv1.1”.

For secure socket connections and socket APIs, openSecureSocket() or
initSecureServerSocket() must be called to associate a security context with a connection by a
client or a server, respectively.

For secure HTTP connection (https), you must supply a valid context handle with the
createSecureRequest() function.

All aspects of a security context can be changed by the APIs described in the following table.

Parameters
Parameter Description
context The security context handle.

119

Chapter 1: Statements and functions

Parameter Description

protocol version A string with the following values:
SSLv2
SSLv3
TLSv1

TLSv1.1 (UniVerse 11.2.5 or later and UniData 8.1 or later)
TLSv1.2 (UniVerse 11.2.5 or later and UniData 8.1 or later)
TLSv1.3 (UniVerse 11.3.2 or later and UniData 8.2 or later)

rule Defines the minimum and maximum protocol value. Available rule
options are:

Min - The minimum version, from the specified version to the highest
version.

Max - The maximum version, from the lowest version to the specified
version.

No - Do not use the specified version.

Only - Use only the specified version.

Return code status

Return code Status

0 Success.

1 Security context could not be created.
2 Invalid version.

CRT statement

Use the CRT statement to print data on the screen, regardless of whether a PRINTER ON statement has
been executed. The syntax for print.list is the same as for a PRINT statement.

Syntax

CRT [print.list]

print.list can contain any BASIC expression. The elements of the list can be numeric or character
strings, variables, constants, or literal strings; the null value, however, cannot be output. The list can
consist of a single expression or a series of expressions separated by commas (,) or colons (:) for
output formatting. If no print.list is designated, a blank line is output.

Expressions separated by commas are printed at preset tab positions. You can use multiple commas
together to cause multiple tabulation between expressions.

Expressions separated by colons are concatenated. That is, the expression following the colon is
printed immediately after the expression preceding the colon. To print a list without a LINEFEED and
RETURN, end the print.list with a colon (:).

The CRT statement works similarly to the DISPLAY statement, on page 137.

120

DATA statement

If NLS is enabled, the CRT statement uses the terminal map in order to print. For more information
about maps and devices, see the NLS Guide.

Example

CRT "This can be used to print something on the"
CRT "terminal while"
CRT "the PRINTER ON statement is in effect."

The program output on the terminal is:

This can be used to print something on the
terminal while
the PRINTER ON statement is in effect.

DATA statement

Use the DATA statement to place values in an input stack. These values can be used as responses to
INPUT statements executed later in the program or in a subroutine (see the INPUT statement). The
values can also serve as responses to UniVerse commands that request input.

Syntax

DATA expression [,expression ..]

Expressions used in DATA statements can be numeric or character string data. The null value cannot
be stored in the input stack. If expression evaluates to null, the DATA statement fails and the program
terminates with a runtime error message.

Put a comma at the end of each line of a DATA statement to indicate that more data expressions
follow on the next line.

The order in which expressions are specified in the DATA statement is the order in which the values
are accessed by subsequent INPUT statements: first-in, first-out. When all DATA values have been
exhausted, the INPUT statement prompts the user for a response at the terminal.

The DATA statement must be executed before an INPUT statement that is to use expression for input.
You can store up to 512 characters in a data stack.

You can list the current data in the stack from your program by accessing the @DATA.PENDING
variable with the statement:

PRINT @DATA.PENDING

Example

In the following example, the INPUT NBR statement uses the first value placed in the input stack by
the DATA statement, 33, as the value of NBR. The INPUT DESCR statement uses the second value, 50,
as the value of DESCR. The INPUT PRICE statement uses the third value, 21, as the value of PRICE.

X=33; Y=50; Z=21
DATA X,Y,Z

X=Y+7

*

INPUT NBR

INPUT DESCR

INPUT PRICE

121

Chapter 1: Statements and functions

INPUT QTY
PRINT NBR, DESCR, PRICE,QTY

This is the program output:

2?33
250
221
?2
33 50 21 2

The value of NBR is the value of X when the DATA statement is executed, not the current value of X
(namely, Y+Z). The INPUT QTY statement has no corresponding value in the input stack, so it prompts
the user for input.

DATE function

Use the DATE function to return the numeric value of the internal system date. Although the DATE
function takes no arguments, parentheses are required to identify it as a function.

Syntax

DATE ()

The internal format for the date is based on a reference date of December 31, 1967, which is day 0. All

dates thereafter are positive numbers representing the number of days elapsed since day 0. All dates
before day 0 are negative numbers representing the number of days before day 0. For example:

Date Internal representation
December 10, 1967 -21

November 15, 1967 -46

February 15,1968 46

January 1, 1985 6575

Example

PRINT DATE ()
PRINT OCONV (DATE (),"D2/")

This is the program output:

9116
12/15/92

DATETIMEL function

Use the DATETIMEL function to return the local date and time in microseconds in a human readable
format. Note that @TZ will be used to derive the local time and date from the UTC datetime value.

Note: This function is supported on Linux and Solaris platforms only.

122

DATETIMEZ function

Syntax

DATETIMEL ()

Example
PRINT DATETIMEL ()
This is the program output:

2019-11-20 01:55:10.666919

DATETIMEZ function

Use the DATETIMEZ function to return the UTC date and time in microseconds in a human readable
format.

Note: This function is supported on Linux and Solaris platforms only.

Syntax

DATETIMEZ ()

Example
PRINT DATETIMEZ ()
This is the program output:

2019-11-20 08:55:10.666927

DBTOXML function

To create an XML document from the UniVerse database using UniVerse BASIC, use the DBTOXML
function.

Syntax

DBTOXML (xml document, doc location, uZxmap file, uZxmap location,
condition, status)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xml_document The name of the XML document to create.

123

Chapter 1: Statements and functions

Parameter Description

doc_flag Aflag defining the type of xml_document. Valid values are:
* XML.FROM.DOM - xml_documentis a DOM handle.
= XML.FROM.FILE - xm[_document is a file name.

= XML.FROM.STRING - xml_document is a string located within the UniVerse
BASIC program..

u2xmap_file The name of the U2XMAP file to use to produce the XML document.

u2xmap_location | Aflagindicating if the mapping file is the U2XMAP file itself or a string located
within the UniVerse BASIC program. Valid values are:

= XMAP.FROM.FILE - the mapping rules are contained in a U2XMAP file.

= XMAP.FROM.STRING - u2xmapping_rules is the name of the variable
containing the mapping rules.

condition The conditions to use when selecting data for the XML document.
Status The return code.
Example

The following example illustrates the use of DBTOXML:

*DBTOXML ("myXM1File", XML.FROM.FILE, "myMapFile",XML.FROM.FILE, STATUS)

DCOUNT function

124

Use the DCOUNT function to return the number of delimited fields in a data string.

Syntax

DCOUNT (string, delimiter)

string is an expression that evaluates to the data string to be searched.

delimiter is an expression that evaluates to the delimiter separating the fields to be counted. delimiter
can be a character string of 0, 1, or more characters.

DCOUNT differs from the COUNT function in that it returns the number of values separated by
delimiters rather than the number of occurrences of a character string. Two consecutive delimiters in
string are counted as one field. If delimiter evaluates to an empty string, a count of 1 plus the number
of characters in the string is returned. If string evaluates to an empty string, 0 is returned.

If string evaluates to the null value, null is returned. If delimiter evaluates to the null value, the
DCOUNT function fails and the program terminates with a run-time error message.

PICK, IN2, and REALITY flavors

In PICK, IN2, and REALITY flavors, the DCOUNT function continues the search with the next character
regardless of whether it is part of the matched delimiter string. Use the COUNT.OVLP option of the
SOPTIONS statement to get this behavior in IDEAL and INFORMATION flavor accounts.

Example

REC="88.9.B.7"
Q=DCOUNT (REC, '.")
PRINT "Q= ",Q

DEACTIVATEKEY statement

REC=34:QVM:55:@QVM:88:@VM: "FF":@VM: 99: @VM: "PP"
R=DCOUNT (REC, QVM)
PRINT "R= ",R

This is the program output:

o= 4
R= 6

DEACTIVATEKEY statement

Use the DEACTIVATEKEY command to deactivate one or more encryption keys. This command is
useful to deactivate keys to make your system more secure.

Syntax

DEACTIVATEKEY <key.id>, <password> [ON <hostname>]

Parameters

The following table describes each parameter of the syntax.

Parameter Description

key.id The key ID to deactivate.

password The password corresponding to key.id.

ON hostname The name of the remote host on which you want to deactivate the encryption
key.

Note: You can deactivate only keys with password protection with this command. Keys that do not
have password protection are automatically activated and cannot be deactivated.

Use the STATUS function after an DEACTIVATEKEY statement is executed to determine the result of
the operation, as follows:

Value Description

0 Operation successful.

1 Key is already activated. This applies to a single key, not a wallet operation.
2 Operation failed. This applies to a single key, not a wallet operation.

3 Invalid key or wallet ID or password.

4 No access to wallet.

5 Invalid key ID or password in a wallet.

6 No access to one of the keys in the wallet.

9 Other error.

DEBUG statement

Use the DEBUG statement to invoke RAID, the interactive UniVerse BASIC debugger. The DEBUG
statement takes no arguments. When this statement is encountered, program execution stops and the
double colon (::) prompt appears, waiting for a RATD command. The following table summarizes the

RAID commands.

125

Chapter 1: Statements and functions

Syntax
DEBUG

Command Action

line Displays the specified line of the source code.

[[string] Searches the source code for string.

B Set a RAID breakpoint.

C Continue program execution.

D Delete a RAID breakpoint.

G Go to a specified line or address and continue program execution.
H Display statistics for the program.

I Display and execute the next object code instruction.

L Print the next line to be executed.

M Set watchpoints.

Q Quit RAID.

R Run the program.

S Step through the UniVerse BASIC source code.

T Display the call stack trace.

v Enter verbose mode for the M command.

v* Print the compiler version that generated the object code.
W Display the current window.

X Display the current object code instruction and address.
X* Display local run machine registers and variables.

Z Display the next 10 lines of source code.

$ Turn on instruction counting.

Turn on program timing.

+ Increment the current line or address.

- Decrement the current line or address.

Display the last object code instruction executed.

variable/ Print the value of variable.

variable!string Change the value of variable to string.

DEFFUN statement

Use the DEFFUN statement to define a user-written function. You must declare a user-defined function
before you can use it in a program. The DEFFUN statement provides the compiler with information
such as the function name and the number and type of arguments. You can define a user-written
function only once in a program. A subsequent DEFFUN statement for an already defined user-written
function causes a fatal error.

Syntax

DEFFUN function [([MAT] argument [, [MAT] argument ..])]
[CALLING call.ID]

126

DEL statement

function is the name of the user-written function.

arguments supply up to 254 arguments in the DEFFUN statement. To pass an array, you must precede
the array name with the keyword MAT. An extra argument is hidden so that the user-defined function
can use it to return a value. An extra argument is retained by the user-written function so that a value
is returned by a RETURN (value) statement (for more information see the RETURN (value) statement,
on page 335). If the RETURN (value) statement specifies no value, an empty string is returned. The
extra argument is reported by the MAP and MAKE . MAPE . FILE commands.

call.ID is an expression that evaluates to the name by which the function is called if it is not the same
as the function name. It can be a quoted string (the call ID itself) or a variable that evaluates to the call
ID. If you do not use the CALLING clause, the user-defined function is presumed to be defined in the
VOC file and cataloged without any prefix.

Examples

The following example defines a user-written function called MYFUNC with the arguments or formal
parameters A, B, and C:

FUNCTION MYFUNC (A, B, C)
Z = ...

RETURN (Z)

END

The next example declares the function MYFUNC. It uses the function with the statement T = MYFUNC
(X, Y, Z). The actual parameters held in X, Y, and Z are referenced by the formal parameters A, B, and C,
so the value assigned to T can be calculated.

DEFFUN MYFUNC(X, Y, Z)
T = MYFUNC(X, Y, Z)
END

DEL statement

Use the DEL statement to delete a field, value, or subvalue from a dynamic array. The DEL statement
works similarly to the DELETE function.

Syntax

DEL dynamic.array < field# [,value# [,subvalue#]] >

dynamic.array is an expression that evaluates to a dynamic array. If dynamic.array evaluates to the
null value, null is returned.

field# is an expression that evaluates to the field in dynamic.array. value#is an expression that
evaluates to the value in the field. subvalue# is an expression that evaluates to the subvalue in

the value. These expressions are called delimiter expressions. The numeric values of the delimiter
expressions specify which field, value, or subvalue to delete. The entire position is deleted, including
its delimiter characters.

value# and subvalue# are optional. If they are equal to 0, the entire field is deleted. If subvalue# is
equal to 0 and value# and field# are greater than 0, the specified value in the specified field is deleted.
If all three delimiter expressions are greater than 0, only the specified subvalue is deleted.

If any delimiter expression is the null value, the DEL statement fails and the program terminates with a
run-time error message.

127

Chapter 1: Statements and functions

If a higher-level delimiter expression has a value of 0 when a lower-level delimiter expression is greater
than 0, the 0 delimiter is treated as if it were equal to 1. The delimiter expressions are, from highest to
lowest: field, value, and subvalue.

If the DEL statement references a subelement of a higher element whose value is the null value, the
dynamic array is unchanged. Similarly, if all delimiter expressions are 0, the original string is returned.

Examples

In the following examples a field mark is shown by F, a value mark is shown by V, and a subvalue mark
is shown by S.

The first example deletes field 1 and sets Q to VAL1VSUBV1SSUBV2FFSUBV3SSUBV4:

R="FLD1":Q@FM:"VAL1" :@VM:"SUBV1":@SM:"SUBV2" :@FM:@FM: "SUBV3" :@SM: "SUBV4"
0=R

DEL 0Q<1,0,0>

PRINT Q

The next example deletes the first subvalue in field 4 and sets the value of Q to
FLD1FVAL1VSUBV1SSUBV2FFSUBV4:

0=R
DEL Q<4,1,1>

The next example deletes the second value in field 2 and sets the value of Q to
FLD1FVAL1FFSUBV3SSUBV4:

0=R
DEL Q<2,2,0>

The next example deletes field 3 entirely and sets the value of Q to
FLD1FVAL1VSUBV1SSUBV2FSUBV3SSURV4:

0=R
DEL Q<3,0,0>

The next example deletes the second subvalue in field 4 and sets the value of Q to
FLD1FVAL1VSUBV1SSUBV2FFSUBV3:

0=R
DEL Q<4,1,2>

DELETE function

128

Use the DELETE function to erase the data contents of a specified field, value, or subvalue and its
corresponding delimiter from a dynamic array. The DELETE function returns the contents of the
dynamic array with the specified data removed without changing the actual value of the dynamic
array.

Syntax

DELETE (dynamic.array, field#[,value#l[,subvalue#] 1)

dynamic.array is an expression that evaluates to the array in which the field, value, or subvalue to be
deleted can be found. If dynamic.array evaluates to the null value, null is returned.

DELETE function

field# is an expression that evaluates to the field in the dynamic array; value# is an expression that
evaluates to the value in the field; subvalue# is an expression that evaluates to the subvalue in the
value. The numeric values of the delimiter expressions specify which field, value, or subvalue to delete.
The entire position is deleted, including its delimiting characters.

value# and subvalue# are optional. If they are equal to 0, the entire field is deleted. If subvalue# is
equal to 0 and value# and field# are greater than 0, the specified value in the specified field is deleted.
If all three delimiter expressions are greater than 0, only the specified subvalue is deleted.

If any delimiter expression is the null value, the DELETE function fails and the program terminates
with a run-time error message.

If a higher-level delimiter expression has a value of 0 when a lower-level delimiter is greater than 0,
the 0 delimiter is treated as if it were equal to 1. The delimiter expressions are, from highest to lowest:
field, value, and subvalue.

If the DELETE function references a subelement of a higher element whose value is the null value, the
dynamic array is unchanged. Similarly, if all delimiter expressions are 0, the original string is returned.

Examples

In the following examples a field mark is shown by F, a value mark is shown by V, and a subvalue mark
is shown by S.

The first example deletes field 1 and sets Q to VAL1VSUBV1SSUBV2FFSUBV3SSUBV4:

R="FLD1":@FM:"VAL1" :@VM:"SUBV1" :@SM:"SUBV2" :@FM:@FM: "SUBV3" :@SM: "SUBV4"
QO=DELETE (R, 1)
PRINT Q

The next example deletes the first subvalue in field 4 and sets the value of Q to
FLD1FVAL1VSUBV1SSUBV2FFSUBV4:

R="FLD1":@FM:"VAL1":@VM:"SUBV1":@SM:"SUBV2" : @FM: @FM: "SUBV3" : @SM: "SUBV4"
Q=DELETE (R, 4,1,1)
PRINT Q

The next example deletes the second value in field 2 and sets the value of Q to
FLD1FVAL1FFSUBV3SSUBV4:

R="FLD1":Q@FM:"VAL1" :@VM:"SUBV1":@SM:"SUBV2" :@FM:@FM: "SUBV3" :@SM: "SUBV4"
QO=DELETE (R,2,2)
PRINT Q

The next example deletes field 3 entirely and sets the value of Q to

FLD1FVAL1VSUBV1SSUBV2FSUBV3SSUBV4:

Q=DELETE (R,3,0,0)
PRINT 0Q

The next example deletes the second subvalue in field 4 and sets the value of Q to
FLD1FVAL1VSUBV1SSUBV2FFSUBV3:

R="FLD1":Q@FM:"VAL1" :@VM:"SUBV1":@SM:"SUBV2" :@FM:@FM: "SUBV3" :@SM: "SUBV4"

QO=DELETE (R,4,1,2)
PRINT Q

129

Chapter 1: Statements and functions

DELETE statements

130

Use the DELETE statements to delete a record from a UniVerse file. If you specify a file variable, the file
must be open when the DELETE statement is encountered.

Syntax

DELETE [file.variable ,] record.ID [ON ERROR statements]
[LOCKED statements]
[THEN statements] [ELSE statements]

DELETEU [file.variable ,] record.ID [ON ERROR statements]
[LOCKED statements]
[THEN statements] [ELSE statements]

file.variable is a file variable from a previous OPEN statement.
record.ID is an expression that evaluates to the record ID of the record to be deleted.

If the file does not exist or is not open, the program terminates and a runtime error results. If you do
not specify a file variable, the most recently opened default file is used (see the OPEN statement for
more information on default files). If you specify both a file variable and a record ID, you must use a
comma to separate them.

If the file is an SQL table, the effective user of the program must have SQL DELETE privilege to delete
records in the file. For information about the effective user of a program, see the AUTHORIZATION
statement, on page 74.

The record is deleted, and any THEN statements are executed. If the deletion fails, the ELSE
statements are executed; any THEN statements are ignored.

If a record is locked, it is not deleted, and an error message is produced. The ELSE statements are not
executed.

If either file.variable or record.ID evaluates to the null value, the DELETE statement fails and the
program terminates with a run-time error message.

The DELETEU statement

Use the DELETEU statement to delete a record without releasing the update record lock set by a
previous READU statement (see the READ statements, on page 309.

The file must have been previously opened with an OPEN statement. If a file variable was specified in
the OPEN statement, it can be used in the DELETEU statement. You must place a comma between the
file variable and the record ID expression. If no file variable is specified in the DELETEU statement, the
statement applies to the default file. See the OPEN statement, on page 283 for a description of the
default file.

The ON ERROR clause

The ON ERROR clause is optional in the DELETE statement. Its syntax is the same as that of the ELSE
clause. The ON ERROR clause lets you specify an alternative for program termination when a fatal
error is encountered during processing of the DELETE statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

= An error message appears.

DELETE statements

= Any uncommitted transactions begun within the current execution environment roll back.
= Thecurrent program terminates.

= Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

= Afileis not open.

= file.variable is the null value.

= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function, on page 388 is the error
number.

The LOCKED clause

The LOCKED clause is optional, but recommended.

The LOCKED clause handles a condition caused by a conflicting lock (set by another user) that
prevents the DELETE statement from processing. The LOCKED clause is executed if one of the
following conflicting locks exists:

= Exclusive file lock

= Intent file lock

= Shared file lock

= Update record lock
= Shared record lock

If the DELETE statement does not include a LOCKED clause, and a conflicting lock exists, the program
pauses until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the terminal number of the
user who owns the conflicting lock.
Releasing the record lock

Arecord lock held by a DELETEU statement can be released explicitly with a RELEASE statement or
implicitly with WRITE statements, WRITEV statement, MATWRITE statements, or DELETE statements.
The record lock is released when you return to the UniVerse prompt.

Examples

OPEN "","MLIST" TO MALIST ELSE STOP
PRINT "FILE BEFORE DELETE STATEMENT:"
EXECUTE "COUNT MLIST"

PRINT

DELETE MALIST, "JONES"

PRINT "FILE AFTER DELETE STATMENT:"
EXECUTE "LIST MLIST"

This is the program output:
FILE BEFORE DELETE STATEMENT:
3 records listed.

FILE AFTER DELETE STATMENT:

131

Chapter 1: Statements and functions

2 records listed.

In the following example, the data portion of the SUBSIDIARIES files is opened to the file variable
SUBS. If the file cannot be opened an appropriate message is printed. The record MADRID is read and
then deleted from the file. An update record lock had been set and is maintained by the DELETEU
statement.

OPEN "","SUBSIDIARIES" TO SUBS

READU REC FROM SUBS, 'MADRID'

ELSE STOP 'Sorry, cannot open Subsidiaries file'
DELETEU SUBS, "MADRID”

ELSE STOP 'Sorry, cannot delete Subsidiaries file'

DELETELIST statement

Use the DELETELIST statement to delete a select list saved in the &SAVEDLISTS& file.

Syntax

DELETELIST listname

listname can evaluate to the form:
record.ID

or:

record.IDaccount.name

record.ID is the name of a select list in the &SAVEDLISTS& file. If you specify account.name, the
&SAVEDLISTS& file of the specified account is used instead of the local &SAVEDLISTS& file.

If listname evaluates to the null value, the DELETELIST statement fails and the program terminates
with a run-time error message.

Use the DELETEU statement to maintain an update record lock while performing DELETE statements.

DESCRINFO function

132

The DESCRINFO function returns requested information (key) about a variable.

Set the key value to 1 to obtain information about the type of variable. Set the key value to 2 to obtain
the reuse flag of the variable. Any other value is invalid, and will result in the program exiting.

Syntax

DESCRINFO (key, variable)

If the key value is 1, the return type indicates the following type of variable:

Return value Type

0 unassigned variable
1 integer

2 numeric

3 string

DIGEST function

Return value Type

file

array

subroutine

sequential file

GCl descriptor

O (N[O O0| >

NULL value

10 ODBC descriptor

Example

The following example illustrates the DESCRINFO function.

A=1
B="DENVER"
C=10.7

VALl = DESCRINFO(1,A)
PRINT VALL

VAL2 = DESCRINFO (1,B)
PRINT VAL2

VAL3 = DESCRINFO(1,C)
PRINT VAL3

This program returns the following results:

1
3
2

DIGEST function

The DIGEST() function generates a message digest of supplied data. A message digest is the result of
a one-way hash function (digest algorithm) performed on the message. Message digest has the unique
properties that a slight change in the input will result in a significant difference in the resulting digest.
Therefore, the probability of two different messages resulting in the same digest (collision) is very
unlikely. It is also virtually impossible to reverse to the original message from a digest. Message digest
is widely used for digital signatures and other purposes.

The desired digest algorithm is specified in algorithm. Data and its location are specified by data and
dataloc, respectively. The arrived digest will be put into a dynamic array in result. Since digest is short
and has a fixed length, it is always put into a string and no file option is provided. The result can be in
either binary or hex format.

Note: DIGEST data is arbitrary binary data and may contain UniVerse delimiters. If you do not
want the data to contain delimiters, use the ENCODE() function to perform BASE64 encoding.

Syntax

DIGEST (algorithm, data, dataLoc, result)

133

Chapter 1: Statements and functions

Parameters

The following table describes each parameter of the syntax.

Parameter Description
algorithm A string containing the digest algorithm name (uppercase or lowercase).
UniVerse 11.3.2+ supports the following algorithms:
= MD4
= MD5
= SHA
= SHAL
= SHA224
= SHA256
= SHA384
= SHA512
= SHA512-224
= SHA512-226
= SHA3-224
* SHA3-256
* SHA3-384
* SHA3-512
Versions prior to 11.2.4 support MD2, MDC2, and RMD160. These
algorithms are no longer supported in later versions.
data Data or the name of the file containing the data to be digested.
dataloc 1-Datain astring (SSL_LOC_STRING)
2-Datain afile (SSL_LOC_FILE)
result A string to store the digest result.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.

1 Unsupported digest algorithm.

2 The data file cannot be read.

3 Message digest cannot be obtained.
4 Invalid parameters.

DIMENSION statement

Use the DIMENSION statement to define the dimensions of an array variable before referencing the
array in the program. For a matrix (a two-dimensional array), use the DIMENSION statement to set the
maximum number of rows and columns available for the elements of the array. For a vector (a one-
dimensional array), use the DIMENSION statement to set the maximum value of the subscript (the
maximum elements) in the array.

134

DIMENSION statement

Syntax

DIM[ENSION] matrix (rows, columns) [, matrix (rows, columns) ..]

DIM[ENSION] vector (subscript) [, vector (subscript) ..]

matrix and vector can be any valid variable name. The maximum dimension can be any valid numeric
expression. When specifying the two dimensions of a matrix, you must use a comma to separate the
row and column expressions. These expressions are called indices.

You can use a single DIMENSION statement to define multiple arrays. If you define more than one array
with a DIMENSION statement, you must use commas to separate the array definitions.

The DIMENSION statement declares only the name and size of the array. It does not assign values
to the elements of the array. Assignment of values to the elements is done with the MAT statement,
MATPARSE statement, MATREAD statements, MATREADU statement, and assignment statements.

The DIMENSION statement in an IDEAL or INFORMATION flavor account is executed at run time. The
advantage of the way UniVerse handles this statement is that the amount of memory allocated is not
determined until the DIM statement is executed. This means that arrays can be redimensioned at run
time.

When redimensioning an array, you can change the maximum number of elements, rows, columns,
or any combination thereof. You can even change the dimensionality of an array (that is, from a one-
dimensional to a two-dimensional array or vice versa).

The values of the array elements are affected by redimensioning as follows:
= Common elements (those with the same indices) are preserved.
= New elements (those that were not indexed in the original array) are initialized as unassigned.

= Abandoned elements (those that can no longer be referenced in the altered array) are lost, and the
memory space is returned to the operating system.

The DIMENSION statement fails if there is not enough memory available for the array. When this
happens, the INMAT function is set to a value of 1.

An array variable that is passed to a subroutine in its entirety as an argument in a CALL statement
cannot be redimensioned in the subroutine. Each array in a subroutine must be dimensioned once.
The dimensions declared in the subroutine DIMENSION statement are ignored, however, when an
array is passed to the subroutine as an argument (for more information, see the CALL statement, on

page 84).

PICK, IN2, and REALITY flavors

In PICK, IN2, and REALITY flavor accounts, arrays are created at compile time, not run time. Arrays
are not redimensionable, and they do not have a zero element. To get the same characteristics in an
INFORMATION or IDEAL flavor account, use the STATIC.DIM option of the SOPTIONS statement.

Examples

DIM ARRAY (2,2)
ARRAY (1,1)="KK"
ARRAY (1,2)="GG"
ARRAY (2,1)="MM"
ARRAY (2,2)="NN"

In the next example warning messages are printed for the unassigned elements in the matrix. The
elements are assigned empty strings as their values.

DIM ARRAY (2,3)

135

Chapter 1: Statements and functions

*

PRINT

FOR X=1 TO 2

FOR Y=1 TO 3

PRINT "ARRAY (":X:",":Y:")", ARRAY (X,Y)
NEXT Y

NEXT X

2)

In the next example the common elements are preserved. Those elements that cannot be referenced
in the new matrix (S(3,1), S(3,2)) are lost.

DIM S(2,2)

*

PRINT

FOR X=1 TO 2

FOR Y=1 TO 2

PRINT "S(":X:",":¥Y:")", S(X,Y)
NEXT Y

NEXT X

This is the program output:

ARRAY (1,1) KK
ARRAY (1,2) GG
ARRAY (1, 3) Program 'DYNAMIC.DIMENSION':

Line 12, Variable previously undefined, empty string used.

ARRAY (2,1) MM
ARRAY (2, 2) NN
ARRAY (2, 3) Program 'DYNAMIC.DIMENSION':

Line 12, Variable previously undefined, empty string used.

S(1,1)
S(1,2)
S(2,1)
S(2,2)

DSw N

DISABLEDEC statement

Use the DISABLEDEC command to turn off decryption on a field or fields you specify.

Note: You cannot disable encryption on a file with WHOLERECORD encryption.

Syntax

DISABLEDEC <filename> [, <multilevel-filename>], {ALL |<field list>}
[ON ERROR <statements>]

Parameters

The following table describes each parameter of the syntax.

136

DISPLAY statement

Parameter Description

filename The name of the file on which you want to disable decryption.

ALL If you specify ALL, UniVerse will disable decryption on all encrypted fields of this
file.

field_list A comma-separated list of fields for which you want to disable decryption. Do
not enter spaces between the field names.

ON ERROR If you specify ON ERROR statements and an error occurs, UniVerse executes the

statements statements following the ON ERROR clause. Otherwise, UniVerse executes the
next statement.

Use the STATUS function after an DISABLEDEC statement is executed to determine the result of the
operation, as follows:

Value Description

0 Success.

1 Already disabled.

2 General failure.

3 Not an encrypted file.

4 Cannot disable WHOLERECORD encrypted file
5 Not an encrypted field.

6 No disablement information found.

7 Not a valid field in the file.

DISPLAY statement

Use the DISPLAY statement to print data on the screen, regardless of whether a PRINTER ON
statement has been executed. The syntax for print.list is the same as for PRINT statement.

Syntax

DISPLAY [print.list]

The elements of the list can be numeric or character strings, variables, constants, or literal strings;

the null value, however, cannot be output. The list can consist of a single expression or a series of
expressions separated by commas (,) or colons (:) for output formatting. If no print.list is designated, a
blank line is output.

Expressions separated by commas are printed at preset tab positions. You can use multiple commas
together to cause multiple tabulation between expressions.

Expressions separated by colons are concatenated. That is, the expression following the colon is
printed immediately after the expression preceding the colon. To print a list without a LINEFEED and
RETURN, end the print list with a colon (:).

The DISPLAY statement works similarly to the CRT statement, on page 120.

Example

DISPLAY "This can be used to print something on the"
DISPLAY "terminal while"
DISPLAY "the PRINTER ON statement is in effect."

137

Chapter 1: Statements and functions

The program output on the terminal is:

This can be used to print something on the
terminal while
the PRINTER ON statement is in effect.

DIV function

Use the DTV function to calculate the value of the quotient after dividend is divided by divisor.

The dividend and divisor expressions can evaluate to any numeric value. The only exception is that
divisor cannot be 0. If either dividend or divisor evaluates to the null value, null is returned.

Syntax
DIV (dividend, divisor)
Example

X=100; Y=25

Z = DIV (X,Y)

PRINT Z

This is the program output:

4

DIVS function

138

Use the DIVS function to create a dynamic array containing the result of the element-by-element
division of two dynamic arrays.

Syntax
DIVS (arrayl, arrayZ2)
CALL -DIVS (return.array, arrayl, arrayZ2)

CALL !'DIVS (return.array, arrayl, arrayZ2)

Each element of array1 is divided by the corresponding element of array2 with the result being
returned in the corresponding element of a new dynamic array. If elements of arrayl have no
corresponding elements in array2, array?2 is padded with ones and the arrayl elements are returned. If
an element of array2 has no corresponding element in arrayl, 0 is returned. If an element of array2 is
0, a run-time error message is printed and a 0 is returned. If either element of a corresponding pair is
the null value, null is returned.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Example
A=10:@VM:15:@VM:9:QSM: 4
B=2:Q@VM:5:QVM:9:Q@VM:2
PRINT DIVS (A, B)

This is the program output:

DOWNCASE function

5V3V1S4v0

DOWNCASE function

Use the DOWNCASE function to change all uppercase letters in expression to lowercase. If expression
evaluates to the null value, nullis returned.

Syntax

DOWNCASE (expression)

DOWNCASE is equivalent to OCONV ("MCL") .

If NLS is enabled, the DOWNCASE function uses the conventions specified by the Ctype category for
the Lowercase field of the NLS.LC.CTYPE file to change the letters in expression. For more information
about the NLS.LC.CTYPE file, see the NLS Guide.

Example

A="DOWN CASE DOES THIS: "
PRINT A:DOWNCASE (A)

B="Down Case Does This: "
PRINT B:DOWNCASE (B)

This is the program output:

DOWN CASE DOES THIS: down case does this:
Down Case Does This: down case does this:

DOUOTE function

Use the DQUOTE function to enclose an expression in double quotation marks. If expression evaluates
to the null value, null is returned (without quotation marks).

Syntax

DQUOTE (expression)

Example

PRINT DQUOTE (12 + 5) : " IS THE ANSWER."
END

This is the program output:

"1l7" IS THE ANSWER.

DTX function

Use the DTX function to convert a decimal integer to its hexadecimal equivalent.

size indicates the minimum size which the hexadecimal character string should have. This field is
supplemented with zeros if appropriate.

139

Chapter 1: Statements and functions

If number evaluates to the null value, null is returned. If size is the null value, the DTX function fails and
the program terminates with a runtime error message.

Syntax

DTX (number [,size])

Example

X = 25
Y = DTX (X)
PRINT Y
Y = DTX (X,4)
PRINT Y
END

This is the program output:

19
0019

EBCDIC function

Use the EBCDIC function to convert each character of expression from its ASCII representation value
to its EBCDIC representation value. The EBCDIC and ASCIT function perform complementary
operations. Data that is not represented in ASCII code produces undefined results.

If expression evaluates to the null value, the EBCDIC function fails and the program terminates with a
runtime error message.

Syntax

EBCDIC (expression)

Example

X = 'ABC 123"
Y = EBCDIC (X)
PRINT "ASCII", "EBCDIC", " X "
PRINT "-————- (LI S LI
FOR I = 1 TO LEN (X)
PRINT SEQ(X[I,1]) , SEQ(Y[I,11),X[I,1]
NEXT I

This is the program output:

ASCII EBCDIC X
65 193 A
66 194 B
67 195 C
32 64

49 241 1
50 242 2
51 243 3

140

ECHO statement

ECHO statement

Use the ECHO statement to control the display of input characters on the screen.

Syntax
ECHO {ON | OFF | expression}
If ECHO ON is specified, subsequent input characters are displayed, or echoed, on the screen. If ECHO

OFF is specified, subsequent input characters are assigned to the INPUT statement variables but are
not displayed on the screen.

The ability to turn off character display is useful when the keyboard is to be used for cursor movement
or for entering password information. If expression evaluates to true, ECHO is turned ON. If expression
evaluates to false, ECHO is turned OFF. If expression evaluates to the null value, it is treated as false,
and ECHO is turned OFF.

Example

PROMPT ™"
ECHO OFF
PRINT "ENTER YOUR PASSWORD"
INPUT PWORD
ECHO ON

This is the program output:

ENTER YOUR PASSWORD

ENABLEDEC statement

Use the ENABLEDEC command to activate decryption on a file or fields you specify.

Syntax

ENABLEDEC <filename> [, <multilevel-filename>], { ALL |<field 1ist>}
[ON ERROR <statements>]

Parameters

The following table describes each parameter of the syntax.

Parameter Description

filename The name of the file on which you want to enable decryption.

ALL If you specify ALL, UniVerse enables decryption on all encrypted fields of this
file.

field_list A comma-separated list of fields for which you want to enable decryption. Do
not enter spaces between the field names.

ON ERROR If you specify ON ERROR statements and an error occurs, UniVerse executes the

statements statements following the ON ERROR clause. Otherwise, UniVerse executes the
next statement.

Use the STATUS function after an ENABLEDEC statement is executed to determine the result of the
operation, as follows:

141

Chapter 1: Statements and functions

Value Description

Success.

Already enabled/disabled.

DISABLEDEC error.

Not an encrypted file.

Cannot disable WHOLERECORD encrypted file.

Not an encrypted field.

No disablement information found.

N[l b~ WIN|H|O

Not a valid field in the file.

ENCODE function

The ENCODE() function performs data encoding on input data.

The function can perform either encoding or decoding, as specified by action. The data can either be in
the dynamic array, data, or in a file whose name is specified in data, determined by dataLoc.

Syntax

ENCODE (algorithm, action, data, dataLoc, result, resultLoc)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

algorithm A string containing the encode method name. The three valid values are:
= SSL_BASE64 - Base64 encoding of data on one line.
= SSL_BASE64_ONELINE - Base64 encoding of data on one line.

= URLENCODE - Performs URL encoding or decoding on the data passed to
the function according to standard RFC 3986.

action 1-Encode (SSL_ENCODE)

2 - Decode (SSL_DECODE)
data Data or the name of the file containing the data to be encoded or decoded.
dataloc 1-Datainastring (SSL_LOC_STRING)

2 -Datain afile (SSL_LOC_FILE)
result Encoded or decoded data or the name of the file storing the processed data.
resultLoc 1-Resultin astring (SSL_LOC_STRING)

2 - Resultin afile (SSL_LOC_FILE)

Return code status

The following table describes the status of each return code.

Return code Status
0 Success.
1 Unsupported algorithm.

142

ENCRYPT function

Return code Status

2 Invalid parameters (invalid data or result location type, and so forth.).
3 The data cannot be read.

4 The data cannot be encoded or decoded.

Base 64 encoding is designed to represent arbitrary sequences of octets that do not need to be
humanly readable. A 64-character subset of US-ASCII is used, enabling 6-bits to be represented per
printable character. The subset has the important property that it is represented identically in all
versions of ISO646, including US-ASCII, and all characters in the subset are also represented identically
in all versions of EBCDIC. The encoding process represents 24-bit groups of input bits as output strings
of 4 encoded characters.

There are two BASE64 encoding modes, default and one-line. In default mode, the encoded output
stream must be represented in lines of no more than 76 characters each. All line breaks must be
ignored by the decoding process. All other characters not found in the 64-character subset should
trigger a warning by the decoding process. In one-line mode, the data is a continuous stream of the
allowed ASCII characters without any line breaks.

URL encoding performs encoding or decoding on the data passed to the function according to the
RFC 3986 standard. This algorithm changes all characters that need to be encoded to the “percent-
escaped” form, such as changing “=" to “%3D” when encoding the data, then back to ASCII characters
when decoding.

ENCRYPT function

The ENCRYPT() function performs symmetric encryption operations. Various block and stream
symmetric ciphers can be called through this function.

Syntax

ENCRYPT (algorithm, action, data, dataLoc,key, keyLoc, keyAction, salt,
IV, result, resultLoc)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

algorithm A string containing the cipher name.

143

Chapter 1: Statements and functions

Parameter Description

action 1- Encrypt (SSL_ENCRYPT)

2 - Base64 encode after encryption (SSL_ENCRYPT_ENCODE)

3 - Decrypt (SSL_DECRYPT)

4 - Base64 decode before decryption (SSL_DECODE_DECRYPT)

5 - One-line Base64 encode after encryption (SSL_ENCRYPT_ENCODE_A)

6 - One-line Base64 decode before decryption (SSL_DECODE_DECRYPT_A)

11 - NOPAD encryption (SSL_ENCRYPT_NOPAD)

12 - NOPAD Base64 encode after encryption (SSL_ENCRYPT_ ENCODE_NOPAD)
13 - NOPAD Decryption (SSL_DECRYPT_NOPAD)

14- NOPAD Base64 decode before decryption (SSL_DECODE_DECRYPT_NOPAD)

15 - NOPAD one-line Base64 encode after encryption
(SSL_ENCRYPT_ENCODE_A_NOPAD)

16 - NOPAD one-line Base64 decode before decryption
(SSL_DECODE_DECRYPT_A_NOPAD)

data Data or the name of the file containing the data to be processed.
dataloc 1-Datain astring (SSL_LOC_STRING)

2 -Datain afile (SSL_LOC_FILE)
key The actual key (password) or file name containing the key.
keylLoc 1-Keyin astring (SSL_LOC_STRING)

2 - Key in file (SSL_LOC_FILE)

144

ENCRYPT function

Parameter

Description

keyAction

1- Use actual key (SSL_KEY_ACTUAL)
2 - Derive key from pass phrase (SSL_KEY_DERIVE)

3 - Use actual key compatible with OpenSSL (SSL_KEY_ACTUAL_OPENSSL) or
(SSL_KEY_ACTUAL_COMPAT)

4 - Derive key from pass phrase using MD5 algorithm (SSL_KEY_DRIVE_MD5)

5 - Derive key from pass phrase using SHA1 algorithm (SSL_KEY_DERIVE_SHAL)
6 - Derive key from pass phrase using MD2 algorithm (SSL_KEY_DERIVE_MD2)

7 - Unavailable

8 - Derive key from pass phrase using RM0160 algorithm
(SSL_KEY_DERIVE_RMO0160)

9 - Derive key from pass phrasing using SHA algorithm (SSL_KEY_DERIVE_SHA)

10 - Derive key from pass phrasing using SHA224 algorithm
(SSL_KEY_DERIVE_SHA224)

11 - Derive key from pass phrasing using SHA256 algorithm
(SSL_KEY_DERIVE_SHA256)

12 - Derive key from pass phrasing using SHA384 algorithm
(SSL_KEY_DERIVE_SHA384)

13 - Derive key from pass phrasing using SHA512 algorithm
(SSL_KEY_DERIVE_SHA512)

Note: keyAction 1 and 2 can be used to exchange encrypted data between
UniVerse and UniData systems. However, if you want to exchange encrypted
data between UniData or UniVerse and third party products such as OpenSSL-
based programs, Java programs, or Microsoft.Net programs, you should use
keyActions 3-13.

Salt

A string containing the Salt value.

You can specify nosalt in this parameter to perform encryption in nosalt mode.
In this mode, the ENCRYPT() function will not prepend magic data and salt to
encrypted data, or will not check for it in decryption.

Note: If you use the literal string "nosalt" as the salt value, it mimics the -nosalt
option for OpenSSL. It is not meant to exchange encrypted data with other third-
party products, such as Java, .NET, or PHP.

v

A string containing IV.

result

The result buffer or the name of the file storing the result.

resultLoc

1-Resultin astring (SSL_LOC_STRING)
2 - Result in a file (SSL_LOC_FILE)

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.

1 Invalid cipher.

2 Invalid parameters (location/action value is out of range, and so forth).

145

Chapter 1: Statements and functions

146

Return code Status

3 The data cannot be read.

4 The key cannot be derived.

5 Base 64 encoding/decoding error.
6 Encryption/decryption error.

If you specify the KeyAction value as 3 (SSL_KEY_ACTUAL_OPENSSL), the key string and IV string
must be in hexadecimal format with correct length for the algorithm you specify. You can exchange
encrypted data with third-party products.

If you specify the KeyAction value as 2 (SSL_KEY_ACTUAL), a specific salt and algorithm will be used to
derive the actual key and IV. The result cannot be exchanged with third-party products.

Ciphers are specified by algorithm and are not case sensitive. Base64 encoding and decoding can be
specified with the action parameter. If encoding is specified, the encrypted data is Base64 encoded
before being entered into result. If decoding is specified, the data is Base64 decoded before being
encrypted. The data and its location are specified by data and dataLoc, respectively. Key can be
explicitly specified or read from a file, or, alternatively, derived on the fly, specified by keyAction, in
which case the key string is used as a pass phrase to derive the actual key. The encrypted or decrypted
datais put into the dynamic array result, or a file, as specified by resultLoc.

Saltis used to provide more security against certain kinds of cryptanalysis attacks, such as dictionary
attacks. If an empty salt is supplied, an internally generated salt will be used in deriving the key. Salt
is ignored when action is set to decrypt. IV (Initialization Vector) is used to provide additional security
to some block ciphers. It does not need to be secret but should be fresh, meaning different for each
encrypted data. If an actual key is supplied, /Vis generally needed. However if the encryption key is
to be derived from a pass phrase, IV is generated automatically. Both salt and IV must be provided in
hexadecimal format.

You have two ways to supply key and IV to the ENCRYPT() function. You can supply the actual key and
IV, or you can supply a seed (also called a password) and optionally a salt, then let U2 derive the actual
key and IV. When you do the latter, you have multiple options to tell U2 how to derive the key and IV,

some of which will allow you to exchange encrypted data between UniVerse and third-party products.

Note: Some ciphers are more secure than others. Due to the amount of terminology regarding
cryptography in general and SSL in particular, interested readers can refer to the following
publications. Applied Cryptography, by Bruce Schneier

Internet Cryptography, by Richard E. Smith

SSL and TLS: Designing and Building Secure Systems, by Eric Rescorla

The following ciphers are supported. All cipher names are not case sensitive.

Note: Due to export restrictions, all ciphers may not be available for a specific distribution.

56-bit key DES algorithms

Algorithm Description
des-chc DES in CBC mode
des Alias for des-cbc
des-cfb DES in CFB mode
des-ofb DES in OFB mode
des-ecb DES in ECB mode

ENCRYPT function

112-bit key DES algorithms

Algorithm Description

des-ede-cbc Two key triple DES EDE in CBC mode
des-ede Alias for des-ede-cbc

des-ede-cfb Two key triple DES EDE in CFB mode
des-ede-ofb Two key triple DES EDE in OFB mode

128-bit key AES algorithms

Algorithm Description
aes-128-cbc Alias for aes-128
aes-128-ech Alias for aes-128

168-bit key DES algorithms

Algorithm Description

des-ede3-cbc Three key triple DES EDE in CBC mode
des-ede3 Alias for des-ede3-cbc

des3 Alias for des-ede3-cbc

des-ede3-cfb

Three key triple DES EDE in CFB mode

des-ede3-ofb

Three key triple DES EDE in OFB mode

192-bit AES algorithms

Algorithm Description
aes-192-cbc Alias for aes-192
aes-192-ech Alias for aes-192

256-bit AES algorithms

Algorithm Description
aes-256-cbc Alias for aes-256
aes-256-ech Alias for aes-256

RC2 algorithms

Algorithm Description

rc2-cbc 128-bit RC2 in CBC mode
rc2 Alias for rc2-cbc

rc2-cfb 128-bit RC2 in CBC mode
rc2-ecb 128-bit RC2 in ECB mode
rc2-ofb 128-bit RC2 in OFB mode
rc2-64-cbc 64-bit RC2 in CBC mode
rc2-40-cbc 40-bit RC2in CBC mode

147

Chapter 1: Statements and functions

RC4 algorithms

Algorithm Description
rc4 128-bit RC4
rc4-40 40-bit RC4

Blowfish algorithms (variable key size, typically 128 bits)

Algorithm Description

bf BF

bf-cbc BF in CBC mode
bf-cfb BF in CFB mode
bf-ecb BF in ECB mode
bf-ofb BF in OFB mode

CAST algorithms (variable key size, typically 128 bits)

Algorithm Description

cast CAST

cast-cbc CAST in CBC mode
cast5-cbc CAST5 in CBC mode
cast5-cfb CAST5 in CFB mode
cast5-ecb CAST5 in ECB mode
cast5-ofb CAST5 in OFB mode

END statement

148

Use the END statement to terminate a BASIC program or a section of an IF statement, READ
statements, or OPEN statement.

Syntax
END
An END statement is the last statement in a UniVerse BASIC program; it indicates the logical end of

the program. When an END statement that is not associated with an IF, READ, or OPEN statement is
encountered, execution of the program terminates. You can use comments after the END statement.

You can also use the END statement with conditional statements in the body of a program. In this case
END indicates the end of a multistatement conditional clause.

INFORMATION and REALITY flavors

In INFORMATION and REALITY flavors a warning message is printed if there is no final END statement.
The END.WARN option of the SOPTIONS statement prints the warning message in IDEAL, IN2, PICK,
and PIOPEN flavors under the same conditions.

Example

A="YES"
IF A="YES" THEN

END CASE statement

PRINT "THESE TWO LINES WILL PRINT ONLY"
PRINT "WHEN THE VALUE OF 'A' IS 'YES'."
END

*

PRINT
PRINT "THIS IS THE END OF THE PROGRAM"
END ; * END IS THE LAST STATEMENT EXECUTED

This is the program output:

THESE TWO LINES WILL PRINT ONLY
WHEN THE VALUE OF 'A' IS 'YES'.

THIS IS THE END OF THE PROGRAM

END CASE statement

Use the END CASE statement to end a set of CASE statements.

END TRANSACTION statement

Use the END TRANSACTION statement to specify where processing is to continue after a transaction
ends.

ENTER statement

Use the ENTER statement to transfer program control from the calling program to an external
subroutine without returning to the calling program. The subroutine must have been compiled and
cataloged.

Syntax

ENTER subroutine

variable = 'subroutine'
ENTER (Qvariable

The ENTER statement is similar to the CALL statement, except that with the ENTER statement,
program flow does not return from the entered program to the calling program (see the CALL
statement, on page 84). The ENTER statement also does not accept arguments.

In the PIOPEN flavor, the ENTER statement is a synonym for the CALL statement. It takes arguments
and returns control to the calling program.

External subroutines can be entered directly or indirectly. To enter a subroutine indirectly, assign
the name of the cataloged subroutine to a variable or to an element of an array. Use the name of this
variable or array element, prefixed with an at sign (@), as the operand of the ENTER statement.

If subroutine evaluates to the null value, the ENTER statement fails and the program terminates with a
runtime error message.

Example

The following program transfers control to the cataloged program PROGRAM2:

149

Chapter 1: Statements and functions

ENTER PROGRAM2

EOF(ARG.) function

Use the EOF (ARG.) function to check if the command line argument pointer is past the last
command line argument. ARG. is part of the syntax of the EOF (ARG.) function and must be specified.
EOF(ARG.) returns 1 (true) if the pointer is past the last command line argument, otherwise it returns 0
(false).

The arg# argument of the GET(ARG.) statement and the SEEK(ARG.) statement affect the value of the
EQF (ARG.) function.

Syntax

EOF (ARG.)

EQS function

Use the EQS function to test if elements of one dynamic array are equal to the elements of another
dynamic array.

Syntax
EQS (arrayl, arrayZ2)
CALL -EQS (return.array, arrayl, arrayZ2)

CALL 'EQS (return.array, arrayl, arrayZ2)

Each element of arrayl is compared with the corresponding element of array?. If the two elements
are equal, a 1is returned in the corresponding element of a dynamic array. If the two elements are
not equal, a 0 is returned. If an element of one dynamic array has no corresponding element in the
other dynamic array, a 0 is returned. If either element of a corresponding pair is the null value, null is
returned for that element.

If you use the subroutine syntax, the resulting dynamic array returns as return.array.

Example

A=1:@VM:45:Q@SM:3:@VM: "one"
B=0:@VM:45:@VM:1
PRINT EQS (A, B)
This is the program output:

0v1s0ovo

EQUATE statement

150

In an EQUATE statement, symbol represents the value of expression or string. You can use the two
interchangeably in the program. When the program is compiled, each occurrence of symbol is
replaced by the value of expression or string. The value is compiled as object code and does not have
to be reassigned each time the program is executed.

You can define multiple symbols in a single EQUATE statement. symbol cannot be a number.

EQUATE statement

You can define symbol only once. Any subsequent EQUATE state generates a compiler error because
the compiler interprets the symbol before the statement is parsed.

If you use TO as a connector, the object can be any UniVerse BASIC expression. If you use LIT or
LITERALLY as a connector, the object must be a literal string.

RAID does not recognize EQUATE symbols. You must use the object value in RAID sessions.

There is no limit on the number of EQUATE statements allowed by the UniVerse BASIC compiler,
except that of memory.

If symbol is the same as the name of a BASIC function, the function is disabled in the program. If a
statement exists with the same name as a disabled function, the statement is also disabled.
Syntax

EQU[ATE] symbol TO expression [,symbol TO expression ..]

EQU[ATE] symbol LIT[ERALLY] string [,symbol LIT string ..]

Examples

In the following example, A is made equivalent to the string JANE:

JANE="HI"
EQUATE A TO "JANE"
PRINT A

Next, B is made equivalent to the variable JANE:

JANE="HI"

EQUATE A TO "JANE"
EQUATE B LIT "JANE"
PRINT "A IS EQUAL TO ":A
PRINT "B IS EQUAL TO ":B

This is the program output:

A IS EQUAL TO JANE
B IS EQUAL TO HI

In the next example COST is made equivalent to the value of the expression PRICE*QUANTITY:

EQUATE COST LIT "PRICE * QUANTITY"
PRICE=3; QUANTITY="7
PRINT "THE TOTAL COST IS $": COST

This is the program output:
THE TOTAL COST IS $21

The next example shows an EQUATE statement with multiple symbols:

EQUATE C TO "5",

D To "7",

E LIT "IF C=5 THEN PRINT 'YES'"
PRINT "C+D=": C+D

E

This is the program output:

C+D=12

151

Chapter 1: Statements and functions

YES

EREPLACE function

Use the EREPLACE function to replace substring in expression with another substring. If you do not
specify occurrence, each occurrence of substring is replaced.

Syntax

EREPLACE (expression, substring, replacement [,occurrence [,begin]])

occurrence specifies the number of occurrences of substring to replace. To replace all occurrences,
specify occurrence as a number less than 1.

begin specifies the first occurrence to replace. If begin is omitted or less than 1, it defaults to 1.

If substring is an empty string, replacement is prefixed to expression. If replacement is an empty string,
all occurrences of substring are removed.

If expression evaluates to the null value, nullis returned. If substring, replacement, occurrence, or begin
evaluates to the null value, the EREPLACE function fails and the program terminates with a run-time
error message.

The EREPLACE function behaves like the CHANGE function except when substring evaluates to an
empty string.

Example

A = "AAABBBCCCDDDBBB"
PRINT EREPLACE (A, "BBB","ZzZ")
PRINT EREPLACE (A,"","ZZZ")
PRINT EREPLACE (A, "BBB","")

This is the program output:

AAAZZZCCCDDDZZZ
27Z2ZAAABBBCCCDDDBBB
AAACCCDDD

ERRMSG statement

152

Use the ERRMSG statement to print a formatted error message from the ERRMSG file.

message.ID is an expression evaluating to the record ID of a message to be printed on the screen.
Additional expressions are evaluated as arguments that can be included in the error message.

If message.ID evaluates to the null value, the default error message is printed:

Message ID is NULL: undefined error

Syntax

ERRMSG message.ID [,message.ID ..]

EXCHANGE function

A standard Pick ERRMSG file is supplied with UniVerse. Users can construct a local ERRMSG file
using the following syntax in the records. Each field must start with one of these codes shown in the

following table:

Code Action

Al(n)] Display next argument left-justified; n specifies field length.

D Display system date.

E [string] Display record ID of message in brackets; string displayed after ID.
H [string] Display string.

L [(n)] Output a newline; n specifies number of newlines.

R [(n)] Display next argument right-justified; n specifies field length.

S [(n)] Output n blank spaces from beginning of line.

T Display system time.

Example

>ED ERRMSG
17 lines long.
—-—---: P0001l: HBEGINNING OF ERROR MESSAGE

0002: L
0003: HFILE NAMED "
0004: A

0005: H" NOT FOUND.

0006: L

0007: H END OF MESSAGE

Bottom at line 7

—-—--: QOPEN 'SUN.SPORT' TO test

THEN PRINT "File Opened" ELSE ERRMSG "1",

This is the program output:
BEGINNING OF ERROR MESSAGE

FILE NAMED "SUN.SPORT" NOT FOUND.
END OF MESSAGE

EXCHANGE function

"SUN.SPORT"

Use the EXCHANGE function to replace one character with another or to delete all occurrences of the

specified character.

Syntax

EXCHANGE (string, xx, YyVy)

string is an expression evaluating to the string whose characters are to be replaced or deleted. If string

evaluates to the null value, null is returned.

Xxx is an expression evaluating to the character to be replaced, in hexadecimal notation.

yy is an expression evaluating to the replacement character, also in hexadecimal notation.

153

Chapter 1: Statements and functions

If yy is FF, all occurrences of xx are deleted. If xx or yy consist of fewer than two characters, no
conversion is done. If xx or yy is the null value, the EXCHANGE function fails and the program
terminates with a run-time error message.

Note: 0x80 is treated as @NULL.STR, not as @NULL.

If NLS is enabled, EXCHANGE uses only the first two bytes of xx and yy in order to evaluate the
characters. Note how the EXCHANGE function evaluates the following characters:

Bytes... Evaluated as...

00 through FF 00 through FF

00 through FA Unicode characters 0000 through FA
FB through FE System delimiters

For more information about character values, see the NLS Guide.

Example

In the following example, 41 is the hexadecimal value for the character A and 2E is the hexadecimal
value for the period character (.):

PRINT EXCHANGE ('ABABC', '41','2E")
This is the program output:

.B.BC

EXECUTE statement

154

Use the EXECUTE statement to execute UniVerse commands from within the BASIC program and then
return execution to the statement following the EXECUTE statement.

Syntax

EXECUTE commands [CAPTURING variable] [PASSLIST [dynamic.array]]
[RTNLIST [variable]] [{SETTING | RETURNING} variable]

EXECUTE commands [,IN < expression] [,0OUT > variable]
[, SELECT[(1ist)]< dynamic.array] [,SELECT[(list)] > variable]
, PASSLIST [(dynamic.array)]] [,STATUS > variable]

EXECUTE commands [,//IN. < expression] [,//OUT. > variable]
[,//SELECT. [(list)] < dynamic.array] [,//SELECT. [(list)]

> variable]
[,//PASSLIST. [(dynamic.array)]l] [,//STATUS. > variable]

EXECUTE creates a new environment for the executed command. This new environment is initialized
with the values of the current prompt, current printer state, Break key counter, the values of inline
prompts, KEYEDITs, KEYTRAPs, and KEYEXITs. If any of these values change in the new environment,
the changes are not passed back to the calling environment. In the new environment, stacked
@variables are either initialized to 0 or set to reflect the new environment. Nonstacked @variables are
shared between the EXECUTE and calling environments.

commands can be sentences, paragraphs, verbs, procs, menus, or BASIC programs. You can specify
multiple commands in the EXECUTE statement in the same way they are specified in a UniVerse
paragraph. Each command or line must be separated by a field mark (ASCII CHAR 254).

EXECUTE statement

The EXECUTE statement has two main syntaxes. The first syntax requires options to be separated by
spaces. The second and third syntaxes require options to be separated by commas. In the third syntax,
the "//" preceding the keywords and the periods following them are optional; the compiler ignores
these marks. Except for the slashes and periods, the second and third syntaxes are the same.

In the first syntax the CAPTURING clause assigns the output of the executed commands to variable.
The PASSLIST clause passes the current active select list or expression to the commands for use as
select list 0. The RTNLIST option assigns select list 0, created by the commands, to variable. If you do
not specify variable, the RTNLIST clause is ignored. Using the SETTING or RETURNING clause causes
the @SYSTEM.RETURN.CODE of the last executed command to be placed in variable.

In the second syntax the executed commands use the value of expression in the IN clause as input.
When the IN clause is used, the DATA queue is passed back to the calling program, otherwise data is
shared between environments. The OUT clause assigns the output of the commands to variable. The
SELECT clauses let you supply the select list stored in expression as a select list to the commands, or
to assign a select list created by the commands to variable. If list is not specified, select list 0 is used.
The PASSLIST clause passes the currently active select list to the commands. If you do not specify list,
select list 0 in the current program’s environment is passed as select list 0 in the executed command’s
environment. The STATUS clause puts the @SYSTEM.RETURN.CODE of the last executed command in
variable.

The EXECUTE statement fails and the program terminates with a run-time error message if:
= dynamic.array or expression in the IN clause evaluates to the null value.
= The command expression evaluates to the null value.

In transactions you can use only the following UniVerse commands and SQL statements with
EXECUTE:

* CHECK.SUM

= INSERT

= SEARCH

= SSELECT

= COUNT

= LIST

= SELECT (RetrieVe)
= STAT

~ DELETE (SQL)
= LIST.ITEM

* SELECT (SQL)
= SUM

= DISPLAY

= LIST.LABEL

= SORT

* UPDATE

= ESEARCH

* RUN

* SORT.ITEM

155

Chapter 1: Statements and functions

INFORMATION flavor

In INFORMATION flavor accounts, the EXECUTE statement without any options is the same as the
PERFORM statement. In this case executed commands keep the same environment as the BASIC
program that called them. Use the EXEC.EQ.PERF option of the SOPTIONS statement to cause
EXECUTE to behave like PERFORM in other flavors.

SOPTIONS PIOPEN.EXECUTE option

Use the PIOPEN.EXECUTE option to make the EXECUTE statement work similarly to the way it works
on Pl/open systems. The PIOPEN.EXECUTE option lets you use all syntaxes of the EXECUTE statement
without creating a new environment for the executed command.

Executed commands keep the same environment as the BASIC program that called them. Unnamed
common variables, @variables, and in-line prompts retain their values, and the DATA stack remain
active. Select lists also remain active unless they are passed back to the calling program by the
RTNLIST clause. If retained values change, the new values are passed back to the calling program.

Output from the CAPTURING clause does not include the trailing field mark, which the standard
CAPTURING clause does.

Example

The following example performs a nested SELECT, demonstrating the use of the CAPTURING, RTNLIST,
and PASSLIST keywords:

CMD = "SELECT VOC WITH TYPE = V"

EXECUTE CMD RTNLIST VERBLISTI1

CMD = "SELECT VOC WITH NAME LIKE ...LIST..."
EXECUTE CMD PASSLIST VERBLIST1 RTNLIST VERBLIST2
CMD = "LIST VOC NAME"

EXECUTE CMD CAPTURING RERUN PASSLIST VERBLIST2
PRINT RERUN

The program first selects all VOC entries that define verbs, passing the select list to the variable
VERBLIST1. Next, it selects from VERBLIST1 all verbs whose names contain the string LIST and passes
the new select list to VERBLIST2. The list in VERBLIST2 is passed to the LI ST command, whose output
is captured in the variable RERUN, which is then printed.

EXIT statement

156

Use the EXIT statement to quit execution of a FOR...NEXT loop or a LOOP...REPEAT loop and branch to
the statement following the NEXT or REPEAT statement of the loop. The EXIT statement quits exactly
one loop. When loops are nested and the EXIT statement is executed in an inner loop, the outer loop
remains in control.

Syntax

EXIT

Example

COUNT = 0

LOOP

WHILE COUNT < 100 DO
INNER = 0

LOOP

EXP function

WHILE INNER < 100 DO

COUNT += 1

INNER += 1

IF INNER = 50 THEN EXIT
REPEAT

PRINT "COUNT = ":COUNT
REPEAT

This is the program output:

COUNT = 50
COUNT = 100

EXP function

Use the EXP function to return the value of "e" raised to the power designated by expression. The
value of "e" is approximately 2.71828. expression must evaluate to a numeric value.

Syntax

EXP (expression)

If expression is too large or small, a warning message is printed and 0 is returned. If expression
evaluates to the null value, null is returned.

The formula used by the ExXP function to perform the calculations is

value of EXP function = 2.71828** (expression)

Example

X=5
PRINT EXP (X-1)

This is the program output:

54.5982

EXTRACT function

Use the EXTRACT function to access the data contents of a specified field, value, or subvalue from a
dynamic array. You can use either syntax shown to extract data. The first syntax uses the EXTRACT
keyword, the second uses angle brackets.

Syntax

EXTRACT (dynamic.array, field#[,value# [,subvalue#]])

variable < field# [,value# [,subvalue#]] >

dynamic.array is an expression that evaluates to the array in which the field, value, or subvalue to be
extracted is to be found. If dynamic.array evaluates to the null value, null is returned.

field# specifies the field in the dynamic array; value# specifies the value in the field; subvalue# specifies
the subvalue in the value. These arguments are called delimiter expressions. The numeric values of the

157

Chapter 1: Statements and functions

delimiter expressions determine whether a field, a value, or a subvalue is to be extracted. value# and
subvalue# are optional.

Angle brackets used as an EXTRACT function appear on the right side of an assignment statement.
Angle brackets on the left side of the assignment statement indicate that a REPLACE function is to be
performed (for examples, see the REPLACE function, on page 331).

The second syntax uses angle brackets to extract data from dynamic arrays. variable specifies
the dynamic array containing the data to be extracted. field#, value#, and subvalue# are delimiter
expressions.

Here are the five outcomes that can result from the different uses of delimiter expressions:

Case Result

Case 1: If field#, value#, and subvalue# are omitted or evaluate to 0, an empty string is
returned.

Case 2: If value# and subvalue# are omitted or evaluate to 0, the entire field is extracted.

Case 3: If subvalue# is omitted or specified as 0 and value# and field# evaluate to
nonzero, the entire specified value in the specified field is extracted.

Case 4: If field#, value#, and subvalue# are all specified and are all nonzero, the
specified subvalue is extracted.

Case 5: If field#, value#, or subvalue# evaluates to the null value, the EXTRACT function

fails and the program terminates with a run-time error message.

If a higher-level delimiter expression has a value of 0 when a lower-level delimiter is greater than 0,a 1
is assumed. The delimiter expressions are from highest to lowest: field, value, and subvalue.

If the EXTRACT function references a subelement of an element whose value is the null value, null is
returned.

Example

In the following example a field mark is shown by F, a value mark is shown by V, and a subvalue mark
is shown by S:

VAR=1:@FM:4:@VM:9:0@SM:3:@SM:5:@FM:1:QVM:0:@SM:7:@SM: 3
Z=EXTRACT (VAR,1,0,0)
PRINT Z

*

Z=VAR<1,1,1>

PRINT Z

*

Z=EXTRACT (VAR,2,1,1)
PRINT Z

*

72=VAR<3,2,3>

PRINT Z

*
Z=EXTRACT (VAR, 10,0, 0)
PRINT Z

*
Z=EXTRACT (VAR, 2,2,0)
PRINT Z

*

This is the program output:

1
1

158

FADD function

95355

FADD function

Use the FADD function to perform floating-point addition on two numeric values. If either number
evaluates to the null value, null is returned. If either numberl or number2 evaluates to the null value,
null is returned. return.array equates to numberl plus number2.

This function is provided for compatibility with existing software. You can also use the + operator to
perform floating-point addition.
Syntax

CALL 'FADD (return.array, numberl, number?2)

Example

PRINT FADD(.234, .567)
This is the program output:
0.801

FDIV function

Use the FDIV function to perform floating-point division on two numeric values. numberl is divided
by number2. return.array equates to numberl divided by number2. If number2 is 0, a runtime error
message is produced and a 0 is returned for the function. If either number evaluates to the null value,
null is returned.

This function is provided for compatibility with existing software. You can also use the / operator to
perform floating-point division.
Syntax

FDIV (numberl, number?2)

CALL !'FDIV (return.array, numberl, number?)

Example

PRINT FDIV(.234,.567)
This is the program output:
0.4127

FFIX function

Use the FF'IX function to convert a floating-point number to a numeric string with fixed precision. If
number evaluates to the null value, null is returned.

159

Chapter 1: Statements and functions

This function is provided for compatibility with existing software.

Syntax

FFIX (number)

FFLT function

Use the FFLT function to round a number to a string with a precision of 13. The number also converts
to scientific notation when required for precision. If number evaluates to the null value, null is
returned.

Syntax

FFLT (number)

FIELD function

160

Use the FIELD function to return one or more substrings located between specified delimiters in
string.

Syntax

FIELD (string, delimiter, occurrence [,num.substr])

delimiter evaluates to any character, including field mark, value mark, and subvalue marks. It delimits
the start and end of the substring. If delimiter evaluates to more than one character, only the first
character is used. Delimiters are not returned with the substring.

occurrence specifies which occurrence of the delimiter is to be used as a terminator. If occurrence is
lessthan 1, 1 is assumed.

num.substr specifies the number of delimited substrings to return. If the value of num.substr is an
empty string or less than 1, 1 is assumed. When more than one substring is returned, delimiters are
returned along with the successive substrings.

If either delimiter or occurrence is not in the string, an empty string is returned, unless occurrence
specifies 1. If occurrence is 1 and delimiter is not found, the entire string is returned. If delimiter is an
empty string, the entire string is returned.

If string evaluates to the null value, null is returned. If string contains CHAR(128) (that is, @NULL.STR),
itis treated like any other character in a string. If delimiter, occurrence, or num.substr evaluate to the
null value, the FIELD function fails and the program terminates with a run-time error message.

The FIELD function works identically to the GROUP function.

Examples

D=FIELD (" ###DHHH#KK", "#", 4)
PRINT "D= ",D

The variable D is set to DHHH because the data between the third and fourth occurrence of the
delimiter # is DHHH.

REC="ACADABA"
E=FIELD (REC, "A", 2)

FIELDS function

PRINT "E= ",E

The variable Eis setto "C".

VAR="?"
Z=FIELD ("A.12345$$$$s&", VAR, 3)
PRINT "Z= ",Z

Zis set to an empty string since "?" does not appear in the string.

Q=FIELD ("+1+2+3ABAC","+",2,2)
PRINT "Q= ",0Q

Qis set to "1+2" since two successive fields were specified to be returned after the second occurrence
Of ll+|l.

This is the program output:

D= DHHH
E= c

7=

Q= 1+2

FIELDS function

Use the FIELDS function to return a dynamic array of substrings located between specified delimiters
in each element of dynamic.array.

Syntax

FIELDS (dynamic.array, delimiter, occurrence [,num.substr])

CALL -FIELDS (return.array, dynamic.array, delimiter, occurrence,
num.substr)

CALL !'FIELDS (return.array, dynamic.array, delimiter, occurrence,
num.substr)

delimiter evaluates to any character, excluding value and subvalue characters. It marks the start and
end of the substring. If delimiter evaluates to more than one character, the first character is used.

occurrence specifies which occurrence of the delimiter is to be used as a terminator. If occurrence is
lessthan 1, 1 is assumed.

num.substr specifies the number of delimited substrings to return. If the value of num.substris an
empty string or less than 1, 1 is assumed. In this case delimiters are returned along with the successive
substrings. If delimiter or occurrence does not exist in the string, an empty string is returned, unless
occurrence specifies 1. If occurrence is 1 and the specified delimiter is not found, the entire element is
returned. If occurrence is 1 and delimiter is an empty string, an empty string is returned.

If dynamic.array is the null value, nullis returned. If any element in dynamic.array is the null value,
nullis returned for that element. If delimiter, occurrence, or num.substr evaluates to the null value, the
FIELDS function fails and the program terminates with a runtime error message.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

161

Chapter 1: Statements and functions

Example

A="000-P-0":@VM:"-H--0-":@SM:"N-I-T":Q@VM:"BC":@SM:"-L-"
PRINT FIELDS (A,"-",2)

This is the program output:

PVHSIVSL

FIELDSTORE function

Use the FIELDSTORE function to modify character strings by inserting, deleting, or replacing fields
separated by specified delimiters.

Syntax

FIELDSTORE (string, delimiter, start, n, new.string)

string is an expression that evaluates to the character string to be modified.
delimiter evaluates to any single ASCII character, including field, value, and subvalue marks.

start evaluates to a number specifying the starting field position. Modification begins at the field
specified by start. If start is greater than the number of fields in string, the required number of empty
fields is generated before the FIELDSTORE function is executed.

n specifies the number of fields of new.string to insert in string. n determines how the FIELDSTORE
operation is executed. If n is positive, n fields in string are replaced with the first n fields of new.string.
If n is negative, n fields in string are replaced with all the fields in new.string. If n is 0, all the fields in
new.string are inserted in string before the field specified by start.

If string evaluates to the null value, null is returned. If delimiter, start, n, or new.string is null, the
FIELDSTORE function fails and the program terminates with a runtime error message.

Example

O="1#2434445"
*
TEST1=FIELDSTORE (Q, "#",2,2, "A#B")
PRINT "TEST1= ", TEST1
*
TEST2=FIELDSTORE (Q, "#",2,-2, "A4B")
PRINT "TEST2= ", TEST2
*
TEST3=FIELDSTORE (Q, "#",2,0, "A#B")
PRINT "TEST3= ", TEST3
*
TEST4=FIELDSTORE (Q, "#", 1,4, "A#B#C#D")
PRINT "TEST4= ", TEST4
*
TEST5=FIELDSTORE (Q, "#",7, 3, "A#B#C#D")
PRINT "TEST5= ", TEST5

This is the program output:

TEST1= 1#A#B#445
TEST2= 1#A#B#4#5
TEST3= 1#A#B#2#3#445
TEST4= A#B#CH#D#5

162

FILEINFO function

TESTS5= 1#2#3#4#5##A#B#C

FILEINFO function

Use the FILEINFO function to return information about the specified file’s configuration, such as the
specified file’s parameters, its modulus and load, its operating system file name, and its VOC name.
The information returned depends on the file type and the value of the key.

Syntax

FILEINFO (file.variable , key)

file.variable is the file variable of an open file.

key is a number that indicates the particular information required. These key numbers are described in
the Keys and Values Supplied to the FILEINFO Function table.

If the first argument is not a file variable, all keys except 0 return an empty string. A warning message
is also displayed. A fatal error results if an invalid key is supplied.

Equate names for keys

An insert file of equate names is provided to let you use mnemonics rather than key numbers. The
insert file, called FILEINFO.INS.IBAS, is located in the INCLUDE directory in the UV account directory. It
is referenced in PIOPEN flavor accounts through a VOC file pointer called SYSCOM. Use the SINCLUDE
statement to insert this file if you want to use equate names, as shown in the example. The following
table lists the symbolic name, value, and description:

Symbolic Name Value | Description

FINFOSIS.FILEVAR 0 1if file.variable is a valid file variable; 0 otherwise.
FINFOSVOCNAME 1 VOC name of the file.

FINFOSPATHNAME 2 Path name of the file.

FINFOSTYPE 3 File type as follows:

1 Static hashed

3 Dynamic hashed
4Typel

5 Sequential

7 Distributed and Multivolume

FINFOSHASHALG Hashing algorithm: 2 for GENERAL, 3 for SEQ.NUM.

FINFOSMODULUS Current modulus.

FINFOSGROUPSIZE Group size, in 1-KB units.

FINFOSLARGERECORDSIZE Large record size.

4
5
FINFOSMINMODULUS 6 Minimum modulus.
7
8
9

FINFOSMERGELOAD Merge load parameter.

FINFOSSPLITLOAD 10 Split load parameter.

FINFOSCURRENTLOAD 11 Current loading of the file (%).

FINFOSNODENAME 12 Empty string, if the file resides on the local system,
otherwise the name of the node where the file resides.

FINFOSIS.AKFILE 13 1 if secondary indexes exist on the file; 0 otherwise.

163

Chapter 1: Statements and functions

164

Symbolic Name Value | Description
FINFOSCURRENTLINE 14 Current line number.
FINFOSPARTNUM 15 For a distributed file, returns list of currently open part
numbers.
FINFOSSTATUS 16 For a distributed file, returns list of status codes showing
whether the last I/O operation succeeded or failed for
each part. A value of -1 indicates the corresponding part
fileis not open.
FINFOSRECOVERYTYPE 17 1if the file is marked as recoverable, 0 if it is not. Returns
an empty string if recoverability is not supported on the
file type (such as type 1 and type 19 files).
FINFOSRECOVERYID 18 Always returns an empty string.
FINFOSIS.FIXED.MODULUS 19 Always returns 0.
FINFOSNLSMAP 20 If NLS is enabled, the file map name, otherwise an empty
string. If the map name is the default specified in the
uvconfigfile, the returned string is the map name
followed by the name of the configurable parameterin
parentheses.
FINFOSENCRYPTION 22 Returns a dynamic array containing the following
information:
= For afile encrypted with the WHOLERECORD option:
-1@VM<key_id>@VM<algorithm>

= Forafile encrypted at the field level:
<location>@VM<key_id>@VM
<algorithm>@VM<field_name>[@FM
<location>...@VM<field_name>]

= Returns an empty string if the file is not encrypted.

FINFOSREPSTATUS 24 Return values can be:

0 - The file is not published, subscribed, or subwriteable.
1 -Thefile is being published.

2 - Thefile is being subscribed.

3 -Thefile is subwriteable.

Note: If U2 Data Replication is not running, this function
returns 0 for any file used with this function.

Value returned by the STATUS function

If the function executes successfully, the value returned by the STATUS function is 0. If the function
fails to execute, STATUS returns a nonzero value. The following table lists the key, file type, and

returned value for key:

Key Dynamic Directory Distributed Sequential
0 1 =file open 1 =file open Dynamic array of 1 =file open
0 =file closed 0 =file closed codes: 0 =file closed
1=file open
0 =file closed
1 VOC name VOC name VOC name VOC name

FILEINFO function

Key

Dynamic

Directory

Distributed

Sequential

File’s path name

Path name of file

Dynamic array of
complete path
names in VOC record
order (path name

as used in VOC for
unavailable files)

File’s path name

3

4

7

5

2=GENERAL
3=SEQ.NUM

Empty string

Dynamic array of
codes:

2=GENERAL
3=SEQ.NUM

Empty string

Current

modulus

Dynamic array of the
current modulus of
each partfile

Minimum

modulus

Empty string

Dynamic array of the
minimum modulus
of each partfile

Empty string

Group size in disk
records

Empty string

Dynamic array of the
group size of each
part file

Empty string

Large record size

Empty string

Dynamic array of the
large record size of
each partfile

Empty string

Merge load value

Empty string

Dynamic array of
the merge load % of
each partfile

Empty string

10

Split load value

Empty string

Dynamic array of the
split load value of
each partfile

Note: The values
returned for
distributed files are
dynamic arrays with
the appropriate
value for each part
file. The individual
values depend on the
file type of the part
file. For example,

if the partfileis a
hashed file, some
values, such as
minimum modulus,
have an empty value
in the dynamic array
for that part file.

Empty string

11

Current load value

Empty string

Dynamic array of the
current load value of
each partfile 1

Empty string

165

Chapter 1: Statements and functions

Key Dynamic Directory Distributed Sequential
12 Local file: empty Empty string Dynamic array Empty string
string of values where
Remote file: node valueis:
name Local file = empty
string
Remote file = node
name
13 1=indexes 0 1=common indexes |Empty string
present

2 =no indexes
2 =none present

15 Empty string Empty string Dynamic array of Empty string
codes in VOC record
order. Code is: empty
string if part file not
open; part number if
file is open.

16 Empty string Empty string Dynamic array of Empty string
codes in VOC record
order for each part
file:

0=1/0 operation OK

-1=partfile
unavailable

>0 = error code

Note: The first time that an I/O operation fails for a part file in a distributed file, the FILEINFO
function returns an error code for that part file. For any subsequent I/O operations on the
distributed file with the same unavailable part file, the FILEINFO function returns -1.

NLS mode

The FILEINFO function determines the map name of a file by using the value of FINFOSNLSMAP. NLS
uses the insert file called FILEINFO.H. For more information about maps, see the NLS Guide.
Examples

In the following example, the file containing the key equate names is inserted with the SINCLUDE
statement. The file FILMS is opened and its file type displayed.

S$INCLUDE SYSCOM FILEINFO.INS.IBAS
OPEN '','FILMS' TO FILMS

ELSE STOP 'CANT OPEN FILE'
PRINT FILEINFO(FILMS, FINFOSTYPE)

In the next example, the file FILMS is opened and its file type displayed by specifying the numeric key:

OPEN '','FILMS' TO FILMS
ELSE STOP 'CANT OPEN FILE'
PRINT FILEINFO (FILMS, 3)

166

FILELOCK statement

FILELOCK statement

Use the FILELOCK statement to acquire a lock on an entire file. This prevents other users from
updating the file until the program releases it. A FILELOCK statement that does not specify lock.type is
equivalent to obtaining an update record lock on every record of the file.

Syntax

FILELOCK [file.variable] [, lock.typel
[ON ERROR statements] [LOCKED statements]

file.variable specifies an open file. If file.variable is not specified, the default file is assumed (for more
information on default files, see the OPEN statement, on page 283). If the file is neither accessible
nor open, the program terminates with a runtime error message. If file.variable evaluates to the null
value, the FILELOCK statement fails and the program terminates with a runtime error message.

lock.type is an expression that evaluates to one of the following keywords:
= SHARED (to request an FS lock)

= INTENT (to request an IX lock)

= EXCLUSIVE (to request an FX lock)The ON ERROR clause

The ON ERROR clause is optional in the FILELOCK statement. The ON ERROR clause lets you specify
an alternative for program termination when a fatal error is encountered during processing of the
FILELOCK statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

= Anerror message appears.
= Any uncommitted transactions begun within the current execution environment roll back.
= The current program terminates.

= Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

= Afileis not open.

= file.variable is the null value.

= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number. If a
FILELOCK statement is used when any portion of a file is locked, the program waits until the file is
released.

The LOCKED clause

The LOCKED clause is optional, but recommended. The LOCKED clause handles a condition caused
by a conflicting lock (set by another user) that prevents the FILELOCK statement from processing. The
LOCKED clause is executed if one of the following conflicting locks exists:

167

Chapter 1: Statements and functions

168

This requested lock...

Conflicts with...

Shared file lock

Exclusive file lock

Intent file lock

Update record lock

Intent file lock Exclusive file lock
Intent file lock
Shared file lock

Update record lock

Exclusive file lock Exclusive file lock
Intent file lock
Shared file lock
Update record lock

Shared record lock

If the FILELOCK statement does not include a LOCKED clause and a conflicting lock exists, the program
pauses until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the terminal number of the
user who owns the conflicting lock.

Releasing locks

A shared, intent, or exclusive file lock can be released by a FILEUNLOCK statement, RELEASE
statement, or STOP statement.

Locks acquired or promoted within a transaction are not released when previous statements are
processed.

Examples

OPEN '', '"SUN.MEMBER' TO DATA ELSE STOP "CAN'T OPEN FILE"
FILELOCK DATA LOCKED STOP 'FILE IS ALREADY LOCKED'
FILEUNLOCK DATA
OPEN '', 'SUN.MEMBER' ELSE STOP "CAN'T OPEN FILE"
FILELOCK LOCKED STOP 'FILE IS ALREADY LOCKED'

PRINT "The file is locked."
FILEUNLOCK

This is the program output:

The file is locked.

The following example acquires an intent file lock:

FILELOCK fvar, "INTENT" LOCKED

owner = STATUS ()

PRINT "File already locked by":owner
STOP

END

FILEUNLOCK statement

FILEUNLOCK statement

Use the FILEUNLOCK statement to release a file lock set by the FILELOCK statement.

Syntax

FILEUNLOCK |[file.variable] [ON ERROR statements]

file.variable specifies a file previously locked with a FILELOCK statement. If file.variable is not specified,
the default file with the FILELOCK statement is assumed (for more information on default files, see the
OPEN statement, on page 283). If file.variable evaluates to the null value, the FILEUNLOCK statement
fails and the program terminates with a run-time error message.

The FILEUNLOCK statement releases only file locks set with the FILELOCK statement. Update record
locks must be released with one of the other unlocking statements (for example, WRITE, WRITEV, and
soon).

The ON ERROR clause

The ON ERROR clause is optional in the FILEUNLOCK statement. The ON ERROR clause lets you specify
an alternative for program termination when a fatal error is encountered during processing of the
FILEUNLOCK statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

= Anerror message appears.
= Any uncommitted transactions begun within the current execution environment roll back.
= Thecurrent program terminates.

= Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

= Afileis not open.

= file.variable is the null value.

= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number. The
ON ERROR clause is not supported if the FILEUNLOCK statement is within a transaction.
Example

In the following example, the first FILEUNLOCK statement unlocks the default file. The second
FILEUNLOCK statement unlocks the file variable FILE.

OPEN '', 'SUN.MEMBER' ELSE STOP "CAN'T OPEN SUN.MEMBER"
FILELOCK

FILEUNLOCK
OPEN 'EX.BASIC' TO FILE ELSE STOP
FILELOCK FILE

169

Chapter 1: Statements and functions

FILEUNLOCK FILE

FIND statement

Use the FIND statement to locate an element in dynamic.array. The field, value, and subvalue
positions of element are put in the variables fmc, vmc, and smc respectively.

Syntax

FINDelement IN dynamic.array [,occurrence] SETTING fmc [,vmc [,smc]]
{THEN statements [ELSE statements] | ELSE statements}

element evaluates to a character string. FIND succeeds only if the string matches an element in its
entirety. If element is found in dynamic.array, any THEN statements are executed. If element is not
found, or if dynamic.array evaluates to the null value, fmc, vimc, and smc are unchanged, and the ELSE
statements are executed.

If occurrence is unspecified, it defaults to 1. If occurrence is the null value, the FIND statement fails and
the program terminates with a runtime error message.

Example

A="THIS":QFM:"IS":@FM:"A" :QFM:"DYNAMIC" :@FM:"ARRAY"
FIND "IS" IN A SETTING FM,VM,SM ELSE ABORT

PRINT "FM=",FM

PRINT "VM=",6VM

PRINT "SM=",SM

This is the program output:

FM= 2
VM= 1
SM= 1

FINDSTR statement

170

Use the FINDSTR statement to locate substring in dynamic.array. The field, value, and subvalue
positions of substring are placed in the variables fmc, vmc, and smc respectively.

Syntax

FINDSTRsubstring IN dynamic.array [, occurrence]
SETTING fmc [, vmc [, smc]]
{THEN statements [ELSE statements] | ELSE statements}

FINDSTR succeeds if it finds substring as part of any element in dynamic array. If substring is found
in dynamic.array, any THEN statements are executed. If substring is not found, or if dynamic.array
evaluates to the null value, fmc, vmc, and smc are unchanged, and the ELSE statements are executed.

If occurrence is unspecified, it defaults to 1. If occurrence is the null value, FINDSTR fails and the
program terminates with a runtime error message.

FIX function

Example

A="THIS":Q@FM:"IS":@QFM:"A":@FM: "DYNAMIC" : @FM: "ARRAY"
FINDSTR "IS" IN A SETTING FM,VM,SM ELSE ABORT
PRINT "FM=",FM

PRINT "VM=",VM

PRINT "SM=", SM

This is the program output:

FM=1
VM=1
SM=1

FIX function

Use the FIX function to convert a numeric value to a floating-point number with a specified precision.
FIX letsyou control the accuracy of computation by eliminating excess or unreliable data from
numeric results. For example, a bank application that computes the interest accrual for customer
accounts does not need to deal with credits expressed in fractions of cents. An engineering application
needs to throw away digits that are beyond the accepted reliability of computations.

Syntax

FIX (number [,precision [,mode]])

number is an expression that evaluates to the numeric value to be converted.

precision is an expression that evaluates to the number of digits of precision in the floating-point
number. If you do not specify precision, the precision specified by the PRECISION statement is used.
The default precision is 4.

mode is a flag that specifies how excess digits are handled. If mode is either 0 or not specified, excess
digits are rounded off. If mode is anything other than 0, excess digits are truncated.

If number evaluates to the null value, null is returned.

Examples

The following example calculates a value to the default precision of 4:

REAL.VALUE = 37.73629273
PRINT FIX (REAL.VALUE)

This is the program output:
37.7363

The next example calculates the same value to two digits of precision. The first result is rounded off,
the second is truncated:

PRINT FIX (REAL.VALUE, 2)
PRINT FIX (REAL.VALUE, 2, 1)

This is the program output:

37.74

171

Chapter 1: Statements and functions

37.73

FLUSH statement

The FLUSH statement causes all the buffers for a sequential I/0 file to be written immediately.
Normally, sequential I/O uses UNIX "stdio" buffering for input/output operations, and writes are not
performed immediately.

Syntax

FLUSH file.variable {THEN statements [ELSE statements] | ELSE
statements}

file.variable specifies a file previously opened for sequential processing. If file.variable evaluates to the
null value, the FLUSH statement fails and the program terminates with a run-time error message.

After the buffer is written to the file, the THEN statements are executed, and the ELSE statements are
ignored. If THEN statements are not present, program execution continues with the next statement.

If the file cannot be written to or does not exist, the ELSE statements are executed; any THEN
statements are ignored.

See the OPENSEQ statement, on page 289 and WRITESEQ statement, on page 464 for more
information on sequential file processing.

Example

OPENSEQ 'FILE.E', 'RECORD1' TO FILE THEN
PRINT "'FILE.E' OPENED FOR SEQUENTIAL PROCESSING"
END ELSE STOP
WEOFSEQ FILE
*

WRITESEQ 'NEW LINE' ON FILE THEN
FLUSH FILE THEN

PRINT "BUFFER FLUSHED"

END ELSE PRINT "NOT FLUSHED"
ELSE ABORT

*

CLOSESEQ FILE

END

FMT function

172

Use the FMT function or a format expression to format data for output. Any BASIC expression can be
formatted for output by following it with a format expression.

Syntax

FMT (expression, format)expressionformat

expression evaluates to the numeric or string value to be formatted.

format is an expression that evaluates to a string of formatting codes. The syntax of the format
expression is:

[width] [fill] justification [edit] [mask]

FMT function

The format expression specifies the width of the output field, the placement of background or fill
characters, line justification, editing specifications, and format masking.

If expression evaluates to the null value, nullis returned. If format evaluates to null, the FMT function
and the format operation fail.

width is an integer that specifies the size of the output field in which the value is to be justified. If you
specify mask, you need not specify width. If you do not specify mask, width is required.

fill specifies the character to be used to pad entries when filling out the output field. fill is specified as
a single character. The default fill character is a space. If you want to use a numeric character or the
letter L, R, T, or Q as a fill character, you must enclose it in single quotation marks.

justification is required in one of the following forms.

Decimal notation:

Value Description

L Left justification - Break on field length.

R Right justification - Break on field length.

T Text justification - Left justify and break on space.
U Left justification - Break on field length.

C Center justification -Break on field length

Exponential notation:

Value Description

Q Right justification - Break on field length.
QR Right justification - Break on field length.
QL Left justification

edit can be any of the following:

Value

Description

n[m]

Used with L, R, or T justification, n is the number of digits to display to the

right of the decimal point, and m descales the value by m minus the current
precision. Each can be a number from 0 through 9. You must specify n in order
to specify m. If you do not specify m, m =0 is assumed. If you do not specify n, n
=m=0is assumed. Remember to account for the precision when you specify m.
The default precision is 4.

If you specify 0 for n, the value is rounded to the nearest integer. If the
formatted value has fewer decimal places than n, output is padded with zeros
to the nth decimal place. If the formatted value has more decimal places than n,
the value is rounded to the nth decimal place.

If you specify 0 for m, the value is descaled by the current precision (0 - current
precision).

nEm

Used with Q, QR, or QL justification, n is the number of fractional digits, and m
specifies the exponent. Each can be a number from 0 through 9.

n.m

Used with Q, QR, or QL justification, n is the number of digits preceding the
decimal point, and m the number of fractional digits. Each can be a number
from 0 through 9.

Prefixes a dollar sign to the value.

Prefixes a franc sign to the value.

Inserts commas after every thousand.

173

Chapter 1: Statements and functions

174

Value

Description

z

Suppresses leading zeros. Returns an empty string if the value is 0. When used

with the Q format, only the trailing fractional zeros are suppressed, and a 0
exponent is suppressed.

Surrounds negative numbers with angle brackets (<>).

Appends cr to negative numbers.

Appends db to positive numbers.

Appends db to negative numbers.

Suppresses a minus sign on negative numbers.

Appends a minus sign to negative numbers.

Truncates instead of rounding.

<|H|{=ZlZ|mm|o|lo|m

In NLS mode, prefixes the yen/yuan character to the value, that is, the Unicode
value 00A5. Returns a status code of 2 if you use Y with the MR or ML code. If
NLS is disabled or if the Monetary category is not used, Y prefixes the byte value
OxAS5.

Note: The E, M, C, D and N options define numeric representations for monetary use, using
prefixes or suffixes. In NLS mode, these options override the Numeric and Monetary categories.

mask lets literals be intermixed with numerics in the formatted output field. The mask can include any
combination of literals and the following three special format mask characters:

Character Description

#n Data is displayed in a field of n fill characters. A blank is the default fill character.
It is used if the format string does not specify a fill character after the width
parameter.

%n Data is displayed in a field of n zeros.

*n Data is displayed in a field of n asterisks.

If you want to use numeric characters or any of the special characters as literals, you must escape the
character with a backslash (\).

A#, %, or * character followed by digits causes the background fill character to be repeated n times.
Other characters followed by digits cause those characters to appear in the output data n times.

mask can be enclosed in parentheses () for clarity. If mask contains parentheses, you must include the
whole mask in another set of parentheses. For example:

((##HH) #HH-)

You must specify either width or mask in the FMT function. You can specify both in the same function.
When you specify width, the string is formatted according to the following rules:

If string is smaller than width n, it is padded with fill characters.

If string is larger than width n, a text mark (CHAR(251)) is inserted every nth character and each field is
padded with the fill character to width.

The STATUS function reflects the result of edit as follows:

Value Description

0 The edit code is successful.

1 The string expression is invalid.
2 The edit code is invalid.

FMTDP function

See the STATUS function, on page 388 for more information.

REALITY flavor

In REALITY flavor accounts, you can use conversion codes in format expressions.

Examples

Format expressions

Formatted value

Z=FMT("236986","Ri#-##-##")

Z=23-69-86

X="555666898"
X=FMT(X,"20*R2$,")

X=*****$555 666,898.00

Y="DAVID" Y= DAVID.....
Y=FMT(Y,"10.L")

V="24500" V= $24500.00
V=FMT(V,"10R2$Z")

R=FMT(77777,"R#10") R= 77777
B="0.12345678E1" B=*1.2346E0
B=FMT(B,"9*Q")

PRINT 233779 "R" 233779
PRINT 233779 "RO" 233779
PRINT 233779 "R00" 2337790000
PRINT 233779 "R2" 233779.00
PRINT 233779 "R20" 2337790000.00
PRINT 233779 "R24" 233779.00
PRINT 233779 "R26" 2337.79
PRINT 2337.79 "R" 2337.79
PRINT 2337.79 "RO" 2338

PRINT 2337.79 "R00" 23377900
PRINT 2337.79 "R2" 2337.79
PRINT 2337.79 "R20" 23377900.00
PRINT 2337.79 "R24" 2337.79
PRINT 2337.79 "R26" 23.38

FMTDP function

In NLS mode, use the FMTDP function to format data for output in display positions rather than

character lengths.

Syntax

FMTDP (expression, format

mapname])

expression evaluates to the numeric or string value to be formatted. Any unmappable characters in
expression are assumed to have a display length of 1.

175

Chapter 1: Statements and functions

format is an expression that evaluates to a string of formatting codes. The syntax of the format
expression is:

[width] [fill] justification [edit] [mask]

The format expression specifies the width of the output field, the placement of background or fill
characters, line justification, editing specifications, and format masking. For complete syntax details,
see the FMT function, on page 172.

If format has a display length greater than 1, and there is only one display position left to fill, FMTDP
enters the extra fill character. The returned string can occupy more display positions than you
intended.

mapname is the name of an installed map. If mapname is not installed, the display positions of the
characters in expression are used. If any unmappable characters exist in expression, the display
length is 1, that is, the unmapped character displays as a single unmappable character. If mapname
is omitted, the map associated with the channel activated by the PRINTER ON statement is used;
otherwise, the map associated with the terminal channel (or print channel 0) is used.

You can also specify mapname as CRT, AUX, LPTR, and OS. These use the maps associated with
the terminal, auxiliary printer, print channel 0, or the operating system, respectively. If you specify
mapname as NONE, the string is not mapped.

If you execute FMTDP when NLS is disabled, the behavior is the same as for FMT. For more information
about display length, see the UniVerse NLS Guide.

FMTS function

Use the FMTS function to format elements of dynamic.array for output. Each element of the array is
acted upon independently and is returned as an element in a new dynamic array.

Syntax
FMTS (dynamic.array, format)
CALL -FMTS (return.array, dynamic.array, format)

CALL 'FMTS (return.array, dynamic.array, format)

format is an expression that evaluates to a string of formatting codes. The syntax of the format
expression is:

[width] [background] justification [edit] [mask]

The format expression specifies the width of the output field, the placement of background or fill
characters, line justification, editing specifications, and format masking. For complete syntax details,
see the FMT function, on page 172.

If dynamic.array evaluates to the null value, null is returned. If format evaluates to null, the FMTS
function fails and the program terminates with a runtime error message.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

FMTSDP function

In NLS mode, use the FMTSDP function to format elements of dynamic.array for output in display
positions rather than character lengths. Each element of the array is acted upon independently and
is returned as an element in a new dynamic array. Any unmappable characters in dynamic.array are
assumed to have a display length of 1.

176

FMUL function

Syntax

FMTSDP (dynamic.array, format [, mapname])

format is an expression that evaluates to a string of formatting codes. The syntax of the format
expression is:

[width] [background] justification [edit] [mask]

The format expression specifies the width of the output field, the placement of background or fill
characters, line justification, editing specifications, and format masking. For complete syntax details,
see the FMT function, on page 172.

If format has a display length greater than 1, and there is only one display position left to fill, FMTSDP
enters the extra fill character. The returned string can occupy more display positions than you intend.

mapname is the name of an installed map. If mapname is not installed, the display positions of the
characters in dynamic.array are used. If any unmappable characters exist in dynamic.array, the display
length is 1, that is, the unmapped character displays as a single unmappable character. If mapname

is omitted, the map associated with the channel activated by the PRINTER ON statement is used;
otherwise, the map associated with the terminal channel (or print channel 0) is used.

You can also specify mapname as CRT, AUX, LPTR, and OS. These use the maps associated with
the terminal, auxiliary printer, print channel 0, or the operating system, respectively. If you specify
mapname as NONE, the string is not mapped.

If dynamic.array evaluates to the null value, null is returned. If format evaluates to null, the FMTSDP
function fails and the program terminates with a run-time error message.

Note: If you execute FMTSDP when NLS is disabled, the behavior is the same as for FMTS function.

For more information about display length, see the UniVerse NLS Guide.

FMUL function

Use the FMUL function to perform floating-point multiplication on two numeric values. If either
number evaluates to the null value, null is returned. return.array equates to numberl multiplied by
number2.

This function is provided for compatibility with existing software. You can also use the * operator to
perform floating-point multiplication.
Syntax

FMUL (numberl, number?2)

CALL !FMUL (return.array, numberl, numberZ2)

Example

PRINT FMUL(.234,.567)
This is the program output:

0.1327

177

Chapter 1: Statements and functions

FOLD function

Use the FOLD function to divide a string into a number of substrings separated by field marks.

Syntax
FOLD (string, length)

CALL !FOLD (subdivided.string, string, length)

string is separated into substrings of length less than or equal to length. string is separated on blanks,
if possible, otherwise it is separated into substrings of the specified length.

subdivided.string contains the result of the FOLD operation.

If string evaluates to the null value, null is returned. If length is less than 1, an empty string is returned.
If length is the null value, the FOLD function fails and the program terminates with a runtime error
message.

Examples

PRINT FOLD("THIS IS A FOLDED STRING.",5)
This is the program output:

THISFIS AFFOLDEFDFSTRINFG.

In the following example, the blanks are taken as substring delimiters, and as no substring exceeds the
specified length of six characters, the output would be:

REDFMORANGEFMYELLOWFMGREENFMBLUEFMINDIGOFMVIOLET
The field mark replaces the space in the string:
A="RED ORANGE YELLOW GREEN BLUE INDIGO VIOLET"

CALL !FOLD (RESULT,A, 6)
PRINT RESULT

FOLDDP function

178

In NLS mode, use the FOLDDP function to divide a string into a number of substrings separated by
field marks. The division is in display positions rather than character lengths.

Syntax

FOLDDP (string, length [, mapname])

string is separated into substrings of display length less than or equal to length. string is separated on
blanks, if possible, otherwise it is separated into substrings of the specified length.

If string evaluates to the null value, null is returned. If length is less than 1, an empty string is returned.
If length is the null value, the FOLDDP function fails and the program terminates with a run-time error
message.

If you execute FOLDDP when NLS is disabled, the behavior is the same as for the FOLD function. For
more information about display length, see the UniVerse NLS Guide.

FOOTING statement

FOOTING statement

Use the FOOTING statement to specify the text and format of the footing to print at the bottom of each
page of output.

The ON clause specifies the logical print channel to use for output. print.channel is an expression that
evaluates to a number from -1 through 255. If you do not use the ON clause, logical print channel 0 is
used, which prints to the user’s terminal if PRINTER OFF is set (see the PRINTER statement, on page
301). Logical print channel -1 prints the data on the screen, regardless of whether a PRINTER ON
statement has been executed.

Syntax

FOOTING [ON print.channel] footing

footing is an expression that evaluates to the footing text and the control characters that specify the
footing’s format. You can use the following format control characters, enclosed in single quotation
marks, in the footing expression:

Control character Description

C[n] Prints footing line centered in a field of n blanks. If n is not specified, centers the
line on the page.

D Prints current date formatted as dd mmm yyyy.

G Inserts gaps to format footings.

I Resets page number, time, and date for PIOPEN flavor only.

Q Allows the use of the] » and \ characters.

R[n] Inserts the record ID left-justified in a field of n blanks.

S Left-justified, inserted page number.

T Prints current time and date formatted as dd mmm yyyy hh:mm:ss. Time is in 12-
hour format with “am” or “pm” appended.

\ Prints current time and date formatted as dd mmm yyyy hh:mm:ss. Time is in
12-hour format with “am” or “pm” appended. Do not put the backslash inside
single quotation marks.

L Starts a new line.

] Starts a new line. Do not put the right bracket inside single quotation marks.

P[n] Prints current page number right-justified in a field of n blanks. The default
value for n is 4.

A Prints current page number right-justified in a field of n blanks. The default
value for n is 4. Do not put the caret (*) inside single quotation marks.

N Suppresses automatic paging.

Two single quotation marks (' ') print one single quotation mark in footing text.

When the program is executed, the format control characters produce the specified results. You can
specify multiple options in a single set of quotation marks.

If either print.channel or footing evaluates to the null value, the FOOTING statement fails and the
program terminates with a runtime error message.

Pagination begins with page 1 and increments automatically on generation of each new page or upon
encountering the SPAGE statement.

179

Chapter 1: Statements and functions

180

Output to a terminal or printer is paged automatically. Use the N option in either a HEADING
statement or a FOOTING statement to turn off automatic paging.

Using] * and \ in footings

The characters] » and \ are control characters in headings and footings. To use these characters as
normal characters, you must use the Q option and enclose the control character in double or single
quotation marks. You only need to specify Q once in any heading or footing, but it must appear before
any occurrence of the characters] * and \.

Formatting the footing text

The control character G (for gap) can be used to add blanks to text in footings to bring the width of a
line up to device width. If G is specified once in a line, blanks are added to that part of the line to bring
the line up to the device width. If G is specified at more than one point in a line, the blank characters
are distributed as evenly as possible to those points.

See the following examples, in which the vertical bars represent the left and right margins:

Specification Result

"Hello there" |Hello there |
"'G'Hello there" | Hello there]
"'G'Hello there'G"" | Hello there |
"Hello'G'there" |Hello there|
"'G'Hello'G'there'G"" | Hello there |

The minimum gap size is 0 blanks. If a line is wider than the device width even when all the gaps are 0,
the line wraps, and all gaps remain 0.

If NLS is enabled, FOOTING calculates gaps using varying display positions rather than character
lengths. For more information about display length, see the UniVerse NLS Guide.

Left-justified inserted page number

The control character S (for sequence number) is left-justified at the point where the S appears in the
line. Only one character space is reserved for the number. If the number of digits exceeds 1, any text to
the right is shifted right by the number of extra characters required.

For example, the statement:
FOOTING "This is page 'S' of 100000"

results in footings such as:

This is page 3 of 100000
This is page 333 of 100000
This is page 3333 of 100000

INFORMATION flavor

Page number field:

In an INFORMATION flavor account the default width of the page number field is the length of the

page number. Use the n argument to P to set the field width of the page number. You can also include
multiple P characters to specify the width of the page field, or you can include spaces in the text that
immediately precedes a P option. For example, 'PPP' prints the page number right-justified in a field of
three blanks.

FOR statement

Note: In all other flavors, 'PPP' prints three identical page numbers, each in the default field of
four.

Date format:

In an INFORMATION flavor account the default date format is mm-dd-yy, and the default time format is
24-hour style.

In PICK, IN2, REALITY, and IDEAL flavor accounts, use the HEADER.DATE option of the SOPTIONS
statement to cause HEADING statement, FOOTING statement, and SPAGE statement to behave as they
do in INFORMATION flavor accounts.

PIOPEN flavor

Right-Justified Overwriting Page Number:

The control character P (for page) is right-justified at the point at which the P appears in the line. Only
one character space is reserved for the number. If the number of digits exceeds 1, literal characters to
the left of the initial position are overwritten. Normally you must enter a number of spaces to the left
of the P to allow for the maximum page number to appear without overwriting other literal characters.
For example, the statement:

FOOTING "This is page 'P' of 100000"

results in footings such as:

This is page 3 of 100000
This is pag333 of 100000
This is pa3333 of 100000

Resetting the page number and the date:

The control character | (for initialize) resets the page number to 1, and resets the date.

FOR statement

Use the FOR statement to create a FOR...NEXT program loop. A program loop is a series of statements
that execute repeatedly until the specified number of repetitions have been performed or until
specified conditions are met.

Syntax

FOR variable = start TO end [STEP increment]
[loop.statements]
[CONTINUE | EXIT]
{WHILE | UNTIL} expression]
[loop.statements]
[CONTINUE | EXIT]
NEXT [variable]

variable is assigned the value of start, which is the initial value of the counter. end is the end value of
the counter.

The loop.statements that follow the FOR clause execute until the NEXT statement is encountered. Then
the counter is adjusted by the amount specified by the STEP clause.

181

Chapter 1: Statements and functions

182

At this point a check is performed on the value of the counter. If it is less than or equal to end, program
execution branches back to the statement following the FOR clause and the process repeats. Ifit is
greater than end, execution continues with the statement following the NEXT statement.

The WHILE condition specifies that as long as the WHILE expression evaluates to true, the loop
continues to execute. When the WHILE expression evaluates to false, the loop ends, and program
execution continues with the statement following the NEXT statement. If a WHILE or UNTIL expression
evaluates to the null value, the condition is false.

The UNTIL condition specifies that the loop continues to execute only as long as the UNTIL expression
evaluates to false. When the UNTIL expression evaluates to true, the loop ends and program execution
continues with the statement following the NEXT statement.

expression can also contain a conditional statement. As expression you can use any statement that
takes a THEN or an ELSE clause, but without the THEN or ELSE clause. When the conditional statement
would execute the ELSE clause, expression evaluates to false; when the conditional statement would
execute the THEN clause, expression evaluates to true. The LOCKED clause is not supported in this
context.

You can use multiple WHILE and UNTIL clauses in a FOR...NEXT loop.

Use the CONTINUE statement within FOR...NEXT to transfer control to the next iteration of the loop,
from any point in the loop.

Use the EXIT statement within FOR...NEXT to terminate the loop from any point within the loop.

If STEP is not specified, increment is assumed to be 1. If increment is negative, the end value of the
counter is less than the initial value. Each time the loop is processed, the counter is decreased by the
amount specified in the STEP clause. Execution continues to loop until the counter is less than end.

The body of the loop is skipped if start is greater than end, and increment is not negative. If start, end,
or increment evaluates to the null value, the FOR statement fails and the program terminates with a
runtime error message.

Nested loops

You can nest FOR...NEXT loops. That is, you can put a FOR...NEXT loop inside another FOR...NEXT
loop. When loops are nested, each loop must have a unique variable name as its counter. The NEXT
statement for the inside loop must appear before the NEXT statement for the outside loop.

If you omit the variables in the NEXT statement, the NEXT statement corresponds to the most recent
FOR statement. If a NEXT statement is encountered without a previous FOR statement, an error occurs
during compilation.

INFORMATION flavor

In an INFORMATION flavor account the FOR variable is checked to see if it exceeds end before
increment is added to it. That means that the value of the FOR variable does not exceed end at the
termination of the loop. In IDEAL, PICK, IN2, and REALITY flavors the increment is made before the
bound checking. In this case it is possible for variable to exceed end. Use the FOR.INCR.BEF option of
the SOPTIONS statement to get IDEAL flavor behavior in an INFORMATION flavor account.

Examples

In the following example, the loop is executed 100 times or until control is transferred by one of the
statements in the loop:

FOR VAR=1 TO 100
NEXT VAR

Here are more examples of FOR...NEXT loops:

FOR statement

Source code

Program output

FORX=1TO 10 X=1
PRINT "X=",X X=2
NEXT X X=3

X=4

X=5

X=6

X=7

X=8

X=9

X=10
FORTEST=1TO 10 STEP 2 TEST=1
PRINT "TEST=":TEST TEST=3
NEXT TEST TEST=5

TEST=7

TEST=9
FOR SUB=50 TO 20 STEP -10 VALUE IS 50
PRINT 'VALUE IS ',SUB VALUE IS 40
NEXT VALUE IS 30

VALUE IS 20
FORA=1TO 4 A:B=11
FORB=1TOA A:B=21
PRINT "A:B=",A:B A:B=22
NEXT B A:B=31
NEXT A A:B=32

A:B=33

A:B=41

A:B=42

A:B=43

A:B=44
PRINT 'LOOP 1 LOOP 1:
SUM=0 SUM=1
FORA=1TO 10 UNTIL SUM>20 SUM=5
SUM=SUM+A*A SUM=14
PRINT "SUM=",SUM SUM=30

NEXT

183

Chapter 1: Statements and functions

Source code

Program output

PRINT 'LOOP 2!

Y=15

Z=0

FOR X=1TO 20 WHILE Z<Y
Z=7+X

PRINT "z=",Z

NEXT X

LOOP2:
Z=1
Z=3
Z=6
Z=10
Z=15

FORMLIST statement

The FORMLIST statement is the same as the SELECT statements.

Syntax

FORMLIST [variable] [TO list.number]

FSUB function

[ON ERROR statements]

Use the FSUB function to perform floating-point subtraction on two numeric values. number2 is
subtracted from numberl. If either number evaluates to the null value, null is returned. result equates

to numberl minus number2.

This function is provided for compatibility with existing software. You can also use the - operator to

perform floating-point subtraction.

Syntax

FSUB (numberl, number?)

CALL !FSUB (result, numberl, number?2)

Example

PRINT FSUB(.234,.567)
This is the program output:

-0.333

FUNCTION statement

Use the FUNCTION statement to identify a user-written function and to specify the number and names
of the arguments to be passed to it. The FUNCTION statement must be the first noncomment line in
the user-written function. A user-written function can contain only one FUNCTION statement.

184

FUNCTION statement

Syntax

FUNCTION [name] [([MAT] wvariable [, [MAT] variable ..])]

name is specified for documentation purposes; it need not be the same as the function name or the
name used to reference the function in the calling program. name can be any valid variable name.

variable is an expression that passes values between the calling programs and the function. variables
are the formal parameters of the user-written function. When actual parameters are specified as
arguments to a user-written function, the actual parameters are referenced by the formal parameters
so that calculations performed in the user-written function use the actual parameters.

Separate variables by commas. Up to 254 variables can be passed to a user-written function. To pass
an array, you must precede the array name with the keyword MAT. When a user-written function

is called, the calling function must specify the same number of variables as are specified in the
FUNCTION statement.

An extra variable is hidden so that the user-written function can use it to return a value. An extra
variable is retained by the user-written function so that a value is returned by the RETURN (value)
statement. This extra variable is reported by the MAP and MAKE.MAP.FILE commands. If you use the
RETURN statement in a user-written function and you do not specify a value to return, an empty string
is returned by default.

The program that calls a user-written function must contain a DEFFUN statement that defines the
user-written function before it uses it. The user-written function must be cataloged in either a local
catalog or the system catalog, or it must be a record in the same object file as the calling program.

If the user-defined function recursively calls itself within the function, a DEFFUN statement must
precede it in the user-written function.

Examples

The following user-defined function SHORT compares the length of two arguments and returns the
shorter:

FUNCTION SHORT (A, B)

AL = LEN(A)

BL = LEN (B)

IF AL < BL THEN RESULT = A ELSE RESULT = B
RETURN (RESULT)

The following example defines a function called MYFUNC with the arguments or formal parameters

A, B, and C. Itis followed by an example of the DEFFUN statement declaring and using the MYFUNC
function. The actual parameters held in X, Y, and Z are referenced by the formal parameters A, B, and C
so that the value assigned to T can be calculated.

FUNCTION MYFUNC (A, B, C)

7= ...
RETURN (Z)

END
DEFFUN MYFUNC (X, Y, Z)

T = MYFUNC(X, Y, 2Z)
END

185

Chapter 1: Statements and functions

GCDISTANCE function

The GCDISTANCE function calculates the great-circle distance (in meters) between two points on the
surface of Earth.

Note: This function is supported for Linux and Solaris only.

Syntax

GCDISTANCE (latl, lonl,lat2,lonZ2)

Parameters

Parameter Description

latl Latitude of the first point.

lonl Longitude of the first point.
lat2 Latitude of the second point.
lon2 Longitude of the second point.
Example

PRINT GCDISTANCE (39.7, -105, 38.9, 121.606)
This function returns:

10073112.4749

generateKey function

The generateKey() function generates a public key cryptography key pair and encrypts the
private key. You should then put it into an external key file protected by the provided pass phrase.
The protected private key can later be used by UniData and UniVerse SSL sessions (through
setPrivateKey()) to secure communication. The public key will not be encrypted.

Syntax

generateKey (privKey, pubKey, format, keyLoc, algorithm, keyLength,
passPhrase, paramFile)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

privKey A string storing the generated private key or name of the file storing the
generated private key.

pubKey A string storing the generated public key or name of the file storing the
generated public key.

format 1-PEM(SSL_FMT_PEM)
2 - DER (SSL_FMT_DER)

186

generateKey function

Parameter Description

keyLoc 1- Put the key into string privKey/pubKey. (SSL_LOC_STRING)
2 - Put the key into a file. (SSL_LOC_FILE)

algorithm Flag

1- RSA key (SSL_KEY_RSA)
2- DSA key (SSL_KEY_DSA)

keyLength Number of bits for the generated key. Between 512 and 16384.
passPhrase A string storing the passPhrase to protect the private key.
paramfile A parameter file needed by DSA key generation.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.

1 Key pair cannot be generated.

2 Unrecognized key file format.

3 Unrecognized encryption algorithm.

4 Unrecognized key type or invalid key length (must be between 512 and

16384).
Empty pass phrase.
Invalid DSA parameter file.

Random number generator cannot be seeded properly.

| N|oo|u,g

Private key cannot be written.

The generated private key will be in PKCS #8 form and is encoded in either PEM or DER format
specified by format. The generated public key is in standard form. If keyLoc is 1 (SSL_LOC_STRING), the
resulting keys are put into dynamic arrays, privKey and pubKey, respectively. Otherwise they are put
into OS level files specified by privKey and pubKey.

This function can generate two types of keys, RSA and DSA, specified by algorithm. The key length is
determined by keyLength and must be in the range of 512 to 16384.

For DSA key generation, paramFile must be specified. If a parameter file is provided through paramFile
and it contains valid parameters, the parameters are used to generate a new key pair. If the specified
file does not exist or does not contain valid parameters, a new group of parameters will be generated
and subsequently used to generate a DSA key pair. The generated parameters are then written to the
specified parameter file. Since DSA parameter generation is time consuming, it is recommended that a
parameter file be used to generate multiple DSA key pairs.

To make sure the private key is protected, a pass phrase must be provided. A one-way hash function
will be used to derive a symmetric key from the pass phrase to encrypt the generated key. When
installing the private key into a security context with the setPrivateKey() function, or generating
a certificate request with the generateCertRequest() function, this pass phrase must be supplied
to gain access to the private key.

187

Chapter 1: Statements and functions

generateKey function

188

The generateKey() function generates a public key cryptography key pair and encrypts the
private key. You should then put it into an external key file protected by the provided pass phrase.
The protected private key can later be used by UniData and UniVerse SSL sessions (through
setPrivateKey()) to secure communication. The public key will not be encrypted.

Syntax

generateKey (privKey, pubKey, format, keyLoc, algorithm, keyLength,
passPhrase, paramFile)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

privKey A string storing the generated private key or name of the file storing the
generated private key.

pubKey A string storing the generated public key or name of the file storing the
generated public key.

format 1- PEM(SSL_FMT_PEM)
2 - DER (SSL_FMT_DER)

keyLoc 1- Put the key into string privKey/pubKey. (SSL_LOC_STRING)
2 - Put the key into a file. (SSL_LOC_FILE)

algorithm Flag

1- RSA key (SSL_KEY_RSA)
2- DSA key (SSL_KEY_DSA)

keyLength Number of bits for the generated key. Between 512 and 16384.
passPhrase A string storing the passPhrase to protect the private key.
paramFile A parameter file needed by DSA key generation.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.

1 Key pair cannot be generated.

2 Unrecognized key file format.

3 Unrecognized encryption algorithm.

4 Unrecognized key type or invalid key length (must be between 512 and
16384).
Empty pass phrase.

Invalid DSA parameter file.

Random number generator cannot be seeded properly.

(N[O O,

Private key cannot be written.

GES function

The generated private key will be in PKCS #8 form and is encoded in either PEM or DER format
specified by format. The generated public key is in standard form. If keyLoc is 1 (SSL_LOC_STRING), the
resulting keys are put into dynamic arrays, privKey and pubKey, respectively. Otherwise they are put
into OS level files specified by privKkey and pubKey.

This function can generate two types of keys, RSA and DSA, specified by algorithm. The key length is
determined by keyLength and must be in the range of 512 to 16384.

For DSA key generation, paramFile must be specified. If a parameter file is provided through paramFile
and it contains valid parameters, the parameters are used to generate a new key pair. If the specified
file does not exist or does not contain valid parameters, a new group of parameters will be generated
and subsequently used to generate a DSA key pair. The generated parameters are then written to the
specified parameter file. Since DSA parameter generation is time consuming, it is recommended that a
parameter file be used to generate multiple DSA key pairs.

To make sure the private key is protected, a pass phrase must be provided. A one-way hash function
will be used to derive a symmetric key from the pass phrase to encrypt the generated key. When
installing the private key into a security context with the setPrivateKey() function, or generating
a certificate request with the generateCertRequest() function, this pass phrase must be supplied
to gain access to the private key.

GES function

Use the GES function to test if elements of one dynamic array are greater than or equal to
corresponding elements of another dynamic array.

Syntax
GES (arrayl, arrayZ2)
CALL -GES (return.array, arrayl, arrayZz)

CALL !GES (return.array, arrayl, arrayZz)

Each element of arrayl is compared with the corresponding element of array2. If the element from
arrayl is greater than or equal to the element from array2, a 1 is returned in the corresponding
element of a new dynamic array. If the element from arrayl is less than the element from array2,a 0
is returned. If an element of one dynamic array has no corresponding element in the other dynamic
array, the undefined element is evaluated as empty, and the comparison continues.

If either element of a corresponding pair is the null value, null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

GET statements

Use GET statements to read a block of data from an input stream associated with a device, such

as a serial line or terminal. The device must be opened with the OPENDEV statement or OPENSEQ
statement. Once the device has been opened, the GET statements read data from the device. The GET
statements do not perform any pre- or postprocessing of the data stream, nor do they control local
echo characteristics. These aspects of terminal control are handled either by the application or by the
device driver. The behavior of certain devices can be managed through the TTYSET/TTYGET interface.

Syntax

GET [X] read.var[, length] [SETTING read.count] FROM device
[UNTIL eop.char.list] [RETURNING last.char.read]

189

Chapter 1: Statements and functions

190

[WAITING seconds] [THEN statements] [ELSE statements]

Note: The WAITING clause is not supported on Windows NT.

Use the GETX statement to return the characters in ASCII hexadecimal format. For example, the
sequence of 8-bit character “abcde” is returned as the character string “6162636465”. However, the
value returned in the last.char.read variable is in standard ASCII character form.

read.var is the variable into which the characters read from device are stored. If no data is read,
read.var is set to the empty string.

length is the expression evaluating to the number of characters read from the data stream; if length
and timeout are not specified, the default length is 1. If length is not specified, but an eop.char.list
value is included, no length limit is imposed on the input.

read.count is the variable that records the actual count of characters read and stored in read.var. This
may differ from length when a timeout condition occurs or when a recognized end-of-packet character
is detected.

device is a valid file variable resulting from a successful OPENDEV or OPENSEQ statement. This is the
handle to the I/O device that supplies the data stream for the operation of the GET statements.

eop.char.list is an expression that evaluates to a recognized end-of-packet delimiters. The GET
operation terminates if a valid end-of-packet character is encountered in the data stream before the
requested number of characters is read.

last.char.read is a variable that stores the last character read by the GET operation. If no data is read,
read.var is set to the empty string. If the input terminated due to the maximum number of characters
being read or because of a timeout condition, an empty string is returned.

seconds specifies the number of seconds the program should wait before the GET operation times out.

Terminating conditions

GET statements read data from the device’s input stream until the first terminating condition is
encountered. The following table lists the possible terminating conditions:

Condition Description
Requested read length has The read is fully satisfied. read.var contains the characters read, and
been satisfied last.char.read contains an empty string. Program control passes to

the THEN clause if present. The default requested read length is one
character unless an end-of-packet value has been selected (in which
case, no length limit is used).

Recognized end-of-packet The read is terminated by a special application-defined characterin
character has been processed |the data stream. The data read to this point, excluding the end-of-
packet character, is stored in read.var. The end-of-packet character
is stored in last.char.read. Program control passes to the THEN
clause if present. This terminating condition is only possible if the
UNTIL clause has been specified. If there is no UNTIL clause, no end-

of-packet characters are recognized.

GET statements

Condition

Description

Timeout limit has expired

The read could not be satisfied within the specified time limitation.

If no characters have been read, read.var and last.char.read are set
to the empty string, and read.count is set to 0. The system status
code is set to 0 and may be checked with the STATUS function.
Control passes to the ELSE clause if present. This condition is

only possible if the WAITING clause is specified. In the absence

of a WAITING clause, the application waits until one of the other
terminating conditions is met.

Device input error An unrecoverable error occurred on the device. Unrecoverable

errors can include EOF conditions and operating system reported I/
O errors. In this case, the data read to this point is stored in read.var,
and the empty string is stored in last.char.read. If no characters have
been read, read.var and last.char.read are set to the empty string,
and read.count is set to 0. The system status code is set to a nonzero
value and may checked with the STATUS function. Control passes
to the ELSE clause if present.

Note: Under all termination conditions, read.count is set to the number of characters read from
the input data stream.

THEN and ELSE clauses

For GET statements, the THEN and ELSE clauses are optional. They have different meanings and
produce different results, depending on the conditions specified for terminal input.

The following rules apply only if the THEN or ELSE clauses are specified:

If the UNTIL clause is used without a WAITING clause or an expected length, the GET statement
behaves normally. The program waits indefinitely until a termination character is read, then
executes the THEN clause. The ELSE clause is never executed.

If the WAITING clause is used, the GET statement behaves normally, and the ELSE clause is
executed only if the number of seconds for timeout has elapsed. If the input terminates for any
other reason, it executes the THEN clause.

If the WAITING clause is not used and there is a finite number of characters to expect from the
input, then only the type-ahead buffer is examined for input. If the type-ahead buffer contains the
expected number of characters, it executes the THEN clause; otherwise it executes the ELSE clause.
If the type-ahead feature is turned off, the ELSE clause is always executed.

In a special case, the ELSE clause is executed if the line has not been attached before executing the
GET statement.

In summary, unless the WAITING clause is used, specifying the THEN and ELSE clauses causes the GET
statement to behave like an INPUTIF ...FROM statement. The exception to this is the UNTIL clause
without a maximum length specified, in which case the GET statement behaves normally and the ELSE
clause is never used.

Example

The following code fragment shows how the GET statement reads a number of data buffers
representing a transaction message from a device:

DIM SAVEBUFFER(10)

SAVELIMIT = 10
OPENDEV "TTY10"™ TO TTYLINE ELSE STOP "CANNOT OPEN TTY1O0"
I =1

191

Chapter 1: Statements and functions

LOOP

GET BUFFER, 128 FROM TTYLINE UNTIL CHAR(10) WAITING 10
ELSE

IF STATUS ()

THEN PRINT "UNRECOVERABLE ERROR DETECTED ON DEVICE,
"IM SAVEBUFFER(10)

SAVELIMIT = 10

OPENDEV "TTY10" TO TTYLINE ELSE STOP "CANNOT OPEN TTY10"
I =1

LOOP

GET BUFFER, 128 FROM TTYLINE UNTIL CHAR(10)

WAITING 10

ELSE

IF STATUS ()

THEN PRINT "UNRECOVERABLE ERROR DETECTED ON DEVICE,":
ELSE PRINT "DEVICE TIMEOUT HAS OCCURRED, ":

PRINT "TRANSACTION CANNOT BE COMPLETED."

STOP

END

WHILE BUFFER # "QUIT" DO

IF I > SAVELIMIT

THEN

SAVELIMIT += 10

DIM SAVEBUFFER (SAVELIMIT)

END

SAVEBUFFER (I) = BUFFER

I +=1

REPEAT

getCipherSuite function

The getCipherSuite() function obtains information about supported cipher suites, their version,
usage, strength, and type for the specified security context. The result is put into the dynamic array
ciphers, with one line for each cipher suite, separated by a field mark (@FM).

Syntax

getCipherSuite (context,ciphers)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
context The security context handle.
ciphers A dynamic array containing the cipher strings delimited by @FM.

Return code status

The following table describes the status of each return code.

Return code Status
0 Success.
1 Invalid security context handle.

192

getlpv

Return code Status

2 Unable to obtain information.

The format of the string for one cipher suite is as follows:

Suite, version, key-exchange, authentication, encryption, digest, export

Refer to the cipher tables in setCipherSuite function, on page 354 for definitions of all suites. The
following is an example of a typical suite.

EXP-DES-CBC-SHA SSLv3 Kx=RSA(512) Au=RSA Enc=DES (40) Mac=SHAl
export

The suite name is EXP-DES-CBC-SHA. It is specified by SSLv3. The Key-exchange algorithm is RSA with
512-bit key. The authentication is also done by RSA algorithm. The data encryption uses DES (Data
Encryption Standard, an NIST standard) with CBC mode. MAC (Message Authentication Code, a hash
method to calculate message digest) will be done with SHA-1 (Secure Hash Algorithm 1, also an NIST
standard) algorithm. The suite is exportable.

Only those methods that are active for the protocol will be retrieved.

getlpv

Use the get Tpv function to display the current IPv setting on the whole system or a particular
network's connection.

Syntax

getIpv ([networkexpr])

With no arguments, get Ipv returns the current IPv setting. For networkexpr, enter either "socket" or
"uvnet" to view only that particular network's connection displays.

Note: If you opened a server socket with "", the server socket will listen on 0.0.0.0 using IPv6 and
is able to accept connection from IPv4 and IPv6 clients. If the server socket is bound to a particular
address, the client connection must match the exact server network address (DNS domain or
otherwise) and use the same IPv setting as well.

GETX statement

Use the GETX statement to read a block of data from an input stream and return the characters in
ASCII hexadecimal format.

For details, see the GET statements, on page 189.

GET(ARG.) statement

Use the GET(ARG.) statement to retrieve the next command line argument. The command line is
delimited by blanks, and the first argument is assumed to be the first word after the program name.
When a cataloged program is invoked, the argument list starts with the second word in the command
line.

193

Chapter 1: Statements and functions

Syntax

GET (ARG. [,arg#]) variable [THEN statements] [ELSE statements]

Blanks in quoted strings are not treated as delimiters and the string is treated as a single argument.
For example, "54 76" returns 54 76.

arg# specifies the command line argument to retrieve. It must evaluate to a number. If arg#is not
specified, the next command line argument is retrieved. The retrieved argument is assigned to
variable.

THEN and ELSE statements are both optional. The THEN clause is executed if the argument is found.
The ELSE clause is executed if the argument is not found. If the argument is not found and no ELSE
clause is present, variable is set to an empty string.

If no arg# is specified or if arg# evaluates to 0, the argument to the right of the last argument retrieved
is assigned to variable. The GET statement fails if arg# evaluates to a number greater than the number
of command line arguments or if the last argument has been assigned and a GET with no arg# is used.
To move to the beginning of the argument list, set arg# to 1.

If arg# evaluates to the null value, the GET statement fails and the program terminates with a run-time
error message.

Example

In the following example, the command is:
RUN BP PROG ARGl ARG2 ARG3

and the program is:

A=5;B=2
GET (ARG.) FIRST
GET (ARG., B) SECOND
GET (ARG.) THIRD
GET (ARG., 1) FOURTH
GET (ARG.,A-B) FIFTH
PRINT FIRST

PRINT SECOND
PRINT THIRD
PRINT FOURTH
PRINT FIFTH

This is the program output:

ARG1
ARG2
ARG3
ARG1
ARG3

If the command line is changed to RUN PROG, the system looks in the file PROG for the program with
the name of the first argument. If PROG is a cataloged program, the command line would have to be
changed to PROG ARG1 ARG2 ARG3 to get the same results.

getHTTPDefault function

194

The getHTTPDefault function returns the default values of the HTTP settings. See the section
under setHTTPDefault for additional information.

GETLIST statement

Syntax

getHTTPDefault (option, value)

option The following options are currently defined:

PROXY NAME
PROXY PORT
VERSION
BUFSIZE
AUTHENTICATE
HEADERS

value is a string containing the appropriate option value.

Return codes

The following table describes the status of each return code.

Return code Status
0 Success.
1 Invalid option.

GETLIST statement

Use the GETLIST statement to activate a saved select list so that a READNEXT statement can use it.

Syntax

GETLIST listname [TO list.number] [SETTING variable]
{THEN statements [ELSE statements] | ELSE statements}

listname is an expression that evaluates to the form:
record.ID

or:

record.IDaccount.name

record.ID is the record ID of a select list in the &SAVEDLISTS& file. If account.name is specified, the
&SAVEDLISTS& file of that account is used instead of the one in the local account.

If listname evaluates to the null value, the GETLIST statement fails and the program terminates with a
run-time error message.

The TO clause puts the list in a select list numbered 0 through 10. If list.number is not specified, the list
is saved as select list 0.

The SETTING clause assigns the count of the elements in the list to variable. The system variable
@SELECTED is also assigned this count whether or not the SETTING clause is used. If the list is
retrieved successfully, even if the list is empty, the THEN statements execute; if not, the ELSE
statements execute.

195

Chapter 1: Statements and functions

PICK, REALITY, and IN2 flavors

PICK, REALITY, and IN2 flavor accounts store select lists in list variables instead of numbered select
lists. In those accounts, and in programs that use the VAR.SELECT option of the SOPTIONS statement,
the syntax of the GETLIST statement is:

GETLIST listname [TO list.variable] [SETTING variable] {THEN statements [ELSE statements] | ELSE
statements}

GETLOCALE function

In NLS mode use the GETLOCALE function to return the names of specified categories of the current
locale. The GETLOCALE function also returns the details of any saved locale that differs from the
current one.

Syntax

GETLOCALE (category)

category is one of the following tokens that are defined in the UniVerse include file UVNLSLOC.H:

Category Description

UVLCSALL The names of all the current locale categories as a dynamic array. The
elements of the array are separated by field marks. The categories are in the
order Time, Numeric, Monetary, Ctype, and Collate.

UVLCSSAVED A dynamic array of all the saved locale categories.
UVLCSTIME The setting of the Time category.

UVLCSNUMERIC The setting of the Numeric category.
UVLCSMONETARY The setting of the Monetary category.
UVLCSCTYPE The setting of the Ctype category.
UVLCSCOLLATE The setting of the Collate category.

If the GETLOCALE function fails, it returns one of the following error tokens:

Error token Description

LCESNO.LOCALES |UniVerse locales are not enabled.
LCE Category is invalid.
$BAD.CATEGORY

For more information about locales, see the UniVerse NLS Guide.

GETREM function

196

Use the GETREM function after the execution of a REMOVE statement, a REMOVE function, or
a REVREMOVE statement, to return the numeric value for the character position of the pointer
associated with dynamic.array.

Syntax

GETREM (dynamic.array)

dynamic.array evaluates to the name of a variable containing a dynamic array.

getSocketErrorMessage function

The returned value is an integer. The integer returned is one-based, not zero-based. If no REMOVE
statements have been executed on dynamic.array, 1is returned. At the end of dynamic.array, GETREM
returns the length of dynamic array plus 1. The offset returned by GETREM indicates the first character
of the next dynamic array element to be removed.

Example

DYN = "THIS":Q@FM:"HERE":Q@FM:"STRING"
REMOVE VAR FROM DYN SETTING X
PRINT GETREM (DYN)

This is the program output:
5

getSocketErrorMessage function

Use the getSocketErrorMessage() function to translate an error code into a text error message.

This function works with all socket functions. The return status of those functions can be passed into
this function to get the corresponding error message.

Syntax

getSocketErrorMessage (errCode, errMsg)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
errCode The status return code sent by the socket functions.
errMsg A string containing corresponding error text.

Return codes

The following table describes the return code of each mode.

Return code Description
0 Success.
1 Invalid error code.

getSocketIinformation function

Use the getSocketInformation() function to obtain information about a socket connection.

Syntax

getSocketInformation (socket handle, self or peer, socket info)

Parameters

The following table describes each parameter of the syntax.

197

Chapter 1: Statements and functions

Parameter Description

socket_handle A handle to the open socket.

self_or_ peer Get information on the self end or the peer end of the socket. Specify 0 to
return information from the peer end and non-zero for information from
the self end.

socket_info Dynamic array containing information about the socket connection. For
information about the elements of this dynamic array, see the following
table.

Elements

The following table describes each element of the socket_info dynamic array.

Element Description

1 Open or closed

2 Name or IP

3 Port number

4 Secure or nonsecure
5 Blocking mode

Return codes

The following table describes the status of each return code.

Return codes Status
0 Success.
Non-zero See Socket function error return codes, on page 599.

getSocketMap function

The getSocketMap() function gets the NLS map associated with the input socket handle with the
input socket handle aSocket.

Syntax

getSocketMap (aSocket, mapname)

aSocket is the socket handle from openSocket() or acceptConnection(), or0. If aSocket is not 0,
getSocketMap gets the NLS map associated with the input socket handle. If aSocket is 0, it gets the

current default NLS map.

getSocketOptions function

198

The getSocketOptions() function gets the current value for a socket option associated with a
socket of any type.

Syntax

getSocketOptions (socket handle, options)

getSocketOptions function

Parameters

The following table describes each parameter of the syntax.

Parameter

Description

socket_handle

The socket handle from openSocket(), acceptSocket(), or
initServerSocket().

options

A dynamic array containing information about the socket options and
their current settings. When querying for options, the dynamic array is
configured as:

optNamel<FM>
optName2<FM>
optName...

When the options are returned, the dynamic array is configured as:

optNamel<VM=>optValuela[<VM>optValuelb]<FM>
optName2<VM=>optValue2a[<VM>optValue2b]<FM>
optName3...

Where optName is specified by the caller and must be an option name
string listed below. For all options other than LINGER, the first optValue
specifies whether the option is ON or OFF and must be one of two
possible values: “1” for ON or “2” for OFF. The second optValue is
optional and can hold additional data for a specific option.

For the LINGER option, the first value will be zero for OFF and non-zero
for ON. The second optValue is the timeout value, which is the number
of time units to wait before closing the socket. The timeout value's
unit type (seconds, milliseconds, and so forth) is dependent on the
implementation of the SELECT() function on your operating system.

Available options

The following table describes the available options (case-sensitive) for get SocketOptions().

Option Description

DEBUG Enable/disable recording of debug information.

REUSEADDR Enable/disable the reuse of a location address (default).

KEEPALIVE Enable/disable keeping connections alive.

DONTROUTE Enable/disable routing bypass for outgoing messages.

LINGER Linger on close if data is present.

BROADCAST Enable/disable permission to transmit broadcast messages.

OOBINLINE Enable/disable reception of out-of-band data in band.

SNDBUF Get buffer size for output (default 4KB).

RCVBUF Get buffer size for input (default 4KB).

TYPE Get the type of the socket. Refer to the socket . hfile for more
information.

ERROR Get and clear error on the socket.

Return codes

The following table describes the status of each return code.

199

Chapter 1: Statements and functions

Return code Description
0 Success.
Non-zero See Socket function error return codes, on page 599.

GOSUB statement

200

Use the GOSUB statement to transfer program control to an internal subroutine referenced by
statement.label. A colon (:) is optional in GOSUB statements, even though it is required after
nonnumeric statement labels at the beginning of program lines.

Syntax
GOSUB statement.label [:]

GO SUB statement.label [:]

Use the RETURN statement at the end of the internal subroutine referenced by the GOSUB statement,
to transfer program control to the statement following the GOSUB statement.

Use the RETURN TO statement at the end of an internal subroutine to transfer control to a location in
the program other than the line following the GOSUB statement. In this case, use statement.label to
refer to the target location.

Be careful with the RETURN TO statement, because all other GOSUBs or CALLs active when the GOSUB
is executed remain active, and errors can result.

A program can call a subroutine any number of times. A subroutine can also be called from within
another subroutine; this process is called nesting subroutines. You can nest up to 256 GOSUB calls.

Subroutines can appear anywhere in the program but should be readily distinguishable from the main
program. To prevent inadvertent entry into the subroutine, precede it with a STOP statement, END
statement, or GOTO statement that directs program control around the subroutine.

Example

VAR='"'ABKL1234"'
FOR X=1 TO LEN (VAR)
Y=VAR[X, 1]
GOSUB 100
NEXT X
STOP
100*
IF Y MATCHES 'IN' THEN RETURN TO 200
PRINT 'ALPHA CHARACTER IN POSITION ', X
RETURN
200%*
PRINT 'NUMERIC CHARACTER IN POSITION ', X
STOP

This is the program output:

ALPHA CHARACTER IN POSITION 1
ALPHA CHARACTER IN POSITION 2
ALPHA CHARACTER IN POSITION 3
ALPHA CHARACTER IN POSITION 4
NUMERIC CHARACTER IN POSITION 5

GOTO statement

GOTO statement

Use the GOTO statement to transfer program control to the statement specified by statement.label. A
colon (:) is optional in GOTO statements.

If the statement referenced is an executable statement, that statement and those that follow are
executed. If it is a nonexecutable statement, execution proceeds at the first executable statement
encountered after the referenced statement.

Syntax

GO[TO] statement.label [:]

GO TO statement.label [:]

Example

X=80
GOTO 10
STOP

*
10~*
IF X>20 THEN GO 20 ELSE STOP

*

20%*

PRINT 'AT LABEL 20'
GO TO CALCULATE:
STOP

*

CALCULATE:
PRINT 'AT LABEL CALCULATE'

This is the program output:

AT LABEL 20
AT LABEL CALCULATE

GROUP function

Use the GROUP function to return one or more substrings located between specified delimiters in
string.

Syntax

GROUP (string, delimiter, occurrence [,num.substr])

delimiter evaluates to any character, including field mark, value mark, and subvalue marks. It delimits
the start and end of the substring. If delimiter evaluates to more than one character, only the first
character is used. Delimiters are not returned with the substring.

occurrence specifies which occurrence of the delimiter is to be used as a terminator. If occurrence is
lessthan 1, 1 is assumed.

num.substr specifies the number of delimited substrings to return. If the value of num.substris an
empty string or less than 1, 1 is assumed. When more than one substring is returned, delimiters are
returned along with the successive substrings.

201

Chapter 1: Statements and functions

If either delimiter or occurrence is not in the string, an empty string is returned, unless occurrence
specifies 1. If occurrence is 1 and delimiter is not found, the entire string is returned. If delimiter is an
empty string, the entire string is returned.

If string evaluates to the null value, null is returned. If string contains CHAR(128) (that is, @NULL.STR),
itis treated like any other character in a string. If delimiter, occurrence, or num.substr evaluates to the
null value, the GROUP function fails and the program terminates with a run-time error message.

The GROUP function works identically to the FIELD function.

Examples

D=GROUP (" ###DHHH#KK", "#", 4)
PRINT "D= ",D

The variable D is set to DHHH because the data between the third and fourth occurrence of the
delimiter # is DHHH.

REC="ACADABA"
E=GROUP (REC, "A", 2)
PRINT "E= ",E

The variable Eis setto "C".
VAR:"?"
Z=GROUP ("A.12345$$$$s&", VAR, 3)
PRINT "Z= ",Z

Zis set to an empty string since "?" does not appear in the string.

Q=GROUP ("+1+2+3ABAC", "+",2,2)
PRINT "Q= ", 0

Qis set to "1+2" since two successive fields were specified to be returned after the second occurrence
of "+ll.

This is the program output:

D= DHHH
E= C
7=
Q= 1+2

GROUPSTORE statement

202

Use the GROUPSTORE statement to modify character strings by inserting, deleting, or replacing fields
separated by specified delimiters.

Syntax

GROUPSTORE new.string IN string USING start, n [,delimiter]

new.string is an expression that evaluates to the character string to be inserted in string.
string is an expression that evaluates to the character string to be modified.

delimiter evaluates to any single ASCII character, including field, value, and subvalue marks. If you do
not specify delimiter, the field mark is used.

GTS function

start evaluates to a number specifying the starting field position. Modification begins at the field
specified by start. If start is greater than the number of fields in string, the required number of empty
fields is generated before the GROUPSTORE statement is executed.

n specifies the number of fields of new.string to insert in string. n determines how the GROUPSTORE
operation is executed. If n is positive, n fields in string are replaced with the first n fields of new.string.
If n is negative, n fields in string are replaced with all the fields in new.string. If n is 0, all the fields in
new.string are inserted in string before the field specified by start.

If string evaluates to the null value, null is returned. If new.string, start, n, or delimiter is null, the
GROUPSTORE statement fails and the program terminates with a run-time error message.

Example

O="1#24344#5"
GROUPSTORE "A#B" IN Q USING 2,2, "#"
PRINT "TEST1= ",Q
*

O="1#24344#5"

GROUPSTORE "A#B" IN Q USING 2,-2,"#"
PRINT "TEST2= ",Q

*

O="1#24344#5"

GROUPSTORE "A#B" IN Q USING 2,0, "#"
PRINT "TEST3= ",Q

*

O="1#24344#5"

GROUPSTORE "A#B#C#D" IN Q USING 1,4,"#"
PRINT "TEST4= ",Q

*

O="1#24344#5"

GROUPSTORE "A#B#C#D" IN Q USING 7,3,"#"
PRINT "TEST5= ",Q

This is the program output:

TEST1= 1#A#B#44#5

TEST2= 1#A#B#445

TEST3= 1#A#B#2#3#4#5
TEST4= A#B#CH#D#5

TESTS5= L#2#3#44#5##A#B#C

GTS function

Use the GTS function to test if elements of one dynamic array are greater than elements of another
dynamic array.

Syntax

GTS (arrayl, arrayZ2)

CALL -GTS (return.array, arrayl, arrayZ)

CALL !GTS (return.array, arrayl, arrayZ)

Each element of arrayl is compared with the corresponding element of array2. If the element from

arrayl is greater than the element from array2, a 1 is returned in the corresponding element of a
new dynamic array. If the element from arrayl is less than or equal to the element from array2,a 0

203

Chapter 1: Statements and functions

is returned. If an element of one dynamic array has no corresponding element in the other dynamic
array, the undefined element is evaluated as an empty string, and the comparison continues.

If either of a corresponding pair of elements is the null value, null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

HEADING statement

Use the HEADING statement to specify the text and format of the heading to print at the top of each
page of output.

Syntax

HEADING [ON print.channel] heading
HEADINGE [ON print.channel] heading
HEADINGN [ON print.channel] heading

The ON clause specifies the logical print channel to use for output. print.channel is an expression that
evaluates to a number from -1 through 255. If you do not use the ON clause, logical print channel 0 is
used, which prints to the user’s terminal if PRINTER OFF is set (see the PRINTER statement, on page
301). Logical print channel -1 prints the data on the screen, regardless of whether a PRINTER ON
statement has been executed.

heading is an expression that evaluates to the heading text and the control characters that specify the
heading’s format. You can use the following format control characters, enclosed in single quotation
marks, in the heading expression:

Control character Description

C[n] Prints heading line centered in a field of n blanks. If n is not specified, centers
the line on the page.

D Prints current date formatted as dd mmm yyyy.

T Prints current time and date formatted as dd mmm yyyy hh:mm:ss. Time is in 12-

hour format with “am” or “pm” appended.

\ Prints current time and date formatted as dd mmm yyyy hh:mm:ss. Time is in
12-hour format with “am” or “pm” appended. Do not put the backslash inside
single quotation marks.

G Inserts gaps to format headings.

I Resets page number, time, and date for PIOPEN flavor only.

Q Allows the use of the] » and \ characters.

R[n] Inserts the record ID left-justified in a field of n blanks.

L Starts a new line.

] Starts a new line. Do not put the right bracket inside single quotation marks.

N Suppresses automatic paging.

P[n] Prints current page number right-justified in a field of n blanks. The default
value for n is 4.

S Left-justified, inserted page number.

A Prints current page number right-justified in a field of n blanks. The default

value for n is 4. Do not put the caret inside single quotation marks.

Two single quotation marks (' ') print one single quotation mark in heading text.

204

HEADING statement

When the program is executed, the format control characters produce the specified results. You can
specify multiple options in a single set of quotation marks.

If either print.channel or heading evaluates to the null value, the HEADING statement fails and the
program terminates with a run-time error message.

Pagination begins with page 1 and increments automatically on generation of each new page or upon
encountering the SPAGE statement.

Output to a terminal or printer is paged automatically. Use the N option in either a HEADING
statement or a FOOTING statement to turn off automatic paging.

HEADINGE and HEADINGN statements

The HEADINGE statement is the same as the HEADING statement with the SOPTIONS statement
HEADER.EJECT selected. HEADINGE causes a page eject with the HEADING statement. Page eject is the
default for INFORMATION flavor accounts.

The HEADINGN statement is the same as the HEADING statement with the SOPTIONS -HEADER.EJECT
selected. HEADINGN suppresses a page eject with the HEADING statement. The page eject is
suppressed in IDEAL, PICK, REALITY, and IN2 flavor accounts.

Using] *and \ in headings

The characters] » and \ are control characters in headings and footings. To use these characters as
normal characters, you must use the Q option and enclose the control character in double or single
quotation marks. You only need to specify Q once in any heading or footing, but it must appear before
any occurrence of the characters] * and \.

Formatting the heading text

The control character G (for gap) can be used to add blanks to text in headings to bring the width of a
line up to device width. If G is specified once in a line, blanks are added to that part of the line to bring
the line up to the device width. If G is specified at more than one pointin a line, the space characters
are distributed as evenly as possible to those points. See the following examples, in which the vertical
bars represent the left and right margins:

Specification Result
"Hello there" |Hello there |
"'G'Hello there" | Hello there|
"'G'Hello there'G'" [
"Hello'G'there" [Hello there|
"'G'Hello'G'there'G"" | Hello there |

The minimum gap size is 0 blanks. If a line is wider than the device width even when all the gaps are 0,
the line wraps, and all gaps remain 0.

If NLS is enabled, HEADING calculates gaps using varying display positions rather than character
lengths. For more information about display length, see the UniVerse NLS Guide.

Left-justified inserted page number

The control character S (for sequence number) is left-justified at the point where the S appears in the
line. Only one character space is reserved for the number. If the number of digits exceeds 1, any text to
the right is shifted right by the number of extra characters required. For example, the statement:

HEADING "This is page 'S' of 100000"

205

Chapter 1: Statements and functions

206

results in headings such as:

This is page 3 of 100000
This is page 333 of 100000
This is page 3333 of 100000

INFORMATION flavor

Page Number Field:

In an INFORMATION flavor account the default width of the page number field is the length of the

page number. Use the n argument to P to set the field width of the page number. You can also include
multiple P characters to specify the width of the page field, or you can include blanks in the text that
immediately precedes a P option. For example, 'PPP' prints the page number right-justified in a field of
three blanks.

Note: In all other flavors, 'PPP' prints three identical page numbers, each in the default field of
four.

Date format:

In an INFORMATION flavor account the default date format is mm-dd-yy, and the default time format is
24-hour style.

In PICK, IN2, REALITY, and IDEAL flavor accounts, use the HEADER.DATE option of the SOPTIONS
statement to cause the HEADING statement, FOOTING statement, and $PAGE statement to behave as
they do in INFORMATION flavor accounts.

PIOPEN flavor

Right-justified overwriting page number:

The control character P (for page) is right-justified at the point at which the P appears in the line. Only
one character space is reserved for the number. If the number of digits exceeds 1, literal characters to
the left of the initial position are overwritten. Normally you must enter a number of blanks to the left
of the P to allow for the maximum page number to appear without overwriting other literal characters.
For example, the statement:

HEADING "This is page 'P' of 100000"

results in headings such as:

This is page 3 of 100000
This is pag333 of 100000
This is pa3333 of 100000

Resetting the page number and the date:

The control character | (for initialize) resets the page number to 1, and resets the date.

Example

HEADING "'C' LIST PRINTED: 'D'"
FOR N=1 TO 10
PRINT "THIS IS ANOTHER LINE"
NEXT

HMAC function

This is the program output:

LIST PRINTED: 04 Jun 1994
THIS IS ANOTHER LINE
THIS IS ANOTHER LINE
THIS IS ANOTHER LINE
THIS IS ANOTHER LINE
THIS IS ANOTHER LINE
THIS IS ANOTHER LINE
THIS IS ANOTHER LINE
THIS IS ANOTHER LINE
THIS IS ANOTHER LINE
THIS IS ANOTHER LINE

HMAC function

HMAC (keyed-Hash Message Authentication Code) is a specific construction for calculating a message
authentication code (MAC) involving a cryptographic hash function in combination with a secret key.

Note: The HMAC function is in full compliance with RFC 2104.

Syntax

hmac= HMAC (hmacAlg, hmacKey, hmacData, [outFormat])

hmacAlg, hmacKey, and hmacData are string values. They can be supplied as quoted strings or as
string variables, or a mix of both.

Parameters

The following table describes each parameter of the syntax.

Variable Description

hmacAlg Any OpenSSL supported digest functions, such as MD5, SHA1, SHA256,
SHA384, SHA512 or SHA3 related algorithms. If FIPS mode is turned on,
only FIPS-compliant digest algorithms are allowed (namely SHA1, SHA256,
SHA384 and SHA512).

hmacKey User must take responsibility to keep this key secure.

hmacData Data for which a keyed hash is to be generated by the HMAC function.

outformat Optional. Determines the output format. Currently, the following values are
supported:

0 - The output is binary format (bit-stream)

1 - Lower case hexadecimal format, for example f22a....0def, which doubles
the size of binary format

2 - Uppercase hexadecimal format, for example F22A...0DEF

3 - Lowercase hexadecimal delimited by colons, for example f2:2a:...0d:ef
4 - Uppercase hexadecimal delimited by colons, for example F1:2A:...0D:EF
5 - Lowercase hexadecimal delimited by spaces, for example f2 2a ... 0d ef

6 - Uppercase hexadecimal delimited by spaces, for example F2 2A ... 0D EF

207

Chapter 1: Statements and functions

Return codes

The function returns hmac as the result, whose length is determined by the digest algorithm. For
example, for MD5, the length is 16 bytes. For SHAL, it is 20 bytes. For SHA256 or SHA3-256, it is 32
bytes. All lengths are for binary format.

If an error occurs, the function will return -1. STATUS() can be called to determine the error details.

The following table describes the status of each return code.

Return code Status

0 Success.

1 Unsupported digest algorithm.
2 Not applicable.

3 HMAC cannot be obtained.

4 Invalid parameters.

HUSH statement

208

Use the HUSH statement to suppress the display of all output normally sent to a terminal during
processing. HUSH also suppresses output to a COMO file or TANDEM display.

Syntax

HUSH { ON | OFF | expression} [SETTING status]

SETTING status sets the value of a variable to the value of the HUSH state before the HUSH statement
was executed. It can be used instead of the STATUS function to save the state so that it can be restored
later. STATUS has a value of 1 if the previous state was HUSH ON or a value of 0 if the previous state
was HUSH OFF.

You might use this statement when you are transmitting information over phone lines or when you are
sending data to a hard-copy terminal. Both these situations result in slower transmission speeds. The
unnecessary data display makes the task even slower.

HUSH acts as a toggle. If it is used without a qualifier, it changes the current state.

Do not use this statement to shut off output display unless you are sure the display is unnecessary.
When you use HUSH ON, all output is suppressed including error messages and requests for
information.

Value returned by the STATUS function

The previous state is returned by the STATUS function. If terminal output was suppressed prior to
execution of the HUSH statement, the STATUS function returns a 1. If terminal output was enabled
before execution of the HUSH statement, the STATUS function returns a 0.

Example

In the following example, terminal output is disabled with the HUSH statement and the previous state
was saved in the variable USER.HUSH.STATE.

After executing some other statements, the program returns the user’s process to the same HUSH
state as it was in previous to the execution of the first HUSH statement:

HUSH ON
USER.HUSH.STATE = STATUS ()

ICHECK function

HUSH USER.HUSH.STATE

The example could have been written as follows:

HUSH ON SETTING USER.HUSH.STATE

HUSH USER.HUSH.STATE

ICHECK function

Use the TCHECK function to check if data you intend to write to an SQL table violates any SQL
integrity constraints. TCHECK verifies that specified data and primary keys satisfy the defined SQL
integrity constraints for an SQL table.

Syntax

ICHECK (dynamic.array [, file.variable] , key [, column#])

dynamic.array is an expression that evaluates to the data you want to check against any integrity
constraints.

file.variable specifies an open file. If file.variable is not specified, the default file variable is assumed
(for more information on default files, see the OPEN statement, on page 283).

key is an expression that evaluates to the primary key you want to check against any integrity
constraints.

column# is an expression that evaluates to the number of the column in the table whose data is to
be checked. If you do not specify column#, all columns in the file are checked. Column 0 specifies the
primary key (record ID).

If dynamic.array, file.variable, key, or column# evaluates to the null value, the ICHECK function fails
and the program terminates with a run-time error message.

You might use the ICHECK function to limit the amount of integrity checking that is done and thus
improve performance. If you do this, however, you are assuming responsibility for data integrity. For
example, you might want to use ICHECK with a program that changes only a few columnsin a file. To
do this, turn off the OPENCHK configurable parameter, open the file with the OPEN statement rather
than the OPENCHECK statement, and use the TCHECK function before you write the updated record
to verify, for each column you are updating, that you are not violating the table’s integrity checks.

If the ON UPDATE clause of a referential constraint specifies an action, ICHECK always validates data
being written to the referenced table; it does not check the referencing table. Therefore, ICHECK can
succeed, but when the actual write is done, it can have a constraint failure while attempting to update
the referencing table. If the referential constraint does not have an ON UPDATE clause, or if these
clauses specify NO ACTION, the referencing table is checked to ensure that no row in it contains the
old value of the referenced column.

ICHECK does not check triggers when it checks other SQL integrity constraints. Therefore, a write that
fires a trigger can fail even if the ICHECK succeeds.

ICHECK returns a dynamic array of three elements separated by field marks:

error.codeFcolumn#Fconstraint

209

Chapter 1: Statements and functions

Element Code Description
error.code A code that indicates the type of failure. Error codes can
be any of the following:
0 No failure
1 SINGLEVALUED failure
2 NOT NULL failure
3 NOT EMPTY failure
4 ROWUNIQUE failure (including single-column association
KEY)
5 UNIQUE (column constraint) failure
UNIQUE (table constraint) failure
Association KEY ROWUNIQUE failure when association
has multiple KEY fields.
CHECK constraint failure
Primary key has too many parts
10 Referential constraint failure
11 Referential constraint failure that occurs when a
numeric column references a nonnumeric column in the
referenced table.
column# The number of the column where the failure occurred. If any part of
a primary key fails, 0 is returned. If the violation involves more than
one column, -1 is returned.
constraint This element is returned only when error.code is 7 or 8. For code
7, the association name is returned. For code 8, the name of the
CHECK constraint is returned if it has a name; otherwise, the CHECK
constraint itself is returned.

If the record violates more than one integrity constraint, ICHECK returns a dynamic array only for the
first constraint that causes a failure.

The ICHECK function is advisory only. That is, if two programs try to write the same data to the same
column defined as UNIQUE (see error 5), an ICHECK in the first program may pass. If the second
program writes data to the file before the first program writes its ICHECKed data, the first program’s
write fails even though the ICHECK did not fail.

ICONV function

Use the TCONV function to convert string to a specified internal storage format. string is an expression
that evaluates to the string to be converted.

Syntax

ICONV (string, conversion)

conversion is an expression that evaluates to one or more valid conversion codes, separated by value
marks (ASCII 253).

string is converted to the internal format specified by conversion. If multiple codes are used, they are
applied from left to right. The first conversion code converts the value of string. The second conversion
code converts the output of the first conversion, and so on.

210

ICONV function

If string evaluates to the null value, null is returned. If conversion evaluates to the null value, the
TICONV function fails and the program terminates with a run-time error message.

The STATUS function reflects the result of the conversion:

which case null is returned.

Result Description
0 The conversion is successful.
1 string is invalid. An empty string is returned, unless string is the null value, in

conversion is invalid.

Successful conversion of possibly invalid data.

Invalid time zone or UTC offset.

For information about converting strings to an external format, see the OCONV function, on page

279.

Examples

The following are examples of date conversions:

Source line Converted value
DATE=ICONV("02-23-85","D") 6264
DATE=ICONV("30/9/67","DE") -92
DATE=ICONV("6-10-85","D") 6371
DATE=ICONV("19850625","D") 6386
DATE=ICONV("85161","D") 6371

The following is an example of a time conversion:

Source line

Converted value

TIME=ICONV("9AM","MT")

32400

The following are examples of hex, octal, and binary conversions:

Source line Converted value
HEX=ICONV("566D61726B","MX0C") Vmark
OCT=ICONV("3001","MQ") 1537
BIN=ICONV(1111,"MB") 15

The following are examples of masked decimal con

versions:

Source line Converted value
X=4956.00 495600
X=ICONV(X,"MD2")

X=563.888 -564
X=ICONV(X,"MD0")

X=ICONV(1988.28,"MD24") 19882800

211

Chapter 1: Statements and functions

ICONVS function

Use the TCONVS function to convert each element of dynamic.array to a specified internal storage
format.

Syntax
ICONVS (dynamic.array, conversion)
CALL -ICONVS (return.array, dynamic.array, conversion)

CALL !ICONVS (return.array, dynamic.array, conversion)

conversion is an expression that evaluates to one or more valid conversion codes, separated by value
marks (ASCII 253).

Each element of dynamic.array is converted to the internal format specified by conversion and is
returned in a dynamic array. If multiple codes are used, they are applied from left to right. The first
conversion code converts the value of each element of dynamic.array. The second conversion code
converts the value of each element of the output of the first conversion, and so on.

If dynamic.array evaluates to the null value, null is returned. If an element of dynamic.array is the null
value, nullis returned for that element. If conversion evaluates to the null value, the TCONV function
fails and the program terminates with a run-time error message.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

The STATUS function reflects the result of the conversion:

Value Description
0 The conversion is successful.
1 An element of dynamic.array is invalid. An empty string is returned, unless

dynamic.array is the null value, in which case nullis returned.

conversion is invalid.

Successful conversion of possibly invalid data.

For information about converting elements in a dynamic array to an external format, see the OCONVS
function, on page 280.

IF statement

212

Use the IF statement to determine program flow based on the evaluation of expression. If the value

of expression is true, the THEN statements are executed. If the value of expression is false, the

THEN statements are ignored and the ELSE statements are executed. If expression is the null value,
expression evaluates to false. If no ELSE statements are present, program execution continues with the
next executable statement.

Syntax

IF expression {THEN statements [ELSE statements] | ELSE statements}

IF expression

{THEN statements
[ELSE statements] |
ELSE statements}

IF statement

IF expression {THEN
statements

END [ELSE
statements

END] | ELSE
statements

END}

IF expression
{ THEN
statements
END
[ELSE
statements
END] |
ELSE
statements
END }

The IF statement must contain either a THEN clause or an ELSE clause. It need not include both.

Use the ISNULL function with the IF statement when you want to test whether the value of a variable
is the null value. This is the only way to test for the null value since null cannot be equal to any value,
including itself. The syntax is:

IF ISNULL (expression) ...

You can write IF...THEN statements on a single line or separated onto several lines. Separating
statements onto several lines can improve readability. Either way, the statements are executed
identically.

You can nest IF...THEN statements. If the THEN or ELSE statements are written on more than one line,
you must use an END statement as the last statement of the THEN or ELSE statements.

Conditional compilation

You can specify the conditions under which all or part of a BASIC program is to be compiled, using a
modified version of the IF statement. The syntax of the conditional compilation statement is the same
as that of the IF statement except for the test expression, which must be one of the following: STRUE,
$T, SFALSE, or $F.

Example

X=10
IF X>5 THEN PRINT 'X IS GREATER THAN 5';Y=3

*

IF Y>5 THEN STOP ELSE Z7=9; PRINT 'Y IS LESS THAN 5'
*

IF Z=9 THEN PRINT 'Z EQUALS 9'

ELSE PRINT 'Z DOES NOT EQUAL 9' ; STOP
*

IF Z=9 THEN

GOTO 10

END ELSE

STOP

END

*

10%

IF Y>4

213

Chapter 1: Statements and functions

THEN
PRINT 'Y GREATER THAN 4'
END
ELSE
PRINT 'Y IS LESS THAN 4'
END

This is the program output:

X IS GREATER THAN 5
Y IS LESS THAN 5

Z EQUALS 9

Y IS LESS THAN 4

IFS function

Use the TF'S function to return a dynamic array whose elements are chosen individually from one of
two dynamic arrays based on the contents of a third dynamic array.

Syntax

IFS (dynamic.array, true.array, false.array)
CALL -IFS (return.array, dynamic.array, true.array, false.array)

CALL !'IFS (return.array, dynamic.array, true.array, false.array)

Each element of dynamic.array is evaluated. If the element evaluates to true, the corresponding
element from true.array is returned to the same element of a new dynamic array. If the element
evaluates to false, the corresponding element from false.array is returned. If there is no corresponding
element in the correct response array, an empty string is returned for that element. If an element is the
null value, that element evaluates to false.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

ILPROMPT function

214

Use the ILPROMPT function to evaluate a string containing UniVerse in-line prompts.

Syntax
ILPROMPT (in.line.prompt)

in.line.prompt is an expression that evaluates to a string containing in-line prompts. In-line prompts
have the following syntax:

<<[control,] ... text [, option] >>

control is an option that specifies the characteristics of the prompt. Separate multiple control options
with commas. Possible control options are:

Option Description

A Always prompts when the sentence containing the control option
is executed. If this option is not specified, the input value from a

previous execution of this prompt is used.

ILPROMPT function

Option Description

Cn Uses the word in the nth position in the command line as the input
value. (The verb is in position 1.)

F(filename) Finds input value in record.ID in filename. Optionally, extract a

record.ID [,fm [,vm[,sm]]]) value (vm) or subvalue (sm) from the field (fm).

In Uses the word in the nth position in the command line as the input

value, but prompts if word n was not entered.

P Saves the input from an in-line prompt. BASIC uses the input for
allin-line prompts with the same prompt text until the saved
input is overwritten by a prompt with the same prompt text and
with a control option of A, C, I, or S, or until control returns to the
UniVerse prompt. The P option saves the input from an in-line
prompt in the current paragraph, or in other paragraphs.

R Repeats the prompt until Return is pressed.

R(string) Repeats the prompt until Return is pressed, and inserts string
between each entry.

Sn Takes the nth word from the command but uses the most recent
command entered at the UniVerse level to execute the paragraph,
rather than an argument in the paragraph. Use this option in
nested paragraphs.

@(CLR) Clears the screen.

@(BELL) Rings the terminal bell.

@(TOF) Positions the prompt at the top left of the screen.

@(col, row) Prompts at this column and row number on the terminal.

text is the prompt text to display. If you want to include quotation marks (single or double) or
backslashes as delimiters within the prompt text, you must enclose the entire text string in a set of
delimiters different from the delimiters you are using within the text string. For example, to print the
following prompt text:

'P'RINTER OR 'T'ERMINAL
you must specify the prompt text as
\'P'RINTER OR 'T'ERMINAL\
or

"'P'RINTER OR 'T'ERMINAL"

option can be any valid ICONV function conversion or matching pattern (see the MATCH operator, on
page 259). A conversion must be in parentheses.

If in.line.prompt evaluates to the null value, the ITLPROMPT function fails and the program terminates
with a run-time error.

If the in-line prompt has a value, that value is substituted for the prompt. If the in-line prompt does not
have a value, the prompt is displayed to request an input value when the sentence is executed. The
value entered at the prompt is then substituted for the in-line prompt.

Once a value has been entered for a particular prompt, the prompt will continue to have that
value until a CLEARPROMPTS statement is executed, unless the control option A is specified.
CLEARPROMPTS clears all values entered for in-line prompts.

You can enclose prompts within prompts.

215

Chapter 1: Statements and functions

Example

A="This is your number. - <<number>>"
PRINT ILPROMPT (A)
PRINT ILPROMPT ("Your number is <<number>>, and your letter is
<<letter>>.")

This is the program output:

number=5
This is your number. - 5
letter=K
Your number is 5, and your letter is K.

INCLUDE statement

216

Use the INCLUDE statement to direct the compiler to insert the source code in the record program and
compile it along with the main program. The INCLUDE statement differs from the SCHAIN statement in
that the compiler returns to the main program and continues compiling with the statement following
the INCLUDE statement.

Syntax
INCLUDE [filename] program

INCLUDE program FROM filename

When program is specified without filename, program must be a record in the same file as the program
currently containing the INCLUDE statement.

If program is a record in a different file, the name of the file in which it is located must be specified in
the INCLUDE statement, followed by the name of the program. The file name must specify a type 1 or
type 19 file defined in the VOC file.

You can nest INCLUDE statements.

The INCLUDE statement is a synonym for the SINCLUDE and #INCLUDE statements.

Example

PRINT "START"
INCLUDE END
PRINT "FINISH"

When this program is compiled, the INCLUDE statement inserts code from the program END (see the
example on the END statement, on page 148). This is the program output:

START
THESE TWO LINES WILL PRINT ONLY
WHEN THE VALUE OF 'A' IS 'YES'.

THIS IS THE END OF THE PROGRAM
FINISH

INDEX function

INDEX function

Use the INDEX function to return the starting character position for the specified occurrence of
substring in string.

Syntax

INDEX (string, substring, occurrence)

string is an expression that evaluates to any valid string. string is examined for the substring
expression.

occurrence specifies which occurrence of substring is to be located.

When substring is found and if it meets the occurrence criterion, the starting character position of the
substring is returned. If substring is an empty string, 1 is returned. If the specified occurrence of the
substring is not found, or if string or substring evaluate to the null value, 0 is returned.

If occurrence evaluates to the null value, the INDEX function fails and the program terminates with a
run-time error message.

PICK, IN2, and REALITY flavors

In PICK, IN2, and REALITY flavor accounts, the search continues with the next character regardless of
whether it is part of the matched substring. Use the COUNT.OVLP option of the SOPTIONS statement
to get this behavior in IDEAL and INFORMATION flavor accounts.

Example

Q="'AAA11122ABB1619MM"

P=INDEX (Q,1,4)

PRINT "P= ",P

*

X="XX"'

Y=2

Q="P1234XX001299XX00P"
TEST=INDEX (Q, X, Y)

PRINT "TEST= ",TEST

*

Q=INDEX ("1234",'A"',1)

PRINT "Q= ",Q

* The substring cannot be found.
*

POS=INDEX ('222','2"',4)

PRINT "POS= ", POS

* The occurrence (4) of the substring does not exist.

This is the program output:

P= 12
TEST= 14

Q= 0
POS= 0

217

Chapter 1: Statements and functions

INDEXS function

Use the INDEXS function to return a dynamic array of the starting column positions for a specified
occurrence of a substring in each element of dynamic.array.

Syntax
INDEXS (dynamic.array, substring, occurrence)
CALL -INDEXS (return.array, dynamic.array, substring, occurrence)

CALL !'INDEXS (return.array, dynamic.array, substring, occurrence)

Each element is examined for substring.
occurrence specifies which occurrence of substring is to be located.

When substring is found, and if it meets the occurrence criterion, the starting column position of
the substring is returned. If substring is an empty string, 1 is returned. If the specified occurrence of
substring cannot be found, 0 is returned.

If dynamic.array evaluates to the null value, 0 is returned. If any element of dynamic.array is null, 0 is
returned for that element. If occurrence is the null value, the INDEXS function fails and the program
terminates with a run-time error message.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

INDICES function

218

Use the INDICES function to return information about the secondary key indexes in a file.

Syntax

INDICES (file.variable [, indexname])

file.variable specifies an open file.
indexname is the name of a secondary index in the specified file.

If only file.variable is specified, a dynamic array is returned that contains the index names of all
secondary indexes for the file. The index names are separated by field marks. If file.variable has no
indexes, an empty string is returned.

If indexname is specified, information is returned in a dynamic array for indexname. Field 1 of the
dynamic array contains the following information:

Value Value can be... Description

Value 1 D Data descriptor index.

I-descriptor index.

A A-descriptor index.

S S-descriptor index.

C A- or S-descriptor index with correlative in
field 8.

soL SQL index.

INDICES function

Value Value can be... Description
Value 2 1 Index needs rebuilding.
3 Index is currently being built concurrently.
empty Index does not need rebuilding.
Value 3 1 Empty strings are not indexed.
empty Empty strings are indexed.
Value 4 1 Automatic updating enabled.
empty Automatic updating disabled.
Value 5 pathname Full path name of the index file.
empty File is a distributed file.
Value 6 1 Updates are pending.
empty No updates pending.
Value 7 L Left-justified.
R Right-justified.
Value 8 N Nonunique.
U Unique.
Value 9 part numbers Subvalued list of distributed file part
numbers.
Value 10 1 Index needs building Subvalued list corresponding to subvalues
empty No build needed inValue 9.
Value 11 1 Empty strings not indexed | Subvalued list corresponding to subvalues
empty Empty strings in Value 9.
indexed
Value 12 1 Updating enabled Subvalued list corresponding to subvalues
empty Updating disabled inValue 9.
Value 13 index pathnames Subvalued list of path names for indexes
on distributed file part files, corresponding
to subvaluesin Value 9.
Value 14 1 Updates pending Subvalued list corresponding to subvalues
empty No updates pending inValue 9.
Value 15 L Left-justified Subvalued list corresponding to subvalues
R Right-justified in Value 9.
Value 16 N Nonunique Subvalued list corresponding to subvalues
U Unique in Value 9.
Value 17 collate name Name of the Collate convention of the

index.

Note: Indexes created with the ALL.NULLS keyword are not compatible with releases that do not
support the ALL.NULLS keyword.

Value 18

Y
N

Y ALL.NULLS index - contains no data.
N Not an ALL.NULLS index.

219

Chapter 1: Statements and functions

220

Value Value can be... Description
Value 19 Y ALL.NULLS index - Subvalued list corresponding to subvalues
contains no data. in Value 9.

N Not an ALL.NULLS index.

If Value 1 of Field 1is D, A, or S, Field 2 contains the field location (that is, the field number), and Field 6
contains either S (single-valued field) or M (multivalued field).

If Value 1 of Field 1 is | or SQL, the other fields of the dynamic array contain the following information,
derived from the |-descriptor in the file dictionary:

Field Value can be...
Field 2 I-type expression
Field 3 Output conversion code
Field 4 Column heading
Field 5 Width, justification
Field 6 S - single-valued field
M - multivalued field
Field 7 Association name
Fields 8-15 Empty
Fields 16-19 Compiled I-descriptor data
Field 20 Compiled I-descriptor code

If Value 1 of Field 1 is C, the other fields of the dynamic array contain the following information,
derived from the A- or S-descriptor in the file dictionary:

Field Value can be...

Field 2 Field number (location of field)
Field 3 Column heading

Field 4 Association code

Fields 5-6 Empty

Field 7 Output conversion code

Field 8 Correlative code

Field 9 L or R (justification)

Field 10 Width of display column

If either file.variable or indexname is the null value, the INDICES function fails and the program
terminates with a run-time error message.

Any file updates executed in a transaction (that is, between a BEGIN TRANSACTION statement and a
COMMIT statement) are not accessible to the INDICES function until after the COMMIT statement has
been executed.

If NLS is enabled, the INDICES function reports the name of the current Collate convention (as
specified in the NLS.LC.COLLATE file) in force when the index was created. See Value 17 in Field 1 for
the name of the Collate convention of the index. For more information about the Collate convention,
see the UniVerse NLS Guide.

initSecureServerSocket function

initSecureServerSocket function

Use the initSecureServerSocket() function to create a secured connection-oriented stream
server socket. It does exactly the same as the initServerSocket() function except that the

connection will be secure.

Once the server socket is opened, any change in the associated security context will not affect the

opened socket.

Syntax

initSecureServerSocket (name or IP, port, backlog, svr socket, context)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

name_or_IP DNS name (x.com) or host interface address. Special addresses include:
= 127.0.0.1 (INADDR_LOOPBACK)
= 0.0.0.0 (INADDR_ANY)
= 255.255.255.255 (INADDR_BROADCAST)
Generally, this parameter should be set to 0.0.0.0.

port Port number. If the port number is specified as a value <=0, CallHTTP
defaults to a port number of 40001.

backlog The maximum length of the queue of pending connections (for example,
concurrent client-side connections).

svr_socket The handle to the server side socket.

context The handle to the security context.

Return codes

The following table describes the status of each return code.

Return code Description

0 Success.

1-41 See Socket function error return codes, on page 599.

99 UniVerse failed to obtain a license for an interactive PHANTOM process.
101 Invalid security context handle.

initServerSocket function

Usethe initServerSocket() function to create a connection-oriented (stream) socket. Associate
this socket with an address (name_or_IP) and port number (port), and specify the maximum length the
queue of pending connections may grow to.

Syntax

initServerSocket (name or IP, port, backlog, svr socket)

221

Chapter 1: Statements and functions

Parameters

The following table describes each parameter of the syntax.

Parameter Description

name_or_IP DNS name (x.com) or host interface address. Special addresses include:
= 127.0.0.1 (INADDR_LOOPBACK)

= 0.0.0.0 (INADDR_ANY)

= 255.255.255.255 (INADDR_BROADCAST)

Generally, this parameter should be set to 0.0.0.0.

port Port number. If the port number is specified as a value <= 0, CallHTTP
defaults to a port number of 40001.

backlog The maximum length of the queue of pending connections (for example,
concurrent client-side connections).

svr_socket The handle to the server side socket.

Return codes

The following table describes the status of each return code.

Return code Description
0 Success.
Non-zero See Socket function error return codes, on page 599.

INMAT function

222

Use the INMAT function to return the number of array elements that have been loaded after the
execution of MATREAD statements, MATREADL statement, MATREADU statement, or MATPARSE
statement, or to return the modulo of a file after the execution of an OPEN statement. You can also use
the INMAT function after a DIMENSION statement to determine whether the DIM statement failed due
to lack of available memory. If a preceding DIM statement fails, INMAT returns a value of 1.

Syntax

INMAT ([array])

If the matrix assignment exceeds the number of elements specified in its dimensioning statement, the
zero element is loaded by the MATREAD, MATREADL, MATREADU, or MATPARSE statement. If the array
dimensioning is too small and the zero element has been loaded, the INMAT function returns a value
of 0.

If array is specified, the INMAT function returns the current dimensions of the array. If array is the null
value, the INMAT function fails and the program terminates with a run-time error message.

Example

DIM X (6)

D='12345¢6"

MATPARSE X FROM D, "'
Y=INMAT ()

PRINT 'Y= ':Y

INPUT statement

*

DIM X (5)

A='"CBDGFH'

MATPARSE X FROM A, "'
C=INMAT ()

PRINT 'C= ':C

*

OPEN '','VOC' TO FILE ELSE STOP
T=INMAT ()
PRINT 'T= ':T

This is the program output:

Y= 6
C=0
T= 23

INPUT statement

Use the INPUT statement to halt program execution and prompt the user to enter a response. Data
entered at the terminal or supplied by a DATA statement in response to an INPUT statement is
assigned to variable. Input supplied by a DATA statement is echoed to the terminal. If the response is a
RETURN with no preceding data, an empty string is assigned to variable.

Syntax

INPUT variable [,length] [:] []

INPUT @ (col, row) [, | :] variable [,length] [:] [format] []
INPUTIF @ (col, row) [, | :] wvariable [,length] [:] [format] []

[THEN statements] [ELSE statements]

The INPUT statement has two syntaxes. The first syntax displays a prompt and assigns the input to
variable. The second syntax specifies the location of the input field on the screen and lets you display
the current value of variable. Both the current value and the displayed input can be formatted.

Use the INPUTIF statement to assign the contents of the type-ahead buffer to a variable. If the type-
ahead buffer is empty, the ELSE statements are executed, otherwise any THEN statements are
executed.

Use the @ expression to specify the position of the input field. The prompt is displayed one character
to the left of the beginning of the field, and the current value of variable is displayed as the value

in the input field. The user can edit the displayed value or enter a new value. If the first character
typed in response to the prompt is an editing key, the user can edit the contents of the field. If the first
character typed is anything else, the field’s contents are deleted and the user can enter a new value.
Editing keys are defined in the terminfo files; they can also be defined by the KEYEDIT statement.
Calculations are based on display length rather than character length.

col and row are expressions that specify the column and row positions of the input prompt. The
prompt is positioned one character to the left of the input field. Because the prompt character is
positioned to the left of the col position, you must set the prompt to the empty string if you want to
use column 0. Otherwise, the screen is erased before the prompt appears.

length specifies the maximum number of characters allowed as input. When the maximum number of
characters is entered, input is terminated. If the @ expression is used, the newline is suppressed.

223

Chapter 1: Statements and functions

224

If length evaluates to less than 0 (for example, -1), the input buffer is tested for the presence of
characters. If characters are present, variable is set to 1, otherwise it is set to 0. No input is performed.

If you use the underscore (_) with the length expression, the user must enter the RETURN manually at
the terminal when input is complete. Only the specified number of characters is accepted.

Use a format expression to validate input against a format mask and to format the displayed input
field. The syntax of the format expression is the same as that for the FMT function. If you specify a
length expression together with a format expression, length checking is performed. If input does not
conform to the format mask, an error message appears at the bottom of the screen, prompting the
user for the correct input.

The colon (:) suppresses the newline after input is terminated. This allows multiple input prompts on
asingle line.

The default prompt character is a question mark. Use the PROMPT statement to reassign the prompt
character.

The INPUT statement prints only the prompt character on the screen. To print a variable name or
prompt text along with the prompt, precede the INPUT statement with a PRINT statement.

The INPUT statement lets the user type ahead when entering a response. Users familiar with a
sequence of prompts can save time by entering data at their own speed, not waiting for all prompts to
be displayed. Responses to a sequence of INPUT prompts are accepted in the order in which they are
entered.

If col, row, length, or format evaluate to the null value, the INPUT statement fails and the program
terminates with a run-time error message. If variable is the null value and the user types the TRAP key,
nullis retained as the value of variable.

If NLS is enabled, INPUT @ displays the initial value of an external multibyte character set through
the mask as best as possible. If the user enters a new value, mask disappears, and an input field of the
approximate length (not including any inserted characters) is entered. For details about format and
mask, see the FMTDP function.

Only backspace and kill are supported for editing functions when using a format mask with input.
When the user finishes the input, the new value is redisplayed through the mask in the same way as
the original value. For more information about NLS in BASIC programs, see the UniVerse NLS Guide.

PICK flavor

In a PICK flavor account, the syntax of the INPUT and INPUT @ statements includes THEN and ELSE
clauses:

INPUT variable [,length] [:] [_] [THEN statements] [ELSE statements]
INPUT @ (col, row) [, | :] variable [,length] [:] [format] [_] [THEN statements] [ELSE statements]

To use THEN and ELSE clauses with INPUT statements in other flavors, use the INPUT.ELSE option of
the SOPTIONS statement, on page 26.

PICK, IN2, and REALITY flavors

In PICK, IN2, and REALITY flavors, values supplied by a DATA statement are not echoed. To suppress
echoing input from DATA statements in IDEAL and INFORMATION flavors, use the SUPP.DATA.ECHO
option of the SOPTIONS statement.

Examples

In the following examples of program output, bold type indicates words the user types. In the first
example the value entered is assigned to the variable NAME:

INPUT statement

Source lines

Program output

INPUT NAME
PRINT NAME

? Dave

Dave

In the next example the value entered is assigned to the variable CODE. Only the first seven characters
are recognized. ARETURN and a LINEFEED automatically occur.

Source lines

Program output

INPUT CODE, 7
PRINT CODE

71234567
1234567

In the next example the user can enter more than two characters. The program waits for a RETURN to
end input, but only the first two characters are assigned to the variable YES.

Source Lines

Program Output

INPUT YES, 2_
PRINT YES

71234
12

In the next example the colon inhibits the automatic LINEFEED after the RETURN:

Source lines

Program output

INPUT YES, 2_:
PRINT "=",YES

? HI THERE =HI

In the next example the input buffer is tested for the presence of characters. If characters are present,
VAR is set to 1, otherwise it is set to 0. No input is actually done.

Source lines

Program output

INPUT VAR, -1
PRINT VAR

0

In the next example the PRINT statement puts INPUT NAME before the input prompt:

Source lines

Program output

PRINT "INPUT
NAME":

INPUT NAME
PRINT NAME

INPUT NAME?
Dave

Dave

In the next example the contents of X are displayed at column 5, row 5 in a field of 10 characters. The
user edits the field, replacing its original contents (CURRENT) with new contents (NEW). The new input
is displayed. If the PRINT statement after the INPUT statement were not used, X would be printed
immediately following the input field on the same line, since INPUT with the @ expression does not
execute a LINEFEED after a RETURN.

225

Chapter 1: Statements and functions

Source lines Program output

PRINT @(-1) X = INEW___ NEW
"CURRENT" INPUT

@(5,5) X,10 PRINT
PRINT X

INPUTCLEAR statement

Use the INPUTCLEAR statement to clear the type-ahead buffer. You can use this statement before
input prompts so input is not affected by unwanted characters.

Syntax

INPUTCLEAR

Example

PRINT "DO YOU WANT TO CONTINUE (Y/N)?2"
INPUTCLEAR
INPUT ANSWER, 1

INPUTDISP statement

226

Use the INPUTDISP statement with an @ expression to position the cursor at a specified location and
define a format for the variable to print. The current contents of variable are displayed as the value in
the defined field. Calculations are based on display length rather than character length.

Syntax

INPUTDISP [Q(col, row) [, | :]1] variable [format]

col specifies the column position, and row specifies the row position.

format is an expression that defines how the variable is to be displayed in the output field. The syntax
of the format expression is the same as that for the FMT function.

Example
PRINT @ (-1)
X = "CURRENT LINE"

INPUTDISP @(5,5),X"10T"
The program output on a cleared screen is:

CURRENT
LINE

INPUTDP statement

INPUTDP statement

In NLS mode, use the INPUTDP statement to let the user enter data. The INPUTDP statement is similar
to the INPUT statement, INPUTIF statement, and INPUTDISP statement, but it calculates display
positions rather than character lengths.

Syntax

INPUTDP variable [, length] [:] [_] [THEN statements] [ELSE statements]

variable contains the input from a user prompt.

length specifies the maximum number of characters in display length allowed as input. INPUTDP
calculates the display length of the input field based on the current terminal map. When the specified
number of characters is entered, an automatic newline is executed.

The colon (:) executes the RETURN, suppressing the newline. This allows multiple input prompts on a
single line.

If you use the underscore (_), the user must enter the RETURN manually when input is complete, and
the newline is not executed.

For more information about display length, see the UniVerse NLS Guide.

INPUTERR statement

Use the INPUTERR statement to print a formatted error message on the bottom line of the terminal.
error.message is an expression that evaluates to the error message text. The message is cleared by
the next INPUT statement or is overwritten by the next INPUTERR statement or PRINTERR statement.
INPUTERR clears the type-ahead buffer.

Syntax

INPUTERR [error.message]

error.message can be any BASIC expression. The elements of the expression can be numeric or
character strings, variables, constants, or literal strings. The null value cannot be output. The
expression can be a single expression or a series of expressions separated by commas (,) or colons
(+) for output formatting. If no error message is designated, a blank line is printed. If error.message
evaluates to the null value, the default error message is printed:

Message ID is NULL: undefined error

Expressions separated by commas are printed at preset tab positions. The default tabstop setting is 10
characters. For information about changing the default setting, see the TABSTOP statement, on page
407. Multiple commas can be used together to cause multiple tabulations between expressions.

Expressions separated by colons are concatenated: that is, the expression following the colon is
printed immediately after the expression preceding the colon.

INPUTIF statement

Use the INPUTIF statement to assign the contents of the type-ahead buffer to a variable.

For details, see the INPUTIF statement, on page 227.

227

Chapter 1: Statements and functions

INPUTNULL statement

Use the INPUTNULL statement to define a character to be recognized as an empty string when it is
input in response to an INPUT statement. If the only input to the INPUT statement is character, that
character is recognized as an empty string. character replaces the default value of the INPUT variable
with an empty string. If character evaluates to the null value, the INPUTNULL statement fails and the
program terminates with a run-time error message.

Syntax

INPUTNULL character

You can also assign an empty string to the variable used in the INPUT @ statement before executing
the INPUT @. In this case entering a RETURN leaves the variable set to the empty string.

Note: Although the name of this statement is INPUTNULL, it does not define character to be
recognized as the null value. It defines it to be recognized as an empty string.

INPUTTRAP statement

Use the INPUTTRAP statement to branch to a program label or subroutine when a trap character is
input. Execution is passed to the statement label which corresponds to the trap number of the trap
character. If the trap number is larger than the number of labels, execution is passed to the statement
specified by the last label in the list.

Syntax

INPUTTRAP |[trap.chars] {GOTO | GOSUB} label [,label ..]

trap.chars is an expression that evaluates to a string of characters, each of which defines a trap
character. The first character in the string is defined as trap one. Additional characters are assigned
consecutive trap numbers. Each trap character corresponds to one of the labels in the label list. If
trap.chars evaluates to the null value, the INPUTTRAP statement fails and the program terminates
with a run-time error message.

Using GOTO causes execution to be passed to the specified statement label. Control is not returned
to the INPUTTRAP statement except by the use of another trap. Using GOSUB causes execution to

be passed to the specified subroutine, but control can be returned to the INPUTTRAP statement by a
RETURN statement. Control is returned to the statement following the INPUTTRAP statement, not the
INPUT @ statement that received the trap.

INS statement

228

Use the INS statement to insert a new field, value, or subvalue into the specified dynamic.array.

Syntax

INS expression BEFORE dynamic.array < field# [,value# [,subvalue#]] >

expression specifies the value of the new element to be inserted.

dynamic.array is an expression that evaluates to the dynamic array to be modified.

INS statement

field#, value#, and subvalue# specify the type and position of the new element to be inserted and are
called delimiter expressions.

There are three possible outcomes of the INS statement, depending on the delimiter expressions
specified.

Case Result

Case 1: If both value# and subvalue# are omitted or are 0, INS inserts a new field with
the value of expression into the dynamic array.

If field# is positive and less than or equal to the number of fields in
dynamic.array, the value of expression followed by a field mark is inserted
before the field specified by field#.

If field#is -1, a field mark followed by the value of expression is appended to the
last field in dynamic.array.

If field# is positive and greater than the number of fields in dynamic.array, the
proper number of field marks followed by the value of expression are appended
so that the value of field# is the number of the new field.

Case 2: If value# is nonzero and subvalue# is omitted or is 0, INS inserts a new value with
the value of expression into the dynamic array.

If value# is positive and less than or equal to the number of values in the field,
the value of expression followed by a value mark is inserted before the value
specified by value#.

If value# is -1, a value mark followed by the value of expression is appended to
the last value in the field.

If value# is positive and greater than the number of values in the field, the
proper number of value marks followed by the value of expression are
appended to the last value in the specified field so that the number of the new
value in the field is value#.

Case 3: If field#, value#, and subvalue# are all specified, INS inserts a new subvalue with
the value of expression into the dynamic array.

If subvalue# is positive and less than or equal to the number of subvalues in the
value, the value of expression following by a subvalue mark is inserted before
the subvalue specified by subvalue#.

If subvalue# is -1, a subvalue mark followed by expression is appended to the
last subvalue in the value.

If subvalue# is positive and greater than the number of subvalues in the value,
the proper number of subvalue marks followed by the value of expression are
appended to the last subvalue in the specified value so that the number of the
new subvalue in the value is subvalue#.

If all delimiter expressions are 0, the original string is returned.

In IDEAL, PICK, PIOPEN, and REALITY flavor accounts, if expression is an empty string and the new
element is appended to the end of the dynamic array, the end of a field, or the end of a value, the
dynamic array, field, or value is left unchanged. Additional delimiters are not appended. Use the
EXTRA.DELIM option of the SOPTIONS statement to make the INS statement append a delimiter to the
dynamic array, field, or value.

If expression evaluates to the null value, null is inserted into dynamic.array. If dynamic.array evaluates
to the null value, it remains unchanged by the insertion. If the INS statement references a subelement
of an element whose value is the null value, the dynamic array is unchanged.

229

Chapter 1: Statements and functions

If any delimiter expression is the null value, the INS statement fails and the program terminates with a
run-time error message.

INFORMATION and IN2 flavors

In INFORMATION and IN2 flavor accounts, if expression is an empty string and the new element

is appended to the end of the dynamic array, the end of a field, or the end of a value, a delimiter

is appended to the dynamic array, field, or value. Use the -EXTRA.DELIM option of the SOPTIONS
statement to make the INS statement work as it does in IDEAL, PICK, and REALITY flavor accounts.

Examples

In the following examples a field mark is shown by F, a value mark is shown by V, and a subvalue mark
is shown by S.

The first example inserts the character # before the first field and sets Q to #FFF1V2V3S6F9F5F7V3:
R=@FM:@FM:1:@VM:2:QVM:3:@SM:6:Q@FM:9:@FM:5:Q@FM:7:@VM: 3

0=R
INS "#" BEFORE Q<1,0,0>

The next example inserts a # before the third value of field 3 and sets the value of Q to
FFIV2V#V3S6F9F5F7V3:

0=R
INS "#" BEFORE 0<3,3,0>

The next example inserts a value mark followed by a # after the last value in the field and sets Q to
FF1V2V3S6FOV#F5F7V3:

0=R
INS "#" BEFORE (Q<4,-1,0>

The next example inserts a # before the second subvalue of the second value of field 3 and sets Q to
FF1V2S#V3S6F9F5F7V3:

0=R
INS "#" BEFORE 0<3,2,2>

INSERT function

230

Use the INSERT function to return a dynamic array that has a new field, value, or subvalue inserted
into the specified dynamic array.

Syntax
INSERT (dynamic.array, field#, value#, subvalue#, expression)

INSERT (dynamic.array, field# [,value# [,subvalue#]] ; expression)

dynamic.array is an expression that evaluates to a dynamic array.

field#, value#, and subvalue# specify the type and position of the new element to be inserted and are
called delimiter expressions. value# and subvalue# are optional, but if either is omitted, a semicolon
(;) must precede expression, as shown in the second syntax line.

expression specifies the value of the new element to be inserted.

INSERT function

There are three possible outcomes of the INSERT function, depending on the delimiter expressions

specified.

Case

Result

Case 1:

If both value# and subvalue# are omitted or are 0, INSERT inserts a new field
with the value of expression into the dynamic array.

If field# is positive and less than or equal to the number of fields in
dynamic.array, the value of expression followed by a field mark is inserted
before the field specified by field#.

If field#is -1, a field mark followed by the value of expression is appended to the
last field in dynamic.array.

If field# is positive and greater than the number of fields in dynamic.array, the
proper number of field marks followed by the value of expression are appended
so that the value of field# is the number of the new field.

Case 2:

If value# is nonzero and subvalue# is omitted or is 0, INSERT inserts a new value
with the value of expression into the dynamic array.

If value# is positive and less than or equal to the number of values in the field,
the value of expression followed by a value mark is inserted before the value
specified by value#.

If value# is -1, a value mark followed by the value of expression is appended to
the last value in the field.

If value# is positive and greater than the number of values in the field, the
proper number of value marks followed by the value of expression are
appended to the last value in the specified field so that the number of the new
value in the field is value#.

Case 3:

If field#, value#, and subvalue# are all specified, INSERT inserts a new subvalue
with the value of expression into the dynamic array.

If subvalue# is positive and less than or equal to the number of subvalues in the
value, the value of expression following by a subvalue mark is inserted before
the subvalue specified by subvalue#.

If subvalue# is -1, a subvalue mark followed by expression is appended to the
last subvalue in the value.

If subvalue# is positive and greater than the number of subvalues in the value,
the proper number of subvalue marks followed by the value of expression are
appended to the last subvalue in the specified value so that the number of the
new subvalue in the value is subvalue#.

In IDEAL, PICK, PIOPEN, and REALITY accounts, if expression is an empty string and the new element is
appended to the end of the dynamic array, the end of a field, or the end of a value, the dynamic array,
field, or value is left unchanged. Additional delimiters are not appended. Use the EXTRA.DELIM option
of the SOPTIONS statement to make the INSERT function append a delimiter to the dynamic array,

field, or value.

If expression evaluates to the null value, null is inserted into dynamic.array. If dynamic.array evaluates
to the null value, it remains unchanged by the insertion. If any delimiter expression is the null value,
the INSERT function fails and the program terminates with a run-time error message.

INFORMATION and IN2 flavors

In INFORMATION and IN2 flavor accounts, if expression is an empty string and the new element
is appended to the end of the dynamic array, the end of a field, or the end of a value, a delimiter

231

Chapter 1: Statements and functions

is appended to the dynamic array, field, or value. Use the -EXTRA.DELIM option of the SOPTIONS
statement to make the INSERT function work as it does in IDEAL, PICK, and REALITY flavor accounts.

Examples

In the following examples a field mark is shown by F, a value mark is shown by V, and a subvalue mark
is shown by S.

The first example inserts the character # before the first field and sets Q to # FFF1V2V3S6F9F5F7V:

R=@FM:@FM:1:Q@VM:2:@VM:3:0@SM:6:@FM:9:@FM:5:Q@FM:7:@VM:3
Q=INSERT(R,1,0,0,"#"™)

The next example inserts a # before the third value of field 3 and sets the value of Q to
FF1V2V#V3S6F9F5F7V3:
Q=INSERT (R, 3, 3; "#")

The next example inserts a value mark followed by a # after the last value in the field and sets Q to
FF1V2V3S6FOVH#F5FTV3:

Q=INSERT(R,4,-1,0,"#")

The next example inserts a # before the second subvalue of the second value of field 3 and sets Q to
FF1V2S#V3S6F9F5F7V3:

QO=INSERT (R, 3,2,2;"#")

INT function

Use the INT function to return the integer portion of an expression.

Syntax

INT (expression)

expression must evaluate to a numeric value. Any arithmetic operations specified are calculated using
the full accuracy of the system. The fractional portion of the value is truncated, not rounded, and the
integer portion remaining is returned.

If expression evaluates to the null value, nullis returned.
Example

PRINT "123.45 ", INT(123.45)
PRINT "454.95 ", INT(454.95)

This is the program output:

123.45 123
454.95 454

ISNULL function

232

Use the ISNULL function to test whether a variable is the null value. If variable is the null value, 1
(true) is returned, otherwise 0 (false) is returned. This is the only way to test for the null value since the
null value is not equal to any value, including itself.

ISNULLS function

Syntax

ISNULL (variable)

Example

X = @NULL
Y = @NULL.STR
PRINT ISNULL(X), ISNULL(Y)

This is the program output:
10

ISNULLS function

Use the ISNULLS function to test whether any element of dynamic.array is the null value. A dynamic
array is returned, each of whose elements is either 1 (true) or 0 (false). If an element in dynamic.array is
the null value, 1 is returned, otherwise 0 is returned. This is the only way to test for the null value since
the null value is not equal to any value, including itself.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Syntax
ISNULLS (dynamic.array)

CALL -ISNULLS (return.array, dynamic.array)

Example
DA = ""
FOR I =1 TO 7
DA := I:Q@FM
IF I = 5 THEN DA := @NULL.STR:@FM
NEXT I

PRINT ISNULLS (DA)

This is the program output:
OFOFOFOFOF1FOFOFO

ITYPE function

Use the ITYPE function to return the value resulting from the evaluation of an I-type expression in a
UniVerse file dictionary.

Syntax

ITYPE (i.type)

i.type is an expression evaluating to the contents of the compiled I-descriptor. The I-descriptor must
have been compiled before the ITYPE function uses it, otherwise you get a run-time error message.

i.type can be set to the I-descriptor to be evaluated in several ways. One way is to read the I-descriptor
from afile dictionary into a variable, then use the variable as the argument to the ITYPE function. If

233

Chapter 1: Statements and functions

the |-descriptor references a record ID, the current value of the system variable @ID is used. If the
I-descriptor references field values in a data record, the data is taken from the current value of the
system variable @RECORD.

To assign field values to @RECORD, read a record from the data file into @RECORD before invoking the
ITYPE function.

If i.type evaluates to the null value, the ITYPE function fails and the program terminates with a run-
time error message.

Example

This is the SUN.MEMBER file contents:

AW
Fl: ACCOUNTING
TRX
Fl: MARKETING
JXA
Fl: SALES

This is the DICT.ITME contents:

DEPARTMENTF1:D
2:1

3:
4:
5:10L
6:L

This is the program source code:

OPEN 'SUN.MEMBER' TO FILE ELSE STOP
OPEN 'DICT', 'SUN.MEMBER' TO D.FILE ELSE STOP

*

READ ITEM.ITYPE FROM D.FILE, 'DEPARTMENT' ELSE STOP
*

EXECUTE 'SELECT SUN.MEMBER'

LOOP

READNEXT @ID DO

*

READ Q@FRECORD FROM FILE, QID THEN

*

PRINT @ID: "WORKS IN DEPARTMENT" ITYPE (ITEM.ITYPE)
END

REPEAT

STOP

END

This is the program output:

3 records selected to Select List #0
FAW WORKS IN DEPARTMENT ACCOUNTING
TRX WORKS IN DEPARTMENT MARKETING
JXA WORKS IN DEPARTMENT SALES

234

KEYEDIT statement

KEYEDIT statement

Use the KEYEDIT statement to assign specific keyboard keys to the editing functions of the INPUT @
statement, and to the !EDIT.INPUT and !GET.KEY subroutines. KEYEDIT supports the following editing
functions:

Syntax

KEYEDIT (function, key) [, (function, key)]

= Leftarrow (<—)

= Enter (Return)

= Backspace

= Rightarrow (—>)

= Insert character

= Delete character

* Insert mode on

= Insert mode off

= Clearfield

= Eraseto end-of-line
= Insert mode toggle
In addition to the supported editing functions, two codes exist to designate the Esc and function keys.

function is an expression that evaluates to a numeric code assigned to a particular editing function.

Code Function

Function key

Left arrow (<—)

Return key

Back space

Esc key

Right arrow (—>)

Insert character

Delete character

Ol (N[O D|W|N| =

Insert mode ON

—
o

Insert mode OFF

=
[

Clear from current position to end-of-line

[
N

Erase entire line

13 Insert mode toggle

key is an expression evaluating to a decimal value that designates the keyboard key to assign to the
editing function. There are three key types, described in the following table:

Type Decimal value Description
Control 1 through 31 Single character control codes ASCII 1
through 31.

235

Chapter 1: Statements and functions

236

Type Decimal value Description

Escape 32 through 159 Consists of the characters defined by the Esc
key followed by the ASCII value 0 through 127
(see Defining escape keys, on page 236).

Function 160 through 2,139,062,303 Consists of the characters defined by the
FUNCTION key followed by the ASCII value
0 through 127. You can specify up to four
ASCllI values for complex keys (see Defining

function keys, on page 236).

If either function or key evaluates to the null value or an empty string, the KEYEDIT statement fails, the
program terminates, and a run-time error message is produced.

To define key, you must know the ASCII value generated by the keyboard on the terminal being used.
Once you know the ASCII code sequence generated by a particular keyboard key, you can use one of
the following three methods for deriving the numeric key value.

Defining control keys

A control key is one whose ASCII value falls within the range of 1 through 31. Generally keys of this type
consist of pressing a keyboard key while holding down the Ctrl key. The key value is the ASCII code
value,i.e., Ctrl-Ais 1, Ctrl-M is 13, etc.

Defining escape keys

An escape key is one which consists of pressing the Esc key followed by a single ASCIl value. The Esc
key can be defined by issuing a KEYEDIT statement using a function value of 5 and the ASCII value of
the escape character for the key parameter, e.g., KEYEDIT (5,27).

The key value for an escape key is derived by adding the ASCII value of the character following the Esc
key and 32. The constant 32 is added to ensure that the final key value falls within the range of 32 to
159, i.e., Esc-ais 33 (1+32), Esc-z is 122 (90+32), Esc-p is 144 (112+32), and so on.

Defining function keys

A function key is similar to an escape key but consists of a function key followed by one or more ASCI|
values. The function key can be defined by issuing a KEYEDIT statement using a function value of 1 and
the ASCII value of the function character for the key parameter, e.g., KEYEDIT(1,1).

Deriving the key value for a function key depends on the number of characters in the sequence the
keyboard key generates. Because the KEYEDIT statement recognizes function keys that generate
character sequences up to five characters long, the following method can be used to derive the key
value.

Assume that keyboard key F7 generates the following character sequence:
Ctrl-A] 6 ~ <Return>

This character sequence is to be assigned to the Clear Field functionality of the INPUT @ statement. It
can be broken into five separate characters, identified as follows:

Character ASCIl value Meaning

Ctrl-A 1 The preamble character (defines the function key)
] 93 The first character

6 54 The second character

~ 126 The third character

<Return> 10 The fourth character

KEYEDIT statement

First you define the function key value. Do this by issuing the KEYEDIT statement with a function value
of 1 and with a key value defined as the ASClI value of the preamble character, i.e., KEYEDIT (1, 1).

Once you define the function key, the following formula is applied to the remaining characters in the

sequence:

ASCIlI value * (2(8*(character position - 1))

Using the example above:

Key| ASCII Formula Intermediate result Final result
] 93 * (2(8'(1-1)) =93 * (20) - 93*1 93
6 |54 (B =54+ 2% |= 54 * 256 13,824
~ 126 |* [®C =126* (29 |= 126 * 65,536 8,257,536
<cri10 [EED =10 (2" |= 10* 167,772,160
16,777,216
176,043,613
+ 160
176,043,773

The results of each calculation are then added together. Finally, the constant 160 is added to insure
that the final key parameter value falls within the range of 160 through 2,139,062,303. For our example
above, this would yield 176,043,613 + 160, or 176,043,773. To complete this example and assign this
key to the Clear Field functionality, use the following KEYEDIT statement:

KEYEDIT (11, 176043773)

Historically, key values falling in the range of 160 through 287 included an implied Return, as there
was no method for supporting multiple character sequences. With the support of multiple character
sequences, you must now include the Return in the calculation for proper key recognition, with one
exception. For legacy key values that fall within the range of 160 through 287, a Return is automatically
appended to the end of the character sequence, yielding an internal key parameter of greater value.

Afunction key generates the character sequence:

Ctrl-A B <Return>

Before supporting multiple character sequences, this function key would have been defined as:
KEYEDIT (1, 1), (11, 225)

(1,1) defined the preamble of the function key, and (11, 225) defined the Clear-to-end-of-line key. The
225 value was derived by adding 160 to B (ASCII 65). The <Return> (ASCII 10) was implied. This can be
shown by using the SYSTEM(1050) function to return the internal trap table contents:

Type Value Key
0 1 3 10

1 1 3 13

2 1 1 1

3 1 11 2785

The value 2785 is derived as follows:

(65 * 1) + (10 * 256) + 160 = 65 + 2560 + 160 = 2785.

237

Chapter 1: Statements and functions

238

Defining unsupported keys

You can use the KEYEDIT statement to designate keys that are recognized as unsupported by the !
EDIT.INPUT subroutine. When the !EDIT.INPUT subroutine encounters an unsupported key, it sounds
the terminal bell.

An unsupported key can be any of the three key types:

= Control key

= Escape key

* Function key

Define an unsupported key by assigning any negative decimal value for the function parameter.
The key parameter is derived as described earlier.

See the !EDIT.INPUT or !|GET.KEY subroutine for more information.

Retrieving defined keys

The SYSTEM function(1050) returns a dynamic array of defined KEYEDIT, KEYEXIT statement and
KEYTRAP statement keys. Field marks (ASCII 254) delimit the elements of the dynamic array. Each field
in the dynamic array has the following structure:

key.typeV function.parameterV key.parameter

key.type is one of the following values:

Value Description

1 A KEYEDIT value

2 A KEYTRAP value

3 A KEYEXIT value

4 The INPUTNULL value
5 An unsupported value

function.parameter and key.parameter are the values passed as parameters to the associated
statement, except for the INPUTNULL value.

Example
The following example illustrates the use of the KEYEDIT statement and the SYSTEM(1050) function:

KEYEDIT (1,1), (2,21), (3,13), (4,8), (6,6), (12,176043773)
KEYTRAP (1,2)
keys.dfn=SYSTEM (1050)
PRINT "#","Type","Value", "Key"
XX=DCOUNT (keys.dfn, @FM)
FOR I=1 TO XX
print I-1,keys.dfn<I,1>,keys.dfn<I,2>,keys.dfn<I,3>
NEXT T

The program output is:

Type Value Key
0 1 3 10
1 1 3 13
2 1 4 8
3 1 1 1
4 1 2 21

KEYEXIT statement

5 1 6 6
6 1 12 176043773
7 2 1 2

KEYEXIT statement

Use the KEYEXIT statement to specify exit traps for the keys assigned specific functions by the KEYEDIT
statement. When an exit trap key is typed, the variable being edited with the INPUT @ statement or
the IEDIT.INPUT subroutine remains in its last edited state. Use the KEYTRAP statement to restore the
variable to its initial state.

Syntax

KEYEXIT (value, key) [, (value, key)]

value is an expression that specifies a user-defined trap number for each key assigned by the KEYEDIT
statement.

key is a decimal value that designates the specific keyboard key assigned to the editing function. There
are three key types, described in the following table:

Type Decimal value Description

Control 1 through 31 Single character control codes ASCII 1 through
31.

Escape 32 through 159 Consists of the characters defined by the Esc
key followed by the ASCII value 0 through 127.

Function 160 through 2,139,062,303 Consists of the characters defined by the
function key followed by the ASCII value 0
through 127. A maximum of four ASCII values
can be specified for complex keys.

See the KEYEDIT statement for how to derive the decimal value of control, escape, and function keys.

If either the value or key expression evaluates to the null value or an empty string, the KEYEXIT
statement fails, the program terminates, and a run-time error message is produced.

KEYEXIT sets the STATUS function to the trap number of any trap key typed by the user.

Examples

The following example sets up Ctrl-B as an exit trap key. The STATUS function is set to 1 when the user
types the key.

KEYEXIT (1,2)

The next example sets up Ctrl-K as an exit trap key. The STATUS function is set to 2 when the user
types the key.

KEYEXIT (2,11)

KEYIN function

Use the KEYIN function to read a single character from the input buffer and return it. All UniVerse
special character handling (such as case inversion, erase, kill, and so on) is disabled. UNIX special

239

Chapter 1: Statements and functions

character handling (processing of interrupts, XON/XOFF, conversion of CR to LF, and so on) still takes

place.

Calculations are based on display length rather than character length.

No arguments are required with the KEYIN function; however, parentheses are required.

Syntax

KEYIN ()

KEYTRAP statement

Use the KEYTRAP statement to specify traps for the keys assigned specific functions by the KEYEDIT
statement. When a trap key is typed, the variable being edited with the INPUT @ statement or the !
EDIT.INPUT subroutine is restored to its initial state. Use the KEYEXIT statement to leave the variable

240

in its last edited state.

Syntax

KEYTRAP (value,

key) [, (value,

key)]

value is an expression that evaluates to a user-defined trap number for each key assigned by the

KEYEDIT statement.

key is a decimal value which designates the specific keyboard key assigned to the editing function.
There are three key types, described in the following table:

Type Decimal value Description

Control 1 through 31 Single character control codes ASCII 1 through 31.

Escape 32 through 159 Consists of the characters defined by the Esc key
followed by the ASCII value 0 through 127.

Function 160 through 2,139,062,303 | Consists of the characters defined by the function

key followed by the ASCIl value 0 through 127. A
maximum of four ASCII values may be specified for
complex keys.

See the KEYEDIT statement, on page 235 for how to derive the decimal value of control, escape, and

function keys.

If either the value or key expression evaluates to the null value or an empty string, the KEYEXIT
statement fails, the program terminates, and a run-time error message is produced.

KEYTRAP sets the STATUS function to the trap number of any trap key typed by the user.

Examples

The following example sets up Ctrl-B as a trap key. The STATUS function is set to 1 when the user

types the key.

KEYTRAP (1, 2)

The next example defines function key values for the F1, F2, F3, and F4 keys on a Wyse 50 terminal:

KEYEDIT (1,1)
KEYTRAP (1,224)
PRINT @ (-1)
VALUE = "KEY"

r (2,225),

(3,226),

(4,227)

LEFT function

INPUT @ (10,10) :VALUE

X=STATUS ()
BEGIN CASE
CASE X =1
PRINT "FUNCTION KEY 1"
CASE X =2
PRINT "FUNCTION KEY 2"
CASE X =3
PRINT "FUNCTION KEY 3"
CASE X =4
PRINT "FUNCTION KEY 4"
END CASE
PRINT VALUE
STOP
END

LEFT function

Use the LEFT function to extract a substring comprising the first n characters of a string, without
specifying the starting character position. It is equivalent to the following substring extraction
operation:

string [1, length]

If string evaluates to the null value, nullis returned. If n evaluates to the null value, the LEFT function
fails and the program terminates with a run-time error message.

Syntax

LEFT (string, n)

Example
PRINT LEFT ("ABCDEFGH", 3)
This is the program output:

ABC

LEN function

Use the LEN function to return the number of characters in string. Calculations are based on character
length rather than display length.

Syntax

LEN (string)

string must be a string value. The characters in string are counted, and the count is returned.
The LEN function includes all blank spaces, including trailing blanks, in the calculation.
If string evaluates to the null value, 0 is returned.

If NLS is enabled, use the LENDP function to return the length of a string in display positions rather
than character length. For more information about display length, see the UniVerse NLS Guide.

241

Chapter 1: Statements and functions

Example

P="PORTLAND, OREGON"

PRINT "LEN(P)= ",LEN (P)

*

NUMBER=123456789

PRINT "LENGTH OF NUMBER IS ", LEN (NUMBER)

This is the program output:

LEN (P) = 16
LENGTH OF NUMBER IS 9

LENDP function

In NLS mode, use the LENDP function to return the number of display positions occupied by string
when using the specified map. Calculations are based on display length rather than character length.

Syntax

LENDP (string [, mapname])

string must be a string value. The display length of string is returned.

mapname is the name of an installed map. If mapname is not installed, the character length of string is
returned.

If mapname is omitted, the map associated with the channel activated by PRINTER ON is used,
otherwise it uses the map for print channel 0. You can also specify mapname as CRT, AUX, LPTR, and
0S. These values use the maps associated with the terminal, auxiliary printer, print channel 0, or the
operating system, respectively. If you specify mapname as NONE, the string is not mapped.

Any unmappable characters in string have a display length of 1.
The LENDP function includes all blank spaces, including trailing blanks, in the calculation.
If string evaluates to the null value, 0 is returned.

If you use the LENDP function with NLS disabled, the program behaves as if the LEN function is used.
See the LEN function, on page 241 to return the length of a string in character rather than display
positions.

For more information about display length, see the UniVerse NLS Guide.

LENS function

242

Use the LENS function to return a dynamic array of the number of display positions in each element of
dynamic.array. Calculations are based on character length rather than display length.

Syntax
LENS (dynamic.array)
CALL -LENS (return.array, dynamic.array)

CALL !'LENS (return.array, dynamic.array)

LENSDP function

Each element of dyamic.array must be a string value. The characters in each element of dynamic.array
are counted, and the counts are returned.

The LENS function includes all blank spaces, including trailing blanks, in the calculation.

If dynamic.array evaluates to the null value, 0 is returned. If any element of dynamic.array is null, 0 is
returned for that element.

If NLS is enabled, use the LENSDP function to return a dynamic array of the number of characters in
each element of dynamic.array in display positions. For more information about display length, see
the UniVerse NLS Guide.

LENSDP function

In NLS mode, use the LENSDP function to return a dynamic array of the number of display positions
occupied by each element of dynamic.array. Calculations are based on display length rather than
character length.

Syntax
LENSDP (dynamic.array [, mapname])
CALL -LENSDP (return.array, dynamic.array [,mapname])

CALL !'LENSDP (return.array, dynamic.array |[,mapname])

Each element of dynamic.array must be a string value. The display lengths of each element of
dynamic.array are counted, and the counts are returned.

mapname is the name of an installed map. If mapname is not installed, the character length of string is
returned.

If mapname is omitted, the map associated with the channel activated by PRINTER ON is used,
otherwise it uses the map for print channel 0. You can also specify mapname as CRT, AUX, LPTR, and
0S. These values use the maps associated with the terminal, auxiliary printer, print channel 0, or the
operating system, respectively. If you specify mapname as NONE, the string is not mapped.

Any unmappable characters in dynamic.array have a display length of 1.
The LENSDP function includes all blank spaces, including trailing blanks, in the calculation.

If dynamic.array evaluates to the null value, 0 is returned. If any element of dynamic.array is null, 0 is
returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

If you use the LENSDP function with NLS disabled, the program behaves as if the LENS function is
used. See the LENS function to return the length of a string in character length rather than display
length.

For more information about display length, see the UniVerse NLS Guide.

LES function

Use the LES function to test if elements of one dynamic array are less than or equal to the elements of
another dynamic array.

Syntax

LES (arrayl, array?2)

243

Chapter 1: Statements and functions

CALL -LES (return.array, arrayl, arrayZ2)

CALL !'LES (return.array, arrayl, arrayZ2)

Each element of arrayl is compared with the corresponding element of array2. If the element from
arrayl is less than or equal to the element from array2, a 1 is returned in the corresponding element
of a new dynamic array. If the element from arrayl is greater than the element from array2,a 0 is
returned. If an element of one dynamic array has no corresponding element in the other dynamic
array, the undefined element is evaluated as empty, and the comparison continues.

If either of a corresponding pair of elements is the null value, null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

LET statement

Use the LET statement to assign the value of expression to variable.

Syntax

[LET] variable = expression

Example

LET A=55
LET B=45
LET C=A+B
LET D="55+45="
LET E=D:C
PRINT E
This is the program output:

55+45=100

LN function

Use the LN function to calculate the natural logarithm of the value of an expression, using base "e".
The value of "e" is approximately 2.71828. expression must evaluate to a numeric value greater than 0.

If expression is 0 or negative, 0 is returned and a warning is printed. If expression evaluates to the null
value, null is returned.
Syntax

LN (expression)

Example

PRINT LN (6)
This is the program output:
1.7918

244

loadSecurityContext function

loadSecurityContext function

The loadSecurityContext() function loads a saved security context record into the current
session.

The name and passPhrase parameters are needed to retrieve and decrypt the saved context. An
internal data structure is created and its handle is returned in the context parameter.

Syntax

loadSecurityContext (context, name, passPhrase)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

context The security context handle.

name String containing the name of the saved context.

PassPhrase String containing the passPhrase needed to decrypt the saved data.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.

1 Context record does not exist.

2 Context record could not be accessed (for example, wrong password).

3 Invalid content (file was not saved by the saveSecurityContext()
function).

4 Other problems that caused context load failure. Refer to the log file for

more information.

LOCALEINFO function

In NLS mode, use the LOCALEINFO function to retrieve the settings of the current locale.

Syntax

LOCALEINFO (category)

category is one of the following tokens that are defined in the UniVerse include file UVNLSLOC.H:

Category Description

UVLCSTIME Each token returns a dynamic array containing the data being
used by the specified category. The meaning of the data depends
UVLCINUMERIC on the category; field 1 is always the name of the category or
UVLCSMONETARY the value OFF. OFF means that locale support is disabled for a
category. The elements of the array are separated by field marks.
UVLCSCTYPE

UVLCSCOLLATE

245

Chapter 1: Statements and functions

Category Description
UVLCSWEIGHTS Returns the weight table.
UVLCSINDEX Returns information about the hooks defined for the locale.

If the specified category is set to OFF, LOCALEINFO returns the string OFF.
If the LOCALEINFO function fails to execute, LOCALEINFO returns one of the following:

Error Description
LCESNO.LOCALES [NLS locales are not in force.
LCE Category is invalid.
SBAD.CATEGORY

For more information about locales, see the UniVerse NLS Guide.

Example

The following example shows the contents of the multivalued DAYS field when the locale FR-FRENCH
is current. Information for LCTSDAYS is contained in the UYNLSLOC.H file in the INCLUDE directory in
the UV account directory.

category.info = LOCALEINFO (LCSTIME)
PRINT category.info<LCT$DAYS>

This is the program output:

lundi}mardi}mercredi}jeudi}vendredi}samedi}dimanche

LOCATE statement (IDEAL and REALITY syntax)

246

Use the LOCATE statement to search dynamic.array for a field, value, or subvalue. LOCATE returns a
value indicating one of the following:

Syntax

LOCATE expression IN dynamic.array [< field# [, value#] >]
[, start] [BY seq]
SETTING variable
{THEN statements [ELSE statements] | ELSE statements}

= Where expression was found in dynamic.array
= Where expression should be inserted in dynamic.array if it was not found

The search can start anywhere in dynamic.array.

Note: The REALITY syntax of LOCATE works in IDEAL, REALITY, IN2, and PICK flavors by default. To
make the INFORMATION syntax of LOCATE available in these flavors, use the INFO.LOCATE option
of SOPTIONS statement. To make the REALITY syntax of LOCATE available in INFORMATION and
PIOPEN flavors, use SOPTIONS -INFO.LOCATE.

expression evaluates to the content of the field, value, or subvalue to search for in dynamic.array. If
expression or dynamic.array evaluates to the null value, variable is set to 0 and the ELSE statements
are executed. If expression and dynamic.array both evaluate to empty strings, variable is set to 1 and
the THEN statements are executed.

LOCATE statement (IDEAL and REALITY syntax)

field# and value# are delimiter expressions that restrict the scope of the search. If you do not specify
field#, dynamic.array is searched field by field. If you specify field# but not value#, the specified field is
searched value by value. If you specify field# and value#, the specified value is searched subvalue by
subvalue.

start is an expression that evaluates to a number specifying the field, value, or subvalue from which to
start the search.

Case Description

Case 1: If field# and value# are omitted, the search starts in dynamic.array at the
field specified by start. If start is also omitted, the search starts at field 1 of
dynamic.array.

Case 2: If only field# is specified and it is greater than 0, the search starts at the value
specified by start. If start is also omitted, the search starts at value 1 in field#. If
field# is less than or equal to 0, both field# and value# are ignored.

Case 3: If both field# and value# are specified, the search starts at the subvalue
specified by start. If start is also omitted, the search starts at subvalue 1 of
value#, in the field specified by field#. If field# is greater than 0, but value# is less
than or equal to 0, LOCATE behaves as though only field# is specified.

If a field, value, or subvalue containing expression is found, variable returns the index of the located
field, value, or subvalue relative to the start of dynamic.array, field#, or value#, respectively, not
relative to the start of the search. If a field, value, or subvalue containing expression is not found,
variable is set to the number of fields, values, or subvalues in the array plus 1, and the ELSE
statements are executed. The format of the ELSE statement is the same as that used in the IF...THEN
statement.

If field#, value#, or start evaluates to the null value, the LOCATE statement fails and the program
terminates with a run-time error message.

variable stores the index of expression. variable returns a field number, value number, or subvalue
number, depending on the delimiter expressions used. variable is set to a number representing one of
the following:

= Theindex of the element containing expression, if such an element is found

* Anindexthat can be used in an INSERT function to create a new element with the value specified
by expression

The search stops when one of the following conditions is met:
= Afield containing expression is found.

* The end of the dynamic array is reached.

= Afield thatis higher or lower, as specified by seq, is found.

If the elements to be searched are sorted in one of the ascending or descending ASCII sequences
listed below, you can use the BY seq expression to end the search. The search ends at the place where
expression should be inserted to maintain the ASCIl sequence, rather than at the end of the list of
specified elements.

Use the following values for seq to describe the ASCII sequence being searched:

Value Description

ALorA Ascending, left-justified (standard alphanumeric sort)
AR Ascending, right-justified (numeric sort)

DLorD Descending, left-justified (standard alphanumeric sort)
DR Descending, right-justified (numeric sort)

247

Chapter 1: Statements and functions

seq does not reorder the elements in dynamic.array; it specifies the terminating conditions for
the search. If a seq expression is used and the elements are not in the sequence indicated by seq,
an element with the value of expression may not be found. If seq evaluates to the null value, the
statement fails and the program terminates.

If NLS is enabled, the LOCATE statement with a BY seq expression uses the Collate convention as
specified in the NLS.LC.COLLATE file to determine the sort order for characters with ascending or
descending sequences. The Collate convention defines rules for casing, accents, and ordering. For
more information about how NLS calculates the order, see the UniVerse NLS Guide.

Examples

The examples show the REALITY flavor of the LOCATE statement. A field mark is shown by F, a value
mark is shown by V, and a subvalue mark is shown by S.

Q="X":@SM:"S$":@SM:'Y"':QVM:"'Z':@SM:4:@SM:2:QVM:"'B"'
PRINT "QO= ":Q

LOCATE "$" IN Q <1> SETTING WHERE ELSE PRINT 'ERROR'
PRINT "WHERE= ", WHERE

LOCATE "$" IN Q <1,1> SETTING HERE ELSE PRINT 'ERROR'
PRINT "HERE= ", HERE
NUMBERS=122:@FM:123:@FM:126:@FM:130:@FM

PRINT "BEFORE INSERT, NUMBERS= ", NUMBERS

NUM= 128

LOCATE NUM IN NUMBERS BY "AR" SETTING X ELSE
NUMBERS = INSERT (NUMBERS, X, 0,0, NUM)

PRINT "AFTER INSERT, NUMBERS= ",NUMBERS
END

This is the program output:

Q= XS$SYVZS4S2VB

ERROR

WHERE= 4

HERE= 2

BEFORE INSERT, NUMBERS= 122F123F126F130F
AFTER INSERT, NUMBERS= 122F123F126F128F130F

LOCATE statement (INFORMATION syntax)

Use the LOCATE statement to search dynamic.array for a field, value, or subvalue. LOCATE returns a
value indicating one of the following:

Syntax

LOCATE expression IN dynamic.array <field# [, value# [, subvalue#]] >
[BY seqg] SETTING variable
{THEN statements [ELSE statements] | ELSE statements}

= Where expressionwas found in dynamic.array
= Where expression should be inserted in dynamic.array if it was not found

The search can start anywhere in dynamic.array.

248

LOCATE statement (INFORMATION syntax)

Note: The INFORMATION syntax of LOCATE works in INFORMATION and PIOPEN flavors by default.
To make the REALITY syntax of LOCATE available in INFORMATION and PIOPEN flavors, use
SOPTIONS -INFO.LOCATE.

expression evaluates to the contents of the field, value, or subvalue to search for in dynamic.array. If
expression or dynamic.array evaluates to the null value, variable is set to 0 and the ELSE statements
are executed. If expression and dynamic.array both evaluate to empty strings, variable is set to 1 and
the THEN statements are executed.

field#, value#, and subvalue# are delimiter expressions specifying where to start the search in
dynamic.array. If you specify field# only, dynamic.array is searched field by field. If you specify field#
and value# only, the specified field is searched value by value. If you also specify subvalue#, the
specified value is searched subvalue by subvalue.

When the search is field by field, each field is treated as a single string, including any value marks and
subvalue marks. When the search is value by value, each value is treated as a single string, including
any subvalue marks. For the search to be successful, expression must match the entire contents of the
field, value, or subvalue found, including any embedded value marks or subvalue marks.

Case Description

Case 1: If both value# and subvalue# are omitted or are both less than or equal to 0, the
search starts at the field indicated by field#.

Case 2: If subvalue# is omitted or is less than or equal to 0, the search starts at the value

indicated by value#, in the field indicated by field#. If field# is less than or equal
to 0, field# defaults to 1.

Case 3: If field#, value#, and subvalue# are all specified and are all nonzero, the search
starts at the subvalue indicated by subvalue#, in the value specified by value#,
in the field specified by field#. If field# or value# are less than or equal to 0, they
default to 1.

If a field, value, or subvalue containing expression is found, variable is set to the index of the located
field relative to the start of dynamic.array, the field, or the value, respectively, not relative to the start
of the search.

If no field containing expression is found, variable is set to the number of the field at which the search
terminated, and the ELSE statements are executed. If no value or subvalue containing expression

is found, variable is set to the number of values or subvalues plus 1, and the ELSE statements are
executed. If field#, value#, or subvalue# is greater than the number of fields in dynamic.array, variable
is set to the value of field#, value#, or subvalue#, respectively, and the ELSE statements are executed.
The format of the ELSE statement is the same as that used in the IF...THEN statement.

If any delimiter expression evaluates to the null value, the LOCATE statement fails and the program
terminates with a run-time error message.

variable stores the index of expression. variable returns a field number, value number, or a subvalue
number, depending on the delimiter expressions used. variable is set to a number representing one of
the following:

= Theindex of the element containing expression, if such an element is found

* Anindexthat can be used in an INSERT function to create a new element with the value specified
by expression.

The search stops when one of the following conditions is met:
= Afield containing expression is found.
= The end of the dynamic array is reached.

= Afield thatis higher or lower, as specified by seq, is found.

249

Chapter 1: Statements and functions

If the elements to be searched are sorted in one of the ascending or descending ASCII sequences
listed below, you can use the BY seq expression to end the search. The search ends at the place where

expression should be inserted to maintain the ASCIl sequence, rather than at the end of the list of
specified elements.

Use the following values for seq to describe the ASCII sequence being searched:

Value Description

ALorA Ascending, left-justified (standard alphanumeric sort)
AR Ascending, right-justified (numeric sort)

DLorD Descending, left-justified (standard alphanumeric sort)
DR Descending, right-justified (numeric sort)

seq does not reorder the elements in dynamic.array; it specifies the terminating conditions for
the search. If a seq expression is used and the elements are not in the sequence indicated by seq,
an element with the value of expression may not be found. If seq evaluates to the null value, the
statement fails and the program terminates.

If NLS is enabled, the LOCATE statement with a BY seq expression uses the Collate convention as
specified in the NLS.LC.COLLATE file to determine the sort order for characters with ascending or
descending sequences. The Collate convention defines rules for casing, accents, and ordering. For
more information about how NLS calculates the order, see the UniVerse NLS Guide.

Examples

The examples show the INFORMATION flavor of the LOCATE statement. A field mark is shown by F, a
value mark is shown by V, and a subvalue mark is shown by S.

Q='"X'":QSM:"S$":Q@SM:"'Y':@VM:"'Z':@SM:4:@SM:2:QVM:"'B"
PRINT "Q= ":Q
LOCATE "S$"™ IN Q <1> SETTING WHERE ELSE PRINT 'ERROR'
PRINT "WHERE= ", WHERE
LOCATE "$" IN Q <1,1> SETTING HERE ELSE PRINT 'ERROR'
PRINT "HERE= ", HERE
NUMBERS=122:Q@FM:123:Q@FM:126:@FM:130:@FM
PRINT "BEFORE INSERT, NUMBERS= ",NUMBERS
NUM= 128
LOCATE NUM IN NUMBERS <2> BY "AR" SETTING X ELSE
NUMBERS = INSERT (NUMBERS, X, 0, 0, NUM)
PRINT "AFTER INSERT, NUMBERS= ",NUMBERS
END

This is the program output:

Q= XS$SYVZS4S2VB

ERROR
WHERE= 2
ERROR
HERE= 4

BEFORE INSERT, NUMBERS= 122F123F126F130F
AFTER INSERT, NUMBERS= 122F123F126F128F130F

LOCATE statement (PICK syntax)

Use the LOCATE statement to search dynamic.array for a field, value, or subvalue. LOCATE returns a
value indicating one of the following:

250

LOCATE statement (PICK syntax)

Syntax

LOCATE (expression, dynamic.array [, field# [, value#]] ; variable [;seq])
{ THEN statements [ELSE statements] | ELSE statements }

= Where expression was found in dynamic.array

= Where expression should be inserted in dynamic.array if it was not found

Note: The PICK syntax of LOCATE works in all flavors of UniVerse.

expression evaluates to the content of the field, value, or subvalue to search for in dynamic.array. If
expression or dynamic.array evaluates to the null value, variable is set to 0 and the ELSE statements
are executed. If expression and dynamic.array both evaluate to empty strings, variable is set to 1 and
the THEN statements are executed.

field# and value# are delimiter expressions that restrict the scope of the search. If you do not specify
field#, dynamic.array is searched field by field. If you specify field# but not value#, the specified field is
searched value by value. If you specify field# and value#, the specified value is searched subvalue by
subvalue.

When the search is field by field, each field is treated as a single string, including any value marks and
subvalue marks. When the search is value by value, each value is treated as a single string, including
any subvalue marks. For the search to be successful, expression must match the entire contents of the
field, value, or subvalue found, including any embedded value marks or subvalue marks.

Case Result

Case 1: If field# and value# are omitted, the search starts at the first field in
dynamic.array.

Case 2: If only field# is specified and it is greater than 0, the search starts at the first
value in the field indicated by field#. If field# is less than or equal to 0, both field#
and value# are ignored.

Case 3: If both field# and value#are specified, the search starts at the first subvalue in
the value specified by value#, in the field specified by field#. If field# is greater
than 0, but value# is less than or equal to 0, LOCATE behaves as though only
field# is specified.

If a field, value, or subvalue containing expression is found, variable returns the index of the located
field, value, or subvalue relative to the start of dynamic.array, field#, or value#, respectively, not
relative to the start of the search. If a field, value, or subvalue containing expression is not found,
variable is set to the number of fields, values, or subvalues in the array plus 1, and the ELSE
statements are executed. The format of the ELSE statement is the same as that used in the IF...THEN
statement.

If field# or value# evaluates to the null value, the LOCATE statement fails and the program terminates
with a run-time error message.

variable stores the index of expression. variable returns a field number, value number, or a subvalue
number, depending on the delimiter expressions used. variable is set to a number representing one of
the following:

= Theindex of the element containing expression, if such an element is found

* Anindexthat can be used in an INSERT function to create a new element with the value specified
by expression

The search stops when one of the following conditions is met:

251

Chapter 1: Statements and functions

= Afield containing expression is found.
* The end of the dynamic array is reached.
= Afield that is higher or lower, as specified by seq, is found.

If the elements to be searched are sorted in one of the ascending or descending ASCII sequences
listed below, you can use the BY seq expression to end the search. The search ends at the place where

expression should be inserted to maintain the ASCIl sequence, rather than at the end of the list of
specified elements.

Use the following values for seq to describe the ASCII sequence being searched:

Value Description

ALorA Ascending, left-justified (standard alphanumeric sort)
AR Ascending, right-justified (numeric sort)

DLorD Descending, left-justified (standard alphanumeric sort)
DR Descending, right-justified (numeric sort)

seq does not reorder the elements in dynamic.array; it specifies the terminating conditions for
the search. If a seq expression is used and the elements are not in the sequence indicated by seq,
an element with the value of expression may not be found. If seq evaluates to the null value, the
statement fails and the program terminates.

If NLS is enabled, the LOCATE statement with a seq expression uses the Collate convention as
specified in the NLS.LC.COLLATE file to determine the sort order for characters with ascending or
descending sequences. The Collate convention defines rules for casing, accents, and ordering. For
more information about how NLS calculates the order, see the UniVerse NLS Guide.

Examples

The examples show the PICK flavor of the LOCATE statement. A field mark is shown by F, a value mark
is shown by V, and a subvalue mark is shown by S.

Q="X":@SM:"S$":@SM:'Y"':QVM:"'Z':@SM:4:@SM:2:QVM:"'B"'
PRINT "Q= ":Q
LOCATE ("$", Q, 1; WHERE) ELSE PRINT 'ERROR'
PRINT "WHERE= ", WHERE
LOCATE ("$", Q, 1, 1; HERE) ELSE PRINT 'ERROR'
PRINT "HERE= ", HERE
NUMBERS=122:Q@FM:123:@FM:126:@FM:130:dFM
PRINT "BEFORE INSERT, NUMBERS= ",NUMBERS
NUM= 128
LOCATE (NUM, NUMBERS; X; "AR") ELSE
NUMBERS = INSERT (NUMBERS, X, 0, 0,NUM)
PRINT "AFTER INSERT, NUMBERS= ",NUMBERS
END

This is the program output:

Q= XS$SYVZS4S2VB
ERROR
WHERE= 4
HERE= 2
BEFORE INSERT, NUMBERS= 122F123F126F130F
AFTER INSERT, NUMBERS= 122F123F126F128F130F

252

LOCK statement

LOCK statement

Use the LOCK statement to protect specified user-defined resources or events against unauthorized
use or simultaneous data file access by different users.

Syntax

LOCK expression [THEN statements] [ELSE statements]

There are 64 public semaphore locks in the UniVerse system. They are task synchronization tools but
have no intrinsic definitions. You must define the resource or event associated with each semaphore,
ensuring that there are no conflicts in definition or usage of these semaphores throughout the entire
system.

expression evaluates to a number in the range of 0 through 63 that specifies the lock to be set. A
program can reset a lock any number of times and with any frequency desired. If expression evaluates
to the null value, the LOCK statement fails and the program terminates with a run-time error message.

If program B tries to set a lock already set by program A, execution of program B is suspended until the
first lock is released by program A; execution of program B then continues.

The ELSE clause provides an alternative to this procedure. When a LOCK statement specifies a
lock that has already been set, the ELSE clause is executed rather than program execution being
suspended.

Program termination does not automatically release locks set in the program. Each LOCK statement
must have a corresponding UNLOCK statement. If a program locks the same semaphore more than
once during its execution, a single UNLOCK statement releases that semaphore.

The UNLOCK statement can specify the expression used in the LOCK statement to be released. If no
expression is used in the UNLOCK statement, all locks set by the program are released.

Alternatively, locks can be released by logging off the system or by executing either the QUIT
command or the CLEAR . LOCKS command.

You can check the status of locks with the LIST . LOCKS command; this lists the locks on the screen.
The unlocked state is indicated by 0. The locked state is indicated by a number other than 0 (including
both positive and negative numbers). The number is the unique signature of the user who has set the
lock.

Note: The LOCK statement protects user-defined resources only. TheREADL statement, READU
statement, READVL statement, READVU statement, MATREADL statement, and MATREADU
statement use a different method of protecting files and records.

Example

The following example sets lock 60, executes the LIST . LOCKS command, then unlocks all locks set
by the program:
LOCK 60 ELSE PRINT "ALREADY LOCKED"
EXECUTE "LIST.LOCKS"
UNLOCK

The program displays the LIST . LOCKS report. Lock 60 is set by user 4.

0:—- 1:-—- 2:-- 3:-- 4:-- 5:-- 6:-- T:--
8:—- 9:-- 10:-- 11:-- 12:-- 13:-- 14:-- 15:--
16:-- 17:-- 18:-- 19:-- 20:-- 21:-- 22:-- 23:--
24:-- 25:-- 26:-- 27:-- 28:-- 29:-- 30:-- 31:--

253

Chapter 1: Statements and functions

32:-- 33:-- 34:-- 35:-- 36:-- 37:-- 38:-- 39:-—-
40:-- 41:-- 42:-- 43:-- 44:-- 45:—- 46:—— 47:—-
48:-- 49:-- 50:-- 51:-- 52:-- 53:-- 54:-- 55:--
56:-— 57:-- 58:-- 59:-- 60:4 6l:—— 62:-- 63:—-

LOOP statement

254

Use the LOOP statement to start a LOOP...REPEAT program loop. A program loop is a series of
statements that executes for a specified number of repetitions or until specified conditions are met.

Syntax

LOOP
[loop.statements]
[CONTINUE | EXIT]
[{WHILE | UNTIL} expression [DO]]
[loop.statements]
[CONTINUE | EXIT]
REPEAT

Use the WHILE clause to indicate that the loop should execute repeatedly as long as the WHILE
expression evaluates to true (1). When the WHILE expression evaluates to false (0), repetition of the
loop stops, and program execution continues with the statement following the REPEAT statement.

Use the UNTIL clause to put opposite conditions on the LOOP statement. The UNTIL clause indicates
that the loop should execute repeatedly as long as the UNTIL expression evaluates to false (0). When
the UNTIL expression evaluates to true (1), repetition of the loop stops, and program execution
continues with the statement following the REPEAT statement.

If a WHILE or UNTIL expression evaluates to the null value, the condition is false.

expression can also contain a conditional statement. Any statement that takes a THEN or an ELSE
clause can be used as expression, but without the THEN or ELSE clause. When the conditional
statement would execute the ELSE clause, expression evaluates to false; when the conditional
statement would execute the THEN clause, expression evaluates to true. A LOCKED clause is not
supported in this context.

You can use multiple WHILE and UNTIL clauses in a LOOP...REPEAT loop. You can also nest LOOP...
REPEAT loops. If a REPEAT statement is encountered without a previous LOOP statement, an error
occurs during compilation.

Use the CONTINUE statement within LOOP...REPEAT to transfer control to the next iteration of the
loop from any point in the loop.

Use the EXIT statement within LOOP...REPEAT to terminate the loop from any point within the loop.

Although it is possible to exit the loop by means other than the conditional WHILE and UNTIL
statements (for example, by using GOTO or GOSUB in the DO statements), it is not recommended.
Such a programming technique is not in keeping with good structured programming practice.

LOWER function

Examples

Source lnes Program output

X=0 X=0

LOOP X=1

UNTIL X>4 DO X=2

PRINT "X=",X X=3

X=X+1 X=4

REPEAT

A=20 A=20

LOOP A=19

PRINT "A=", A A=18

A=A-1 A=17

UNTIL A=15 REPEAT A=16

Q=3 Q=3

LOOP Q=2

PRINT "Q=",Q Q=1

WHILE Q DO Q=0

Q=Q-1

REPEAT

EXECUTE "SELECT VOC FIRST 5" 5 record(s) selected to SELECT list #0.

MORE=1 LOOP

LOOP HASH.TEST

READNEXT ID QUIT.KEY

ELSE MORE=0 P

WHILE MORE DO CLEAR.LOCKS

PRINT ID

REPEAT

EXECUTE "SELECT VOC FIRST 5" 5 record(s) selected to SELECT list #0.

LOOP LOOP

WHILE READNEXT ID DO HASH.TEST

PRINT ID QUIT.KEY

REPEAT P
CLEAR.LOCKS

LOWER function

Use the LOWER function to return a value equal to expression, except that system delimiters which
appear in expression are converted to the next lower-level delimiter: field marks are changed to value

255

Chapter 1: Statements and functions

marks, value marks are changed to subvalue marks, and so on. If expression evaluates to the null
value, nullis returned.

Syntax

LOWER (expression)

The conversions are:

IM CHAR(255) to FM CHAR(254)
FM CHAR(254) to VM CHAR(253)
VM CHAR(253) to SM CHAR(252)
SM CHAR(252) to ™ CHAR(251)
™ CHAR(251) to CHAR(250)

CHAR(250) to CHAR(249)

CHAR(249) to CHAR(248)
PIOPEN flavor

In PIOPEN flavor, the delimiters that can be lowered are CHAR(255) through CHAR(252). All other
characters are left unchanged. You can obtain PIOPEN flavor for the LOWER function by:

= Compiling your program in a PIOPEN flavor account
= Specifying the SOPTIONS INFO.MARKS statement

Examples

In the following examples an item mark is shown by I, a field mark is shown by F, a value mark is
shown by V, a subvalue mark is shown by S, and a text mark is shown by T. CHAR(250) is shown as Z.

The following example sets A to DDFEEV123V77:
A= LOWER('DD':IM'EE':FM:123:FM:777)
The next example sets B to 1F2S3V4T5:

B= LOWER(1:IM:2:VM:3:FM:4:SM:5)

The next example sets C to 9997888:

C= LOWER(999:TM:888)

LTS function

256

Use the LTS function to test if elements of one dynamic array are less than elements of another
dynamic array.

Syntax
LTS (arrayl, array?2)

CALL -LTS (return.array, arrayl, arrayZ2)

CALL 'LTS (return.array, arrayl, array?2)

Each element of arrayl is compared with the corresponding element of array2. If the element from
arrayl is less than the element from array2, a 1 is returned in the corresponding element of a new

MAT statement

dynamic array. If the element from array1 is greater than or equal to the element from array2,a 0 is
returned. If an element of one dynamic array has no corresponding element in the other dynamic
array, the undefined element is evaluated as an empty string, and the comparison continues.

If either of a corresponding pair of elements is the null value, null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

MAT statement

Use the MAT statement to assign one value to all of the elements in the array or to assign all the values
of one array to the values of another array.

Use the first syntax to assign the same value to all array elements. Use any valid expression. The value
of expression becomes the value of each array element.

Use the second syntax to assign values from the elements of array?2 to the elements of arrayl. Both
arrays must previously be named and dimensioned. The dimensioning of the two arrays can be
different. The values of the elements of the new array are assigned in consecutive order, regardless of
whether the dimensions of the arrays are the same or not. If array2 has more elements than in arrayl,
the extra elements are ignored. If array2 has fewer elements, the extra elements of arrayl are not
assigned.

Note: Do not use the MAT statement to assign individual elements of an array.

Syntax

MAT array = expression

MAT arrayl = MAT array?2

Examples

Source lines Program output
DIM ARRAY(5) ARRAY(1)=10
QTY=10 ARRAY(2)=10
MAT ARRAY=QTY ARRAY(3)=10
FORX=1TO5 ARRAY(4)=10
PRINT ARRAY(5)=10
"ARRAY(":X:")=",ARRAY(X)

NEXT X

DIM ONE(4,1) ONE(L,1)=1
MAT ONE=1 ONE(2,1)=1
DIM TWO(2,2) ONE(3,1)=1
MAT TWO = MAT ONE ONE(4,1)=1
FORY=1TO 4

PRINT

"ONE(":Y:",1)=",0NE(Y,1)

NEXT Y

257

Chapter 1: Statements and functions

Source lines Program output
DIM ONE(4,1) TWO(1,1)=1
MAT ONE=1 TWO(1,2)=1
DIM TWO(2,2) TWO(2,1)=1
MAT TWO = MAT ONE TWO(2,2)=1
FORX=1TO2

FORY=1TO2

PRINT

"TWO(":X:",":Y:")=",TWO(X,Y)

NEXTY

NEXT X

The following example sets all elements in ARRAY to the empty string:

MAT ARRAY="'"'

MATBUILD statement

Use the MATBUILD statement to build a dynamic array from a dimensioned array.

Syntax

MATBUILD dynamic.array FROM array [,start [,end]] [USING delimiter]

dynamic.array is created by concatenating the elements of array beginning with start and finishing
with end. If start and end are not specified or are out of range, they default to 1 and the size of the
array respectively.

array must be named and dimensioned in a MATBUILD statement or COMMON statement before it is
used in this statement.

delimiter specifies characters to be inserted between fields of the dynamic array. If delimiter is not
specified, it defaults to a field mark. To specify no delimiter, specify USING without delimiter.

If an element of array is the null value, the dynamic array will contain CHAR(128) for that element. If
start, end, or delimiter is the null value, the MATBUILD statement fails and the program terminates
with a run-time error.

Overflow elements

PICK, IN2, and REALITY flavor dimensioned arrays contain overflow elements in the last element.
INFORMATION and IDEAL flavor dimensioned arrays contain overflow elements in element 0.

In PICK, IN2, and REALITY flavor accounts, if end is not specified, dynamic.array contains the overflow
elements of array. In IDEAL and INFORMATION flavor accounts, to get the overflow elements you must
specify end as less than or equal to 0, or as greater than the size of array.

REALITY flavor accounts use only the first character of delimiter, and if USING is specified without a
delimiter, delimiter defaults to a field mark rather than an empty string.

258

MATCH operator

MATCH operator

Use the MATCH operator or its synonym MATCHES to compare a string expression with a pattern.

Syntax
string MATCH[ES] pattern
pattern is a general description of the format of string. It can consist of text or the special characters X,

A, and N preceded by an integer used as a repeating factor. For example, nN is the pattern for strings of
n numeric characters.

The following table lists the pattern codes and their definitions:

Pattern Definition
Any number of any characters (including none).
0X Any number of any characters (including none).
nX n number of any characters.
0A Any number of alphabetic characters (including none).
nA n number of alphabetic characters.
ON Any number of numeric characters (including none).
nN n number of numeric characters.
"text' Exact text; any literal string (quotation marks required).
"text" Exact text; any literal string (quotation marks required).

If nis longer than nine digits, it is used as text in a pattern rather than as a repeating factor for a
special character. For example, the pattern "1234567890N" is treated as a literal string, not as a
pattern of 1,234,567,890 numeric characters.

If the string being evaluated matches the pattern, the expression evaluates as true (1); otherwise, it
evaluates as false (0). If either string or pattern is the null value, the match evaluates as false.

Atilde (~) placed immediately before pattern specifies a negative match. That is, it specifies a pattern
or a part of a pattern that does not match the expression or a part of the expression. The match is
true only if string and pattern are of equal length and differ in at least one character. An example of a
negative match pattern is:

'A'~'X'5N
This pattern returns a value of true if the expression begins with the letter A, which is not followed by

the letter X, and which is followed by any five numeric characters. Thus AB55555 matches the pattern,
but AX55555, A55555, AX5555, and A5555 do not.

You can specify multiple patterns by separating them with value marks (ASCIl CHAR(253)). The
following expression is true if the address is either 16 alphabetic characters or 4 numeric characters
followed by 12 alphabetic characters; otherwise, it is false:

ADDRESS MATCHES "16A": CHAR(253): "4N12A"
An empty string matches the following patterns: "0A", "0X", "ON", "...", "", ", or\\.

If NLS is enabled, the MATCH operator uses the current values for alphabetic and numeric characters
specified in the NLS.LC.CTYPE file. For more information about the NLS.LC.CTYPE file, see the UniVerse
NLS Guide.

259

Chapter 1: Statements and functions

MATCHFIELD function

Use the MATCHFIELD function to check a string against a match pattern.

260

See the MATCH operator, on page 259 for information about pattern matching.

field is an expression that evaluates to the portion of the match string to be returned.

If string matches pattern, the MATCHFIELD function returns the portion of string that matches the
specified field in pattern. If string does not match pattern, or if string or pattern evaluates to the null
value, the MATCHFIELD function returns an empty string. If field evaluates to the null value, the
MATCHFIELD function fails and the program terminates with a run-time error.

pattern must contain specifiers to cover all characters contained in string. For example, the following
statement returns an empty string because not all parts of string are specified in the pattern:

MATCHFIELD ("XYZ123AB", "3X3N", 1)

To achieve a positive pattern match on string above, the following statement might be used:

MATCHFIELD ("XYZ123AB", "3X3N0X", 1)

This statement returns a value of "XYZ".

Syntax

MATCHFIELD (string, pattern, field)

Examples

Source lines

Program output

COL=MATCHFIELD(INV,"10X4A3X",2)

PRINT "COL=",COL

Q=MATCHFIELD("AA123BBB9","2A0N3AON",3) |Q=BBB
PRINT "Q=",Q

ADDR='20 GREEN ST. NATICK, MA.,01234' ZIP= 01234
ZIP=MATCHFIELD(ADDR,"0ONOX5N",3)

PRINT "ZIP=",ZIP

INV="PART12345 BLUE AU' COL=BLUE

In the following example the string does not match the pattern:

Source lines

Program output

XYZ=MATCHFIELD('ABCDE1234',"2N3A4N",1)
PRINT "XYZ=",XYZ

XYZ=

In the following example the entire string does not match the pattern:

Source lines

Program output

XYZ=MATCHFIELD('ABCDE1234',"2N3A4N",1)
PRINT "XYZ=",XYZ

XYZ=

MATPARSE statement

MATPARSE statement

Use the MATPARSE statement to separate the fields of dynamic.array into consecutive elements of
array.

Syntax
MATPARSE array FROM dynamic.array [,delimiter]

MATPARSE array [,start [,end]] FROM dynamic.array [USING delimiter]
[SETTING elements]

array must be named and dimensioned in a MATPARSE statement or COMMON statement before it is
used in this statement.

start specifies the starting position in array. If start is less than 1, it defaults to 1.

end specifies the ending position in array. If end is less than 1 or greater than the length of array, it
defaults to the length of array.

delimiter is an expression evaluating to the characters used to delimit elements in dynamic.array. Use
a comma or USING to separate delimiter from dynamic.array. delimiter can have no characters (an
empty delimiter), one character, or more than one character with the following effects:

= Anempty delimiter (a pair of quotation marks) parses dynamic.array so that each character
becomes one element of array (see the second example). The default delimiter is a field mark.
This is different from the empty delimiter. To use the default delimiter, omit the comma or USING
following dynamic.array.

= Asingle character delimiter parses dynamic.array into fields delimited by that character by storing
the substrings that are between successive delimiters as elements in the array. The delimiters are
not stored in the array (see the first example).

= A multicharacter delimiter parses dynamic.array by storing as elements both the substrings
that are between any two successive delimiters and the substrings consisting of one or more
consecutive delimiters in the following way: dynamic.array is searched until any of the delimiter
characters are found. All of the characters up to but not including the delimiter character
are stored as an element of array. The delimiter character and any identical consecutive
delimiter characters are stored as the next element. The search then continues as at the start of
dynamic.array (see the third example).

= If delimiter is a system delimiter and a single CHAR(128) is extracted from dynamic.array, the
corresponding element in array is set to the null value.

The characters in a multicharacter delimiter expression can be different or the same. A delimiter
expression of /: might be used to separate hours, minutes, seconds and month, day, year in the
formats 12:32:16 and 1/23/85. A delimiter expression of two spaces " " might be used to separate
tokens on a command line that contain multiple blanks between tokens.

The SETTING clause sets the variable elements to the number of elements in array. If array overflows,
elements is set to 0. The value of elements is the same as the value returned by the INMAT function
after a MATPARSE statement.

If all the elements of array are filled before MATPARSE reaches the end of dynamic.array, MATPARSE
puts the unprocessed part of dynamic.array in the zero element of array for IDEAL, INFORMATION, or
PIOPEN flavor accounts, or in the last element of array for PICK, IN2, or REALITY flavor accounts.

Use the INMAT function after a MATPARSE statement to determine the number of elements loaded
into the array. If there are more delimited fields in dynamic.array than elements in array, INMAT
returns 0; otherwise, it returns the number of elements loaded.

261

Chapter 1: Statements and functions

If start is greater than end or greater than the length of array, no action is taken, and INMAT returns 0.

If start, end, dynamic.array, or delimiter evaluates to the null value, the MATPARSE statement fails and
the program terminates with a run-time error message.

Examples

Source lines Program output
DIM X(4) X(0) 546647
Y="1#2243444454664T" X(1) 1

MATPARSE X FROM Y, '#' X(2) 22

FORZ=0TO 4 X(3) 3

PRINT "X(":Z:")" X(Z) X(4) 44

NEXT Z

PRINT

DIM Q(6) Q(1)A

MATPARSE Q FROM 'ABCDEF", " Q2)B
FORP=1TO6 QB)C

PRINT "Q(":P:")",Q(P) Q) D

NEXT P Q(5)E

PRINT Q6)F

DIMA(8,2) A(1,1)=ABA(1,2)=C
MATPARSE A FROM 'ABCDEFGDDDHIJCK!, | A(2,1)=A(2,2)=D
D A(3,1)= EFG A(3,2)= DDD
FORI=1TO8 A(4,1)= HIJ A(4,2)=C
FORJ=1T02 A, 1)= K A5.2)=
PRINT "A(":1:",":J:")=" A(1,J)," ": A6,= Al6.2)

NEXT J A(T,1)=A(7,2)
PRINT A(8,1)=A(8,2)
NEXT |

END

MATREAD statements

Use the MATREAD statement to assign the contents of the fields of a record from a UniVerse file to
consecutive elements of array. The first field of the record becomes the first element of array, the
second field of the record becomes the second element of array, and so on. The array must be named
and dimensioned in a DIMENSION statement or COMMON statement before it is used in this statement.

Syntax

MATREAD array FROM [file.variable,] record.ID [ON ERROR statements]

262

MATREAD statements

{THEN statements [ELSE statements] | ELSE statements}

{ MATREADL | MATREADU } array FROM |[file.variable,] record.ID
[ON ERROR statements] [LOCKED statements]
{THEN statements [ELSE statements] | ELSE statements}

file.variable specifies an open file. If file.variable is not specified, the default file is assumed (for more
information about default files, see the OPEN statement). If the file is neither accessible nor open, the
program terminates with a run-time error message.

If record.ID exists, array is set to the contents of the record, and the THEN statements are executed;
any ELSE statements are ignored. If no THEN statements are specified, program execution continues
with the next sequential statement. If record./D does not exist, the elements of array are not changed,
and the ELSE statements are executed; any THEN statements are ignored.

If either file.variable or record.ID evaluates to the null value, the MATREAD statement fails and the
program terminates with a run-time error. If any field in the record is the null value, null becomes an
elementin array. If a value or a subvalue in a multivalued field is the null value, it is read into the field
as the stored representation of null (CHAR(128)).

If the file is an SQL table, the effective user of the program must have SQL SELECT privilege to read
records in the file. For information about the effective user of a program, see the AUTHORIZATION
statement, on page 74.

A MATREAD statement does not set an update record lock on the specified record. That is, the record
remains available for update to other users. To prevent other users from updating the record until it is
released, use a MATREADL or MATREADU statement.

If the number of elements in array is greater than the number of fields in the record, the extra
elements in array are assigned empty string values. If the number of fields in the record is greater
than the number of elements in the array, the extra values are stored in the zero element of array for
IDEAL or INFORMATION flavor accounts, or in the last element of array for PICK, IN2, or REALITY flavor
accounts. The zero element of an array can be accessed with a 0 subscript as follows:

MATRIX (0)
or:
MATRIX (0, 0)

Use the INMAT function after a MATREAD statement to determine the number of elements of the array
that were actually used. If the number of fields in the record is greater than the number of elements in
the array, the value of the INMAT function is set to 0.

If NLS is enabled, MATREAD and other BASIC statements that perform 1/0 operations always map
external data to the UniVerse internal character set using the appropriate map for the input file. For
details, see the READ statements, on page 309.

The ON ERROR clause

The ON ERROR clause is optional in MATREAD statements. Its syntax is the same as that of the ELSE
clause. The ON ERROR clause lets you specify an alternative for program termination when a fatal
error is encountered during processing of the MATREAD statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

= An error message appears.

= Any uncommitted transactions begun within the current execution environment roll back.

263

Chapter 1: Statements and functions

264

= The current program terminates.

= Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

= Afileis not open.

= file.variable is the null value.

= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

The LOCKED clause

The LOCKED clause is optional, but recommended. Its syntax is the same as that of the ELSE clause.

The LOCKED clause handles a condition caused by a conflicting lock (set by another user) that
prevents the MATREAD statement from processing. The LOCKED clause is executed if one of the
following conflicting locks exists:

In this statement... This requested lock... Conflicts with these locks...

MATREADL Shared record lock Exclusive file lock

Update record lock

MATREADU Update record lock Exclusive file lock
Intent file lock
Shared file lock
Update record lock

Shared record lock

If a MATREAD statement does not include a LOCKED clause, and a conflicting lock exists, the program
will timeout after 60 minutes or until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the terminal number of the
user who owns the conflicting lock.

Releasing Locks

A shared record lock can be released with a CLOSE statement, RELEASE statement, or STOP
statement. An update record lock can be released with a CLOSE statement, DELETE statements,
MATWRITE statements, RELEASE statement, STOP statement, WRITE statements, or WRITEV
statement.

Locks acquired or promoted within a transaction are not released when the previous statements are
processed.

MATREADL and MATREADU statements

Use the MATREADL syntax to acquire a shared record lock and then perform a MATREAD. This lets
other programs read the record with no lock or a shared record lock.

Use the MATREADU syntax to acquire an update record lock and then perform a MATREAD. The update
record lock prevents other users from updating the record until the user who set it releases it.

An update record lock can be acquired when no shared record lock exists, or promoted from a shared
record lock owned by you if no other shared record locks exist.

MATREADL statement

Example

DIM ARRAY (10)
OPEN 'SUN.MEMBER' TO SUN.MEMBER ELSE STOP
MATREAD ARRAY FROM SUN.MEMBER, 6100 ELSE STOP

*

FOR X=1 TO 10

PRINT "ARRAY (":X:")",ARRAY (X)

NEXT X

*

PRINT

*

DIM TEST (4)

OPEN '', 'SUN.SPORT' ELSE STOP 'CANNOT OPEN SUN.SPORT'

MATREAD TEST FROM 851000 ELSE STOP

*

FOR X=0 TO 4
PRINT "TEST (":X:")",TEST (X)
NEXT X

This is the program output:

ARRAY (1) MASTERS

ARRAY (2) BOB

ARRAY (3) 55 WESTWOOD ROAD
ARRAY (4) URBANA

ARRAY (5) IL

ARRAY (6) 45699

ARRAY (7) 1980

ARRAY (8) SAILING

ARRAY (9)

ARRAY (10) II
TEST (0) 6258

TEST (1) 6100

TEST (2) HARTWELL

TEST (3) SURFING

TEST (4) 4

MATREADL statement

Use the MATREADL statement to set a shared record lock and perform the MATREAD statement.
For details, see the MATREAD statements, on page 262.

MATREADU statement

Use the MATREADU statement to set an update record lock and perform the MATREAD statement.

For details, see the MATREAD statements, on page 262.

MATWRITE statements

Use the MATWRITE statement to write data from the elements of a dimensioned array to arecord in a
UniVerse file. The elements of array replace any data stored in the record. MATWRITE strips any trailing
empty fields from the record.

265

Chapter 1: Statements and functions

266

Syntax

MATWRITE [U] array ON | TO [file.variable,] record.ID
[ON ERROR statements] [LOCKED statements]
[THEN statements] [ELSE statements]

file.variable specifies an open file. If file.variable is not specified, the default file is assumed (for more
information on default files, see the OPEN statement). If the file is neither accessible nor open, the
program terminates with a run-time message, unless ELSE statements are specified.

If the file is an SQL table, the effective user of the program must have SQL INSERT and UPDATE
privileges to read records in the file. For information about the effective user of a program, see the
AUTHORIZATION statement.

If the OPENCHK configurable parameter is set to TRUE, or if the file is opened with the OPENCHECK
statement, all SQL integrity constraints are checked for every MATWRITE to an SQL table. If an integrity
check fails, the MATWRITE statement uses the ELSE clause. Use the ICHECK function to determine
what specific integrity constraint caused the failure.

The system searches the file for the record specified by record.ID. If the record is not found, MATWRITE
creates a new record.

If NLS is enabled, MATWRITE and other BASIC statements that perform I/O operations always map
internal data to the external character set using the appropriate map for the output file. For details,
see the WRITE statements, on page 459. For more information about maps, see the UniVerse NLS
Guide.

The ON ERROR clause

The ON ERROR clause is optional in the MATWRITE statement. The ON ERROR clause lets you specify
an alternative for program termination when a fatal error is encountered while the MATWRITE is being
processed.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

= Anerror message appears.
= Any uncommitted transactions begun within the current execution environment roll back.
= The current program terminates.

= Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

= Afileis not open.

= file.variable is the null value.

= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

The LOCKED clause

The LOCKED clause is optional, but recommended.

The LOCKED clause handles a condition caused by a conflicting lock (set by another user) that
prevents the MATWRITE statement from processing. The LOCKED clause is executed if one of the
following conflicting locks exists:

= Exclusive file lock

MATWRITE statements

* Intent file lock

= Shared file lock

= Update record lock
= Shared record lock

If the MATWRITE statement does not include a LOCKED clause, and a conflicting lock exists, the
program pauses until the lock is released.

When updating a file, MATWRITE releases the update record lock set with a MATREADU statement, on
page 265. To maintain the update record lock set with the MATREADU statement, use MATWRITEU
instead of MATWRITE.

The new values are written to the record, and the THEN clauses are executed. If no THEN statements
are specified, execution continues with the statement following the MATWRITE statement.

If either file.variable or record.ID evaluates to the null value, the MATWRITE statement fails and the
program terminates with a run-time error message. Null elements of array are written to record.ID as
the stored representation of the null value, CHAR(128).

The MATWRITEU statement

Use the MATWRITEU statement to update a record without releasing the update record lock set by a
previous MATREADU statement (see the MATREADU statement, on page 265). To release the update
record lock set by a MATREADU statement and maintained by a MATWRITEU statement, you must

use a RELEASE or MATWRITE statement. If you do not explicitly release the lock, the record remains
locked until the program executes the STOP statement. When more than one program or user could
modify the same record, use a MATREADU statement to lock the record before doing the MATWRITE or
MATWRITEU.

IDEAL and INFORMATION flavors

In IDEAL and INFORMATION flavor accounts, if the zero element of the array has been assigned a value
by a MATREAD or MATREADU statement, the zero element value is written to the record as the n+1
field, where n is the number of elements dimensioned in the array. If the zero element is assigned an
empty string, only the assigned elements of the array are written to the record; trailing empty fields
are ignored. The new record is written to the file (replacing any existing record) without regard for the
size of the array.

Itis generally good practice to use the MATWRITE statement with arrays that have been loaded with
either a MATREAD or a MATREADU statement.

After executing a MATWRITE statement, you can use the STATUS function to determine the result of
the operation as follows (see the STATUS function, on page 388 for more information):

Value Description

0 The record was locked before the MATWRITE operation.

-2 The record was unlocked before the MATWRITE operation.
-3 The record failed an SQL integrity check.

Example

DIM ARRAY (5)

OPEN 'EX.BASIC' TO EX.BASIC ELSE STOP 'CANNOT OPEN'
MATREADU ARRAY FROM EX.BASIC, 'ABS' ELSE STOP

ARRAY (1)='Y = 100"

MATWRITE ARRAY TO EX.BASIC, 'ABS'

PRINT 'STATUS()= ', STATUS()

267

Chapter 1: Statements and functions

This is the program output:

STATUS ()= O

MATWRITEU statement

Use the MATWRITEU statement to maintain an update record lock and perform the MATWRITE
statement.

For details, see the MATWRITE statements, on page 265.

MAXIMUM function

Use the MAXTIMUM function to return the element with the highest numeric value in dynamic.array.
Nonnumeric values, except the null value, are treated as 0. If dynamic.array evaluates to the null value,
nullis returned. Any element that is the null value is ignored, unless all elements of dynamic.array are
null, in which case null is returned.

result is the variable that contains the largest element found in dynamic.array.

dynamic.array is the array to be tested.

Syntax

MAXIMUM (dynamic.array)

CALL 'MAXIMUM (result, dynamic.array)

Examples

A=1:QVM:"ZERO":@SM:20:@FM: -25
PRINT "MAX (A)=",MAXIMUM (A)
This is the program output:
MAX (A) =20
In the following example, the IMAXIMUM subroutine is used to obtain the maximum value contained in

array A. The nonnumeric value, Z, is treated as 0.

A=1:@VM:25:Q@QVM:"'Z"':@VM:7
CALL !MAXIMUM (RESULT,A)
PRINT RESULT

This is the program output:

0

MINIMUM function

268

Use the MINIMUM function to return the element with the lowest numeric value in dynamic.array.
Nonnumeric values and empty strings, except the SQL null value, are treated as 0. If dynamic.array
evaluates to the null value, nullis returned. Any element that is the null value is ignored, unless all
elements of dynamic.array are null, in which case null is returned.

result is the variable that contains the smallest element found in dynamic.array.

MOD function

MOD

dynamic.array is the array to be tested.

Syntax

MINIMUM (dynamic.array)

CALL !'MINIMUM (result, dynamic.array)

Examples

A=1:@VM:"ZERO" :@SM:20:@FM:-25
PRINT "MIN (A)=",MINIMUM (A)

This is the program output:

MIN (A)= -25

In the following example, the IMINIMUM subroutine is used to obtain the minimum value contained in
array A. The nonnumeric value, Q, is treated as 0.

A=2:Q@VM:19:@VM:6:QVM:"'Q"'
CALL !MINIMUM (RESULT,A)
PRINT RESULT

This is the program output:
0

The next example shows the output of the MINIMUM function for an empty string and the SQL null
value:

MYNULL=@NULL.STR

MYSTR=""

CRT “MINIMUM NULL:” :MINIMUM (MYNULL)

CRT “MINIMUM EMPTY STR:” :MINIMUM (MYSTR)

The output from this program is:

MINIMUM NULL:
MINIMUM EMPTY STR: O

function

Use the MOD function to calculate the value of the remainder after integer division is performed on the
dividend expression by the divisor expression.
Syntax

MOD (dividend, divisor)

The MOD function calculates the remainder using the following formula:
MOD (X, Y) =X - (INT (X/Y) *Y)

dividend and divisor can evaluate to any numeric value, except that divisor cannot be 0. If divisor is 0, a
division by 0 warning message is printed, and 0 is returned. If either dividend or divisor evaluates to the
null value, null is returned.

269

Chapter 1: Statements and functions

The MOD function works like the REM function, on page 327.

Example

X=85; ¥=3
PRINT 'MOD (X,Y)= ',MOD (X,Y)
This is the program output:

MOD (X,Y)= 1

MODS function

Use the MODS function to create a dynamic array of the remainder after the integer division of
corresponding elements of two dynamic arrays.

Syntax
MODS (arrayl, arrayZl)
CALL -MODS (return.array, arrayl, arrayZl)

CALL !MODS (return.array, arrayl, arrayZl)

The MODS function calculates each element according to the following formula:
XY.element=X- (INT (X/Y) *Y)

Xis an element of arrayl and Y is the corresponding element of array2. The resulting element is
returned in the corresponding element of a new dynamic array. If an element of one dynamic array
has no corresponding element in the other dynamic array, 0 is returned. If an element of array2 is 0,
0 is returned. If either of a corresponding pair of elements is the null value, null is returned for that
element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Example
A=3:QVM:7
B=2:@SM:7:QVM:4
PRINT MODS (A, B)

This is the program output:

1s0v3

MOCLOSE function

Use the MQCLOSE() function to close access to a queue or other object. When you close the queue, the
queue and all uncommitted messages on the queue are deleted.

Syntax

status=MQCLOSE (hConn, hObj, options)

270

MQCONN function

Parameters

The following table describes each parameter of the syntax.

Parameter Description

hConn A handle denoting the connection to the queue manager. [IN]

hOobj The handle to the WebSphere MQ queue or object being closed. Upon
successful completion of MQCLOSE, hObj is set to MQHO_UNUSABLE_HOBJ. [IN/
OUT]

options"253 One or more option codes (MQCO_*) that specify how the WebSphere MQ queue

or object is to be closed. If required, multiple option codes can be supplied by
adding them together.

For a complete description of the option codes available to MQCLOSE, see the
WebSphere MQ Application Programming Reference manual. [IN]

Return codes

The following table describes the meaning of each return code.

Return code Description

0-MQCC_OK Function call completed successfully.

1 - MQCC_WARNING The function call succeeded, but a warning was returned. You can call the
MQGETERROR function to get further details about the warning.

2 - MQCC_FAILED The function call failed. You can call the MOGETERROR function to get
further details about the failure.

Usage notes

MQGETERROR() - If the return code status is MQCC_WARNING or MQCC_FAILED, you can call the
MOGETERROR function to get detailed information about the warning or error.

Refer to the WebSphere MQ Application Programming Reference manual for additional information
about this function.

Refer to the WebSphere MQ Messages manual for more information about the WebSphere MQ reason
codes. You can also access the MQI ErrMsg file in the SUVHOME directory to read them.

MOCONN function

The MQCONN() function connects an application to a WebSphere MQ queue manager.

Syntax

status=MQCONN (gManager, hConn)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

gManager The name of the queue manager to which you are connecting. [IN]

271

Chapter 1: Statements and functions

Parameter Description

hConn The handle denoting the connection to the Websphere MQ queue manager. Use
this handle in subsequent calls to other Ca11MQT functions. [IN]

Return codes

The following table describes the meaning of each return code.

Return code Description

0-MQCC_OK Function call completed successfully.

1- MQCC_WARNING The function call succeeded, but a warning was returned. You can call the
MQGETERROR function to get further details about the warning.

2 - MQCC_FAILED The function call failed. You can call the MOGETERROR function to get
further details about the failure.

Usage notes

MQGETERROR() - If the return code status is MQCC_WARNING or MQCC_FAILED, you can call the
MQGETERROR function to get detailed information about the warning or error.

Refer to the WebSphere MQ Application Programming Reference manual for additional information
about this function.

Refer to the WebSphere MQ Messages manual for more information about the WebSphere MQ reason
codes. You can also access the MOI ErrMsg file in the SUVHOME directory to read them.

MODISC function

The MQODISC function terminates connections to the queue manager that were create using the
MQCONN function. The input for this function is the hConn connection handle returned by the MQCONN
function.

Syntax

status=MQDISC (hConn)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

hConn The handle denoting the connection to the WebSphere MQ queue
manager. Upon successful completion, the MODISC function sets this to
MQHC_UNUSABLE_CONNECTION. [IN/OUT]

Return codes

The following table describes the meaning of each return code.

Return code Description

0-MQCC_OK Function call completed successfully.

1 - MQCC_WARNING The function call succeeded, but a warning was returned. You can call the
MQGETERROR function to get further details about the warning.

272

MULS function

Return code Description

2 - MQCC_FAILED The function call failed. You can call the MOGETERROR function to get
further details about the failure.

Usage notes

MQGETERROR() - If the return code status is MQCC_WARNING or MQCC_FAILED, you can call the
MQGETERROR function to get detailed information about the warning or error.

Refer to the WebSphere MQ Application Programming Reference manual for additional information
about this function.

Refer to the WebSphere MQ Messages manual for more information about the WebSphere MQ reason
codes. You can also access the MOI ErrMsg file in the SUVHOME directory to read them.

MULS function

Use the MULS function to create a dynamic array of the element-by-element multiplication of two
dynamic arrays.

Each element of arrayl is multiplied by the corresponding element of array2 with the result being
returned in the corresponding element of a new dynamic array. If an element of one dynamic array has
no corresponding element in the other dynamic array, 0 is returned. If either of a corresponding pair of
elements is the null value, null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Syntax
MULS (arrayl, array2)
CALL -MULS (return.array, arrayl, arrayZ2)

CALL !MULS (return.array, arrayl, arrayZz)

Example

A=1:@VM:2:@VM:3:Q@SM: 4
B=4:@VM:5:QVM:6:@VM: 9
PRINT MULS (A, B)

This is the program output:

4v10v18s0vo0

NAP statement

Use the NAP statement to suspend the execution of a BASIC program, pausing for a specified number
of milliseconds.

milliseconds is an expression evaluating to the number of milliseconds for the pause. If milliseconds
is not specified, a value of 1 is used. If milliseconds evaluates to the null value, the NAP statement is
ignored.

273

Chapter 1: Statements and functions

Syntax

NAP [milliseconds]

NEG function

Use the NEG function to return the arithmetic inverse of the value of the argument.

number is an expression evaluating to a number.

Syntax

NEG (number)

Example

In the following example, A is assigned the value of 10, and B is assigned the value of NEG(A), which
evaluates to -10:

A =10
B = NEG(A)

NEGS function

Use the NEGS function to return the negative values of all the elements in a dynamic array. If the value
of an element is negative, the returned value is positive. If dynamic.array evaluates to the null value,
nullis returned. If any element is null, null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Syntax

NEGS (dynamic.array)

CALL -NEGS (return.array, dynamic.array)

NES function

274

Use the NES function to test if elements of one dynamic array are equal to the elements of another
dynamic array.

Each element of arrayl is compared with the corresponding element of array?2. If the two elements
are equal, a O is returned in the corresponding element of a new dynamic array. If the two elements
are not equal, a 1 is returned. If an element of one dynamic array has no corresponding element in the
other dynamic array, a 1 is returned. If either of a corresponding pair of elements is the null value, null
is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Syntax
NES (arrayl, array?2)

CALL -NES (return.array, arrayl, array?2)

NEXT statement

CALL !NES (return.array, arrayl, arrayZ2)

NEXT statement

Use the NEXT statement to end a FOR...NEXT loop, causing the program to branch back to the FOR
statement and execute the statements that follow it.

Each FOR statement must have exactly one corresponding NEXT statement.

variable is the name of the variable given as the index counter in the FOR statement. If the variable is
not named, the most recently named index counter variable is assumed.

Syntax

NEXT [variable]

Example

FOR I=1 TO 10
PRINT I:" ":

NEXT I

PRINT

This is the program output:
123456782910

NOBUF statement

Use the NOBUF statement to turn off buffering for a file previously opened for sequential processing.
Normally UniVerse uses buffering for sequential input and output operations. The NOBUF statement
turns off this buffering and causes all writes to the file to be performed immediately. It eliminates the
need for FLUSH operations but also eliminates the benefits of buffering. The NOBUF statement must
be executed after a successful OPENSEQ statement or CREATE statement and before any input or
output operation is performed on the record.

If the NOBUF operation is successful, the THEN statements are executed; the ELSE statements are
ignored. If THEN statements are not present, program execution continues with the next statement.

If the specified file cannot be accessed or does not exist, the ELSE statements are executed; the THEN
statements are ignored. If file.variable evaluates to the null value, the NOBUF statement fails and the
program terminates with a run-time error message.

Syntax

NOBUF file.variable {THEN statements [ELSE statements] | ELSE
statements}

Example

In the following example, if RECORD1 in FILE.E can be opened, buffering is turned off:

OPENSEQ 'FILE.E', 'RECORD1' TO DATA THEN NOBUF DATA
ELSE ABORT

275

Chapter 1: Statements and functions

NOT function

Use the NOT function to return the logical complement of the value of expression. If the value of
expression is true, the NOT function returns a value of false (0). If the value of expression is false, the
NOT function returns a value of true (1).

A numeric expression that evaluates to 0 is a logical value of false. A numeric expression that evaluates
to anything else, other than the null value, is a logical true.

An empty string is logically false. All other string expressions, including strings that include an empty
string, spaces, or the number 0 and spaces, are logically true.

If expression evaluates to the null value, null is returned.

Syntax
NOT (expression)
Example
X=5; Y=5
PRINT NOT (X-Y)
PRINT NOT (X+Y)

This is the program output:

1
0

NOTS function

276

Use the NOTS function to return a dynamic array of the logical complements of each element of
dynamic.array. If the value of the element is true, the NOTS function returns a value of false (0) in the
corresponding element of the returned array. If the value of the element is false, the NOTS function
returns a value of true (1) in the corresponding element of the returned array.

A numeric expression that evaluates to 0 has a logical value of false. A numeric expression that
evaluates to anything else, other than the null value, is a logical true.

An empty string is logically false. All other string expressions, including strings which consist of an
empty string, spaces, or the number 0 and spaces, are logically true.

If any element in dynamic.array is the null value, nullis returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Syntax

NOTS (dynamic.array)
CALL -NOTS (return.array, dynamic.array)

CALL !NOTS (return.array, dynamic.array)

Example

X=5; Y=5

NOW function

PRINT NOTS (X-Y:Q@VM:X+Y)

This is the program output:

1vo

NOW function

Use the DATE function to return the numeric value of the internal datetime value. Although the NOW
function takes no arguments, parentheses are required to identify it as a function.

Note: This function is supported on Linux and Solaris platforms only.

The internal format for the datetime is a 64-bit integer represented in milliseconds since the start of
the UNIX epoch (midnight UTC, January 1, 1970). All datetimes prior to the Unix epoch are represented
as negative numbers.

The result of NOW function is not affected by the timezone setting.

Syntax
NOW ()
Example

PRINT NOW ()
PRINT OCONV (NOW (), ™“DT”)

This is the program output:

1574240110666
2019-11-20 01:55:10.666

NULL statement

Use the NULL statement when a statement is required but no operation is to be performed. For
example, you can use it with the ELSE clause if you do not want any operation performed when the
ELSE clause is executed.

Note: This statement has nothing to do with the null value.

Syntax

NULL

Example

OPEN '','SUN.MEMBER' TO FILE ELSE STOP
FOR ID=5000 TO 6000
READ MEMBER FROM FILE, ID THEN PRINT ID ELSE NULL

NEXT ID

277

Chapter 1: Statements and functions

NUM function

Use the NUM function to determine whether expression is a numeric or nonnumeric string. If expression
is a number, a numeric string, or an empty string, it evaluates to true and a value of 1 is returned. If
expression is a nonnumeric string, it evaluates to false and a value of 0 is returned.

A string that contains a period used as a decimal point (.) evaluates to numeric. A string that contains
any other character used in formatting numeric or monetary amounts, for example, a comma (,) ora
dollar sign ($) evaluates to nonnumeric.

If expression evaluates to the null value, null is returned.

If NLS is enabled, NUM uses the Numeric category of the current locale to determine the decimal
separator. For more information about locales, see the UniVerse NLS Guide.

Syntax
NUM (expression)
Example
X=NUM (2400)
Y=NUM ("Section 4")

PRINT "X= ",X,"Y= ",Y

This is the program output:

X= Y= 0

NUMS function

278

Use the NUMS function to determine whether the elements of a dynamic array are numeric or
nonnumeric strings. If an element is numeric, a numeric string, or an empty string, it evaluates to true,
and a value of 1 is returned to the corresponding element in a new dynamic array. If the element is a
nonnumeric string, it evaluates to false, and a value of 0 is returned.

The NUMS of a numeric element with a decimal point (.) evaluates to true; the NUMS of a numeric
element with acomma (,) or dollar sign ($) evaluates to false.

If dynamic.array evaluates to the null value, nullis returned. If an element of dynamic.array is null, null
is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

If NLS is enabled, NUMS uses the Numeric category of the current locale to determine the decimal
separator. For more information about locales, see the UniVerse NLS Guide.

Syntax

NUMS (dynamic.array)
CALL -NUMS (return.array, dynamic.array)

CALL !NUMS (return.array, dynamic.array)

OCONV function

OCONV function

Use the OCONV function to convert string to a specified format for external output. The result is always
a string expression.

Syntax

OCONV (string, conversion)

string is converted to the external output format specified by conversion.
conversion must evaluate to one or more conversion codes separated by value marks (ASCII 253).

If multiple codes are used, they are applied from left to right as follows: the leftmost conversion
code is applied to string, the next conversion code to the right is then applied to the result of the first
conversion, and so on.

If string evaluates to the null value, null is returned. If conversion evaluates to the null value, the
OCONV function fails and the program terminates with a run-time error message.

The OCONV function also allows PICK flavor exit codes.

The STATUS function reflects the result of the conversion:

Value Description

0 The conversion is successful.

1 An invalid string is passed to the OCONV function; the original string is returned
as the value of the conversion. If the invalid string is the null value, null is
returned.

The conversion code is invalid.

Successful conversion of possibly invalid data.

Invalid time zone or UTC offset.

For information about converting strings to an internal format, see the ICONV function, on page 210.

Examples

The following examples show date conversions:

Source line Converted value
DATE=0OCONV('9166',"D2") 3Feb93
DATE=OCONV(9166,'D/E") 3/2/1993
DATE=0CONV(9166,'DI") 3/2/1993

(For IN2, PICK, and REALITY flavor

accounts.)

DATE=0OCONV('9166',"D2-") 2-3-93
DATE=0OCONV(0,'D") 31 Dec 1967

The following examples show time conversions:

Source line Converted value
TIME=OCONV(10000,"MT") 02:46
TIME=OCONV("10000","MTHS") 02:46:40am

279

Chapter 1: Statements and functions

Source line Converted value
TIME=OCONV(10000,"MTH") 02:46am
TIME=OCONV(10000,"MT.") 02.46
TIME=OCONV(10000,"MTS") 02:46:40

The following examples show hex, octal, and binary conversions:

Source line Converted value
HEX=0CONV(1024,"MX") 400
HEX=OCONV('CDE',"MX0C") 434445
OCT=0CONV(1024,"MQO") 2000
OCT=0CONV('CDE',"MO0C") 103104105
BIN=OCONV(1024,"MB") 10000000000

BIN=OCONV('CDE',"MBOC")

010000110100010001000101

The following examples show masked decimal conversions:

X=0OCONV(987654,"MD2,ZP12#")

Source line Converted value
X=0OCONV(987654,"MD2") 9876.54
X=0OCONV(987654,"MDO0") 987654
X=0OCONV(987654,"MD2,5") $9,876.54
X=0CONV(987654,"MD245$") $98.77
X=0CONV(987654,"MD2-Z") 9876.54
X=0CONV(987654,"MD2,D") 9,876.54
X=0CONV(987654,"MD3,5CPZ") $987.654

(

####9,876.54

OCONVS function

280

Use the OCONVS function to convert the elements of dynamic.array to a specified format for external

output.

Syntax

OCONVS (dynamic.array,

CALL -OCONVS (return.array,

CALL !OCONVS (return.array,

conversion)
dynamic.array, conversion)

dynamic.array, conversion)

The elements are converted to the external output format specified by conversion and returned in a
dynamic array. conversion must evaluate to one or more conversion codes separated by value marks
(ASCII 253).

If multiple codes are used, they are applied from left to right as follows: the leftmost conversion code
is applied to the element, the next conversion code to the right is then applied to the result of the first
conversion, and so on.

If dynamic.array evaluates to the null value, null is returned. If any element of dynamic.array is null,
nullis returned for that element. If conversion evaluates to the null value, the OCONVS function fails
and the program terminates with a run-time error message.

ON statement

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

The STATUS function reflects the result of the conversion:

Return value Description

0 The conversion is successful.

1 An invalid element is passed to the OCONVS function; the original element
is returned. If the invalid element is the null value, null is returned for that
element.

2 The conversion code is invalid.

For information about converting elements in a dynamic array to an internal format, see the ICONVS
function, on page 212.

ON statement

Use the ON statement to transfer program control to one of the internal subroutines named in the
GOSUB clause or to one of the statements named in the GOTO clause.

Syntax

ON expression GOSUB statement.label [:] |[,statement.label [:]..]

ON expression GO[TO] statement.label [:] [,statement.label [:] ..]

Using the GOSUB clause

Use ON GOSUB to transfer program control to one of the internal subroutines named in the GOSUB
clause. The value of expression in the ON clause determines which of the subroutines named in the
GOSUB clause is to be executed.

During execution, expression is evaluated and rounded to an integer. If the value of expressionis 1 or
less than 1, the first subroutine named in the GOSUB clause is executed; if the value of expression is 2,
the second subroutine is executed; and so on. If the value of expression is greater than the number of
subroutines named in the GOSUB clause, the last subroutine is executed. If expression evaluates to the
null value, the ON statement fails and the program terminates with a run-time error message.

statement.label can be any valid label defined in the program. If a nonexistent statement label is
given, an error message is issued when the program is compiled. You must use commas to separate
statement labels. You can use a colon with the statement labels to distinguish them from variable
names.

A RETURN statement in the subroutine returns program flow to the statement following the ON
GOSUB statement.

The ON GOSUB statement can be written on more than one line. Acomma is required at the end of
each line of the ON GOSUB statement except the last.

Using ON GOSUB in a PICK flavor account

If the value of expression is less than 1, the next statement is executed; if the value of expression is
greater than the number of subroutines named in the GOSUB clause, execution continues with the
next statement rather than the last subroutine. To get this characteristic in other flavors, use the
ONGO.RANGE option of the SOPTIONS statement.

281

Chapter 1: Statements and functions

282

Using the GOTO clause

Use ON GOTO to transfer program control to one of the statements named in the GOTO clause. The
value of expression in the ON clause determines which of the statements named in the GOTO clause is
to be executed. During execution, expression is evaluated and rounded to an integer.

If the value of expression is 1 or less than 1, control is passed to the first statement label named in the
GOTO clause; if the value of expression is 2, control is passed to the second statement label; and so on.
If the value of expression is greater than the number of statements named in the GOTO clause, control
is passed to the last statement label. If expression evaluates to the null value, the ON statement fails
and the program terminates with a run-time error message.

statement.label can be any valid label defined in the program. If a nonexistent statement label is
given, an error message is issued when the program is compiled. You must use commas to separate
statement labels. You can use a colon with the statement labels to distinguish them from variable
names.

Using ON GOTO in a PICK flavor account

If the value of expression is less than 1, control is passed to the next statement; if the value of
expression is greater than the number of the statements named in the GOTO clause, execution
continues with the next statement rather than the last statement label. To get this characteristic with
other flavors, use the ONGO.RANGE option of the SOPTIONS statement.

Examples

Source lines Program output

FORX=1TO 4 AT LABEL 10

ON X GOSUB 10,20,30,40 RETURNED FROM SUBROUTINE
PRINT 'RETURNED FROM SUBROUTINE' |AT LABEL 20

NEXT X RETURNED FROM SUBROUTINE
STOP AT LABEL 30

10 PRINT 'AT LABEL 10' RETURNED FROM SUBROUTINE
RETURN AT LABEL 40

20 PRINT 'AT LABEL 20' RETURNED FROM SUBROUTINE
RETURN

30 PRINT 'AT LABEL 30'

RETURN

40 PRINT 'AT LABEL 40'

RETURN

OPEN statement

Source lines Program output

VAR=1234 AT LABEL 20
=1 AT LABEL 30
10* AT LABEL 40
X=VARLY, 1] AT LABEL 40
IF X="" THEN STOP
ON X GOTO 20,30,40
20*
PRINT 'AT LABEL 20'
Y=Y+1

GOTO 10

30*
PRINT 'AT LABEL 30'
Y=Y+1

GOTO 10

40*
PRINT 'AT LABEL 40'
Y=Y+1

GOTO 10

OPEN statement

Use the OPEN statement to open a UniVerse file for use by BASIC programs. All file referencesin a
BASIC program must be preceded by either an OPEN statement or an OPENCHECK statement for that
file. You can open several UniVerse files at the same point in a program, but you must use a separate
OPEN statement for each file.

Syntax

OPEN [dict,] filename [TO file.variable] [ON ERROR statements]
{THEN statements [ELSE statements] | ELSE statements}

dict is an expression that evaluates to a string specifying whether to open the file dictionary or the
data file. Use the string DICT to open the file dictionary, or use PDICT to open an associated Pick-style
dictionary. Any other string opens the data file. By convention an empty string or the string DATA is
used when you are opening the data file. If the dict expression is omitted, the data file is opened. If dict
is the null value, the data file is opened.

filename is an expression that evaluates to the name of the file to be opened. If the file exists, the

file is opened, and the THEN statements are executed; the ELSE statements are ignored. If no THEN
statements are specified, program execution continues with the next statement. If the file cannot be
accessed or does not exist, the ELSE statements are executed; any THEN statements are ignored. If
filename evaluates to the null value, the OPEN statement fails and the program terminates with a run-
time error message.

283

Chapter 1: Statements and functions

284

Use the TO clause to assign the opened file to file.variable. All statements that read, write to, delete,
or clear that file must refer to it by the name of the file variable. If you do not assign the file to a file
variable, an internal default file variable is used. File references that do not specify a file variable
access the default file variable, which contains the most recently opened file. The file opened to the
current default file variable is assigned to the system variable @STDFIL.

Default file variables are not local to the program from which they are executed. When a subroutine is
called, the current default file variable is shared with the calling program.

When opening an SQL table, the OPEN statement enforces SQL security. The permissions granted
to the program’s effective user ID are loaded when the file is opened. If no permissions have been
granted, the OPEN statement fails, and the ELSE statements are executed.

All writes to an SQL table opened with the OPEN statement are subject to SQL integrity checking
unless the OPENCHK configurable parameter has been set to FALSE. Use the OPENCHECK statement
instead of the OPEN statement to enable automatic integrity checking for all writes to a file, regardless
of whether the OPENCHK configurable parameter is true or false.

Use the INMAT function after an OPEN statement to determine the modulo of the file.

The ON ERROR clause

The ON ERROR clause is optional in the OPEN statement. Its syntax is the same as that of the ELSE
clause. The ON ERROR clause lets you specify an alternative for program termination when a fatal
error is encountered while the OPEN statement is being processed.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

= Anerror message appears.
= Any uncommitted transactions begun within the current execution environment roll back.
= The current program terminates.

= Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

= Afileis not open.

= file.variable is the null value.

= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

The STATUS function

The file type is returned if the file is opened successfully. If the file is not opened successfully, the
following values may return:

Value Description
-1 File name not found in the VOC file.
-2 A generic error that can occur for various reasons.

Null file name or file. This error may also occur when you cannot open a file
across UVNet.

-3 Operating system access error that occurs when you do not have permission to
access a UniVerse file in a directory. For example, this may occur when trying to

access a type 1 or type 30 file.

OPENCHECK statement

Value Description

-4 Access error when you do not have operating system permissions or if DATA.30
is missing for a type 30 file.

-5 Read error detected by the operating system.

-6 Unable to lock file header.

-7 Invalid file revision or wrong byte-ordering for the platform.

-8 Invalid part file information.

-9 Invalid type 30 file information in a distributed file.

-10 A problem occurred while the file was being rolled forward during warmstart
recovery. Therefore, the file is marked “inconsistent.”

-11 The file is a view, therefore it cannot be opened by a BASIC program.

-12 No SQL privileges to open the table.

-13 Index problem.

-14 Cannot open the NFSfile.

-15 There is a problem with the OVER.30 file in a dynamic file.

-16 Modulo over limit.

-17 Freechain corruption.

-18 SICA corruption.

-19 External Database Access (EDA) setup error.

-20 Automatic Data Encryption (ADE) setup error.

Examples

OPEN "SUN.MEMBER" TO DATA ELSE STOP "CAN'T OPEN SUN.MEMBER"
OPEN "FOOBAR" TO FOO ELSE STOP "CAN'T OPEN FOOBAR"
PRINT "ALL FILES OPEN OK"

This is the program output:
CAN'T OPEN FOOBAR

The following example opens the same file as in the previous example. The OPEN statement includes
an empty string for the dict argument.

OPEN "","SUN.MEMBER" TO DATA ELSE STOP "CAN'T OPEN SUN.MEMBER"
OPEN "","FOO.BAR" TO FOO ELSE STOP "CAN'T OPEN FOOBAR"
PRINT "ALL FILES OPEN OK"

OPENCHECK statement

Use the OPENCHECK statement to open an SQL table for use by BASIC programs, enforcing SQL
integrity checking. All file references in a BASIC program must be preceded by either an OPENCHECK
statement or an OPEN statement for that file.

The OPENCHECK statement works like the OPEN statement, except that SQL integrity checking is
enabled if the file is an SQL table. All field integrity checks for an SQL table are stored in the security
and integrity constraints area (SICA). The OPENCHECK statement loads the compiled form of these
integrity checks into memory, associating them with the file variable. All writes to the file are subject
to SQL integrity checking.

285

Chapter 1: Statements and functions

Syntax
OPENCHECK ([dict,] filename [TO file.variable]

{THEN statements [ELSE statements] | ELSE statements}
The STATUS function

The file type is returned if the file is opened successfully. If the file is not opened successfully, the
following values may return:

Value Description
-1 File name not found in the VOC file.
-2 Null file name or file. This error may also occur when you cannot open a file

across UVNet.

-3 Operating system access error that occurs when you do not have permission to
access a UniVerse file in a directory. For example, this may occur when trying to
access a type 1 or type 30 file.

-4 Access error when you do not have operating system permissions or if DATA.30
is missing for a type 30 file.

-5 Read error detected by the operating system.

-6 Unable to lock file header.

-7 Invalid file revision or wrong byte-ordering for the platform.

-8 Invalid part file information.

-9 Invalid type 30 file information in a distributed file.

-10 A problem occurred while the file was being rolled forward during warmstart
recovery. Therefore, the file is marked “inconsistent.”

-11 The file is a view, therefore it cannot be opened by a BASIC program.

-12 No SQL privileges to open the table.

-13 A generic error that can occur for various reasons.

Index problem.

-14 Cannot open the NFS file.

OPENDEV statement

Use the OPENDEV statement to open a device for sequential processing. OPENDEV also sets a record
lock on the opened device orfile.

See the READSEQ statement, on page 317 and WRITESEQ statement, on page 464 for more details
on sequential processing.

Syntax

OPENDEV device TO file.variable [LOCKED statements]
{THEN statements [ELSE statements] | ELSE statements}

device is an expression that evaluates to the record ID of a device definition record in the &DEVICE&
file. If device evaluates to the null value, the OPENDEYV statement fails and the program terminates
with a run-time error message. For more information, see the following section.

286

OPENDEYV statement

The TO clause assigns a file.variable to the device being opened. All statements used to read to or
write from that device must refer to it by the assigned file.variable.

If the device exists and is not locked, the device is opened and any THEN statements are executed; the
ELSE statements are ignored. If no THEN statements are specified, program execution continues with
the next statement.

If the device is locked, the LOCKED statements are executed; THEN statements and ELSE statements
are ignored.

If the device does not exist or cannot be opened, the ELSE statements are executed; any THEN
statements are ignored. The device must have the proper access permissions for you to open it.

If NLS is enabled, you can use OPENDEV to open a device that uses a map defined in the &DEVICE&
file. If there is no map defined in the &DEVICE& file, the default mapname is the name in the
NLSDEFDEVMAP parameter in the uvconfig file. For more information about maps, see the UniVerse
NLS Guide.

Devices on Windows platforms

On Windows NT systems, you may need to change to block size defined for a device in the &DEVICE&
file before you can use OPENDEV to reference the device. On some devices there are limits to the type
of sequential processing that is available once you open the device. The following table summarizes
the limits:

Device type Block size Processing available

4 mm DAT drive No change needed. No limits.

8 mm DAT drive No change needed. No limits.

1/4-inch cartridge Specify the block size as 512 | Use READBLK and WRITEBLK to read or write

drive, 60 MB or 150 MB | bytes or a multiple of 512 datain blocks of 512 bytes. Use SEEK only to
bytes. move the file pointer to the beginning or the

end of the file. You can use WEOF to write an
end-of-file (EOF) mark only at the beginning
of the data or after a write.

1/4-inch 525 cartridge |No change needed. No limits.

drive

Diskette drive Specify the block size as 512 | Use SEEK only to move the file pointer to the
bytes or a multiple of 512 beginning of the file. Do not use WEOF.
bytes.

The LOCKED clause

The LOCKED clause is optional, but recommended.

The LOCKED clause handles a condition caused by a conflicting lock (set by another user) that
prevents the OPENDEV statement from processing. The LOCKED clause is executed if one of the
following conflicting locks exists:

= Exclusive file lock

= Intentfile lock

= Shared file lock

= Update record lock

= Shared record lock

287

Chapter 1: Statements and functions

If the OPENDEYV statement does not include a LOCKED clause, and a conflicting lock exists, the
program pauses until the lock is released.

Example
The following example opens TTY30 for sequential input and output operations:

OPENDEV 'TTY30' TO TERM THEN PRINT 'TTY30 OPENED'
ELSE ABORT

This is the program output:
TTY30 OPENED

OPENPATH statement

288

The OPENPATH statement is similar to the OPEN statement, except that the pathname of thefile is
specified. This file is opened without reference to the VOC file. The file must be a hashed UniVerse file
or a directory (UniVerse types 1 and 19).

Syntax

OPENPATH pathname [TO file.variable] [ON ERROR statements]
{THEN statements [ELSE statements] | ELSE statements}

pathname specifies the relative or absolute path name of the file to be opened. If the file exists, it
is opened and the THEN statements are executed; the ELSE statements are ignored. If pathname
evaluates to the null value, the OPENPATH statement fails and the program terminates with a run-
time error message.

If the file cannot be accessed or does not exist, the ELSE statements are executed; any THEN
statements are ignored.

Use the TO clause to assign the file to a file.variable. All statements used to read, write, delete, or clear
that file must refer to it by the assigned file.variable name. If you do not assign the file to a file.variable,
an internal default file variable is used. File references that do not specify file.variable access the

most recently opened default file. The file opened to the default file variable is assigned to the system
variable @STDFIL.

The ON ERROR clause

The ON ERROR clause is optional in the OPENPATH statement. Its syntax is the same as that of the
ELSE clause. The ON ERROR clause lets you specify an alternative for program termination when a
fatal error is encountered during processing of the OPENPATH statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

= Anerror message appears.
= Any uncommitted transactions begun within the current execution environment roll back.
* Thecurrent program terminates.

= Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

OPENSEQ statement

= Afileis not open.
= file.variable is the null value.
= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

The STATUS function

You can use the STATUS function after an OPENPATH statement to find the cause of a file open failure
(that is, for an OPENPATH statement in which the ELSE clause is used). The following values can be
returned if the OPENPATH statement is unsuccessful:

Value Description
-1 File name not found in the VOC file.
-2 A generic error that can occur for various reasons.

Null file name or file. This error may also occur when you cannot open a file
across UVNet.

-3 Operating system access error that occurs when you do not have permission to
access a UniVerse file in a directory. For example, this may occur when trying to
access a type 1 or type 30 file.

-4 Access error when you do not have operating system permissions or if DATA.30
is missing for a type 30 file.

-5 Read error detected by the operating system.

-6 Unable to lock file header.

-7 Invalid file revision or wrong byte-ordering for the platform.

-8 Invalid part file information.

-9 Invalid type 30 file information in a distributed file.

-10 A problem occurred while the file was being rolled forward during warmstart
recovery. Therefore, the file is marked “inconsistent.”

-11 The file is a view, therefore it cannot be opened by a BASIC program.

-12 No SQL privileges to open the table.

-13 Index problem.

-14 Cannot open the NFSfile.

Example

The following example opens the file SUN.MEMBER. The path name specifies the file.

OPENPATH '/user/members/SUN.MEMBER' ELSE ABORT

OPENSEQ statement

Use the OPENSEQ statement to open a file for sequential processing. All sequential file referencesin a
BASIC program must be preceded by an OPENSEQ or OPENDEV statement for that file. Although you
can open several files for sequential processing at the same point in the program, you must issue a
separate OPENSEQ statement for each.

See the READSEQ statement, on page 317 and WRITESEQ statement, on page 464 for more details
on sequential processing.

289

Chapter 1: Statements and functions

290

Syntax

OPENSEQ filename, record.ID TO file.variable [USING dynamic.array]
[ON ERROR statements] [LOCKED statements]
{THEN statements [ELSE statements] | ELSE statements}

OPENSEQ pathname TO file.variable [USING dynamic.array]
[ON ERROR statements] [LOCKED statements]
{THEN statements [ELSE statements] | ELSE statements}

Note: Performing multiple OPENSEQ operations on the same file results in creating only one
update record lock. This single lock can be released by a CLOSESEQ statement or RELEASE
statement.

The first syntax is used to open a record in a type 1 or type 19 file.

The second syntax specifies a path name to open a UNIX or DOS file. The file can be a disk file, a pipe,
or a special device.

filename specifies the name of the type 1 or type 19 file containing the record to be opened.

record.ID specifies the record in the file to be opened. If the record exists and is not locked, the file
is opened and the THEN statements are executed; the ELSE statements are ignored. If no THEN
statements are specified, program execution continues with the next statement. If the record or
the file itself cannot be accessed or does not exist, the ELSE statements are executed; any THEN
statements are ignored.

pathname is an explicit path name for the file, pipe, or device to be opened. If the file exists and is not
locked, it is opened and the THEN statements are executed; the ELSE statements are ignored. If the
path name does not exist, the ELSE statements are executed; any THEN statements are ignored.

If the file does not exist, the OPENSEQ statement fails. The file can also be explicitly created with the
CREATE statement.

OPENSEQ sets an update record lock on the specified record or file. This lock is reset by a CLOSESEQ
statement. This prevents any other program from changing the record while you are processing it.

If filename, record.ID, or pathname evaluate to the null value, the OPENSEQ statement fails and the
program terminates with a run-time error message.

The TO clause is required. It assigns the record, file, or device to file.variable. All statements used to
sequentially read, write, delete, or clear that file must refer to it by the assigned file variable name.

If NLS is enabled, you can use the OPENSEQ filename, record.ID statement to open a type 1 or type
19 file that uses a map defined in the . uvn1smap file in the directory containing the type 1 or
type 19 file. If there is no .uvnismap file in the directory, the default mapname is the name in the
NLSDEFDIRMAP parameter in the uvconfig file.

Use the OPENSEQ pathname statement to open a UNIX pipe, file, or a file specified by a device

that uses a map defined in the . uvnlsmap file in the directory holding pathname. If there is no
.uvnlsmap file in the directory, the default mapname is the name in the NLSDEFSEQMAP parameter
inthe uvconfigfile, or you can use the SET . SEQ.MAP command to assign a map.

For more information about maps, see the UniVerse NLS Guide.

File buffering

Normally UniVerse uses buffering for sequential input and output operations. Use the NOBUF
statement after an OPENSEQ statement to turn off buffering and cause all writes to the file to be

OPENSEQ statement

performed immediately. For more information about file buffering, see the NOBUF statement, on page
275.

The USING clause

You can optionally include the USING clause to control whether the opened file is included in the
rotating file pool. The USING clause supplements OPENSEQ processing with a dynamic array whose
structure emulates an &DEVICE& file record. Field 17 of the dynamic array controls inclusion in the
rotating file pool with the following values:

* Yremoves the opened file.

= Nincludes the opened file.The

ON ERROR clause

The ON ERROR clause is optional in the OPENSEQ statement. Its syntax is the same as that of the ELSE
clause. The ON ERROR clause lets you specify an alternative for program termination when a fatal
error is encountered while the OPENSEQ statement is being processed.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

= Anerror message appears.
= Any uncommitted transactions begun within the current execution environment roll back.
= The current program terminates.

* Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

= Afileis not open.

= file.variable is the null value.

= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

The LOCKED clause is optional, but recommended. Its syntax is the same as that of the ELSE clause.
The LOCKED clause handles a condition caused by a conflicting lock (set by another user) that
prevents the OPENSEQ statement from processing. The LOCKED clause is executed if one of the
following conflicting locks exists:

= Exclusive file lock

= Intent file lock

= Shared file lock

= Update record lock
= Shared record lock

If the OPENSEQ statement does not include a LOCKED clause, and a conflicting lock exists, the
program pauses until the lock is released.

Use the STATUS function after an OPENSEQ statement to determine whether the file was successfully
opened.

The STATUS function

The file type is returned if the file is opened successfully. If the file is not opened successfully, the
following values may return:

291

Chapter 1: Statements and functions

Value

Description

-1

File name not found in the VOC file.

-2

A generic error that can occur for various reasons.

Null file name or file. This error may also occur when you cannot open a file
across UVNet.

Operating system access error that occurs when you do not have privileges to
access a UniVerse file in a directory. For example, this may occur when trying to
access a type 1 or type 30 file.

Access error when you do not have operating system permissions or if DATA.30
is missing for a type 30 file.

Read error detected by the operating system.

Unable to lock file header.

Invalid file revision or wrong byte-ordering for the platform.

Invalid part file information.

Invalid type 30 file information in a distributed file.

A problem occurred while the file was being rolled forward during warmstart
recovery. Therefore, the file is marked “inconsistent.”

-11

The file is a view, therefore it cannot be opened by a BASIC program.

-12

No SQL privileges to open the table.

-13

Index problem.

-14

Cannot open the NFSfile.

Examples

The following example reads RECORD1 from the nonhashed file FILE.E:

OPENSEQ
PRINT "'FILE.E' OPENED FOR PROCESSING"
END ELSE ABORT

'FILE.E', 'RECORD1' TO FILE THEN

READSEQ A FROM FILE THEN PRINT A ELSE STOP

The next example writes the record read from FILE.E to the file /usr/depta/filel:

OPENSEQ '/usr/depta/filel' TO OUTPUT THEN

PRINT "usr/depta/filel OPENED FOR PROCESSING"

END ELSE ABORT
WRITESEQ A ON OUTPUT ELSE PRINT "CANNOT WRITE TO OUTPUT"

CLOSESEQ FILE
CLOSESEQ OUTPUT

END

This is the program output:

FILE.E OPENED FOR PROCESSING
HI THERE

/usr/depta/filel OPENED FOR PROCESSING

292

openSecureSocket function

The next example includes the USING clause to remove an opened file from the rotating file pool:

DEVREC = "1"@FM
FOR I = 2 TO 16
DEVREC = DEVREC:I:@FM
NEXT I
DEVREC=DEVREC:'Y'

*
OPENSEQ 'SEQTEST', 'TESTDATA' TO TESTFILE USING DEVREC
THEN PRINT "OPENED 'TESTDATA' OK...."
ELSE PRINT "COULD NOT OPEN TESTDATA"
CLOSESEQ TESTFILE
This is the program output:

OPENED 'TESTDATA' OK

openSecureSocket function

Use the openSecureSocket() function to open a secure socket connection in a specified mode and
return the status.

This function behaves exactly the same as the openSocket() function, except that it returns the
handle to a socket that transfers data in a secured mode (SSL/TLS).

All parameters (with the exception of context) have the exact meaning as the openSocket()
parameters. Context must be a valid security context handle.

Once the socket is opened, any change in the associated security context will not affect the
established connection.

Syntax

openSecureSocket (name or IP, port, mode, timeout, socket handle,
context)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
name_or_IP DNS name (x.com) or IP address of a server.
port Port number. If the port number is specified as a value <=0, CallHTTP

defaults to a port number of 40001.

mode 0: using current mode
1: blocking mode (default)

2: non-blocking mode

timeout The timeout value, expressed in milliseconds. If you specify mode as 0,
timeout will be ignored.

socket_handle A handle to the open socket.

context A handle to the security context.

Return codes

The following table describes the status of each return code.

293

Chapter 1: Statements and functions

Return code Description

0 Success.

99 UniVerse failed to obtain a license for an interactive PHANTOM process.

1-41 See Socket function error return codes, on page 599.

101 Invalid security context handle.

102 SSL/TLS handshake failure (unspecified, peer is not SSL aware).

103 Requires client authentication but does not have a certificate in the
security context.

104 Unable to authenticate server.

openSocket function

294

Use the openSocket() function to open a socket connection in a specified mode and return the

status.

Syntax

openSocket (name or IP, port, mode, timeout, socket handle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

name_or_IP DNS name (x.com) or IP address of a server.

port Port number. If the port number is specified as a value <= 0, CallHTTP
defaults to a port number of 40001.

mode 0: using current mode
1: blocking mode (default)
2: non-blocking mode

timeout The timeout value, expressed in milliseconds. If you specify mode as 0,
timeout will be ignored.

socket_handle A handle to the open socket.

Return codes

The following table describes the status of each return code.

Return code Description

0 Success.

99 UniVerse failed to obtain a license for an interactive PHANTOM process.
Non-zero See Socket function error return codes, on page 599.

Return status

The following table describes the return status of each mode.

OpenXMLData function

Mode Return status

Non-blocking The function will return immediately regardless of whether or not
the socket is successfully opened. The return code indicates if the
operation is successful. The timeout value is ignored.

Blocking If a positive timeout is specified, the function will either return with a

valid socket handle or will time out after the specified timeout period.
If the timeout value is 0, the function will block until either the socket
is successfully opened, the underlying TCP/IP connection times out or
some other error prevents the socket from opening.

OpenXMLData function

After you prepare the XML document, open it using the OpenXMLData function.

Syntax

Status=OpenXMLData (xml handle,xml data extraction rule,

xml data handle)

Parameters

The following table describes each parameter of the syntax.

Parameter

Description

xml_handle

The XML handle generated by the PreparexML,() function.

xml_data_extraction_rule

The path to the XML extraction rule file.

xml_data_handle

The XML data file handle. The following are the possible return values:
XML.SUCCESS: Success.

XML.ERROR: Failed

XML.INVALID.HANDLE: Invalid XML handle

Example

The following example illustrates use of the OpenXMLData function:

status = OpenXMLData (“STUDENT XML”, “&XML&/MYSTUDENT.ext”,STUDENT XML DATA)
If status = XML.ERROR THEN

STOP “Error when opening the XML document.

END

A

IF status = XML.INVALID.HANDLE THEN
STOP “Error: Invalid parameter passed.”

END

ORS function

Use the ORS function to create a dynamic array of the logical OR of corresponding elements of two

dynamic arrays.

Each element of the new dynamic array is the logical OR of the corresponding elements of arrayI and
array?2. If an element of one dynamic array has no corresponding element in the other dynamic array,
a false is assumed for the missing element.

295

Chapter 1: Statements and functions

If both corresponding elements of arrayl and array2 are the null value, null is returned for those
elements. If one element is the null value and the other is 0 or an empty string, null is returned. If one
element is the null value and the other is any value other than 0 or an empty string, a true is returned.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Syntax
ORS (arrayl, arrayZ2)
CALL -ORS (return.array, arrayl, array?2)

CALL !ORS (return.array, arrayl, arrayZ2)

Example

A="A":@SM:0:QVM:4:@SM:1
B=0:@SM:1-1:@VM:2
PRINT ORS (A, B)

This is the program output:

1s0v1isl

PAGE statement

296

Use the PAGE statement to print headings, footings, and page advances at the appropriate places on
the specified output device.

You can specify headings and footings before execution of the PAGE statement (see the HEADING
statement, on page 204 and FOOTING statement, on page 179). If there is no heading or footing,
PAGE clears the screen.

Syntax

PAGE [ON print.channel] [page#]

The ON clause specifies the logical print channel to use for output. print.channel is an expression that
evaluates to a number from -1 through 255. If you do not use the ON clause, logical print channel 0 is
used, which prints to the user’s terminal if PRINTER OFF is set (see the PRINTER statement, on page
301). Logical print channel -1 prints the data on the screen, regardless of whether a PRINTER ON
statement has been executed.

page# is an expression that specifies the next page number. If a heading or footing is in effect when the
page number is specified, the heading or footing on the current page contains a page number equal to
one less than the value of paget#.

If either print.channel or page# evaluates to the null value, the PAGE statement fails and the program
terminates with a run-time error message.
Example

In the following example the current value of X provides the next page number:

PAGE ON 5 X

PERFORM statement

PERFORM statement

Use the PERFORM statement to execute a UniVerse sentence, paragraph, menu, or command from
within the BASIC program, then return execution to the statement following the PERFORM statement.
The commands are executed in the same environment as the BASIC program that called them; that is,
unnamed common variables, @variables, and in-line prompts retain their values, and select lists and
the DATA stack remain active. If these values change, the new values are passed back to the calling
program.

Syntax

PERFORM command

You can specify multiple commands in the PERFORM statement in the same way you specify them in
the body of a UniVerse paragraph. Each command or line must be separated by a field mark (ASCII
CHAR(254)).

If command evaluates to the null value, the PERFORM statement fails and the program terminates
with a run-time error message.

You cannot use the PERFORM statement within a transaction to execute most UniVerse commands
and SQL statements. However, you can use PERFORM to execute the following UniVerse commands
and SQL statements within a transaction:

» CHECK.SUM
= COUNT

» DELETE (SQL)
* DISPLAY

» ESEARCH

* GET.LIST

» INSERT

-« LIST

» LIST.LABEL

* LIST.ITEM

* RUN

* SAVE.LIST

* SEARCH

= SELECT (RetrieVe)
* SELECT (SQL)

* SORT

* SORT.LABEL
* SORT.ITEM

» SSELECT

= STAT

= SUM

= UPDATE

297

Chapter 1: Statements and functions

REALITY flavor

In a REALITY flavor account PERFORM can take all the clauses of the EXECUTE statement. To get these
PERFORM characteristics in other flavor accounts, use the PERF.EQ.EXEC option of the SOPTIONS
statement.

Example

In the following example multiple commands are separated by field marks:

PERFORM 'RUN BP SUB'
FM=CHAR (254)

COMMAND = 'SSELECT EM':FM
COMMAND := 'RUN BP PAY':FM
COMMAND := 'DATA 01/10/85'
PERFORM COMMAND

A = 'SORT EM '

A := '"WITH PAY.CODE EQ'

A := '10 AND WITH DEPT'

A := 'EQ 45"

PERFORM A

PRECISION statement

298

Use the PRECISION statement to control the maximum number of decimal places that are output
when the system converts a numeric value from internal binary format to an ASCII character string
value.

Syntax

PRECISION expression

expression specifies a number from 0 through 14. Any fractional digits in the result of such a conversion
that exceed the precision setting are rounded off.

If you do notinclude a PRECISION statement, a default precision of 4 is assumed. Precisions are
stacked so that a BASIC program can change its precision and call a subroutine whose precision is the
default unless the subroutine executes a PRECISION statement. When the subroutine returns to the
calling program, the calling program has the same precision it had when it called the subroutine.

Trailing fractional zeros are dropped during output. Therefore, when an internal number is converted
to an ASClII string, the result might appear to have fewer decimal places than the precision setting
allows. However, regardless of the precision setting, the calculation always reflects the maximum
accuracy of which the computer is capable (that is, slightly more than 17 total digits, including
integers).

If expression evaluates to the null value, the PRECISION statement fails and the program terminates
with a run-time error message.

Example

A = 12.123456789
PRECISION 8
PRINT A
PRECISION 4
PRINT A

PrepareXML function

This is the program output:

12.12345679
12.1235

PrepareXML function

The PrepareXxML function allocates memory for the XML document, opens the document,
determines the file structure of the document, and returns the file structure.

Syntax

Status=PrepareXML (xml file,xml handle)

For PrepareXML to complete successfully, you should set the library directory environment variable,
which may not be the same name on all systems. For example, the environment variable is called

LD_LIBRARY_PATH on Solaris systems, SHLIB_PATH on HP systems, and so on. If this environment
variable is not properly set, UniVerse may produce errors such as the following:

ld.so0.1: uvsh: fatal: libxxxx: can't open file: errno=2

xxxx may be some unrecognizable combination of letters and numbers. To correct this, set up your
environment according to the vendor’s instructions

Parameters

The following table describes each parameter of the syntax.

Parameter Description
xml_file The path to the file where the XML document resides.
xml_handle The return value. The return value is the UniVerse BASIC variable for

xml_handle. Status is one of the following return values:
XML.SUCCESS: Success.
XML.ERROR: Failed

Example

The following example illustrates use of the PrepareXML function:

STATUS = PrepareXML (“&XML&/MYSTUDENT.XML”, STUDENT XML)
IF STATUS=XML.ERROR THEN

STATUS = XMLError (errmsg)

PRINT “error message “:errmsg

STOP “Error when preparing XML document “

END

PRINT statement

Use the PRINT statement to send data to the screen, a line printer, or another print file.

299

Chapter 1: Statements and functions

300

Syntax

PRINT [ON print.channel] |[print.list]

The ON clause specifies the logical print channel to use for output. print.channel is an expression that
evaluates to a number from -1 through 255. If you do not use the ON clause, logical print channel

0 is used, which prints to the user’s terminal if PRINTER OFF is set (see the PRINTER statement, on
page 301). If print.channel evaluates to the null value, the PRINT statement fails and the program
terminates with a run-time error message. Logical print channel -1 prints the data on the screen,
regardless of whether a PRINTER ON statement has been executed.

You can specify a HEADING statement, FOOTING statement, SPAGE statement, and PRINTER CLOSE
statements for each logical print channel. The contents of the print files are printed in order by logical
print channel number.

print.list can contain any BASIC expression. The elements of the list can be numeric or character
strings, variables, constants, or literal strings; the null value, however, cannot be printed. The list
can consist of a single expression or a series of expressions separated by commas (,) or colons (:) for
output formatting. If no print.list is designated, a blank line is printed.

Expressions separated by commas are printed at preset tab positions. The default tabstop setting is 10
characters. Calculations for tab characters are based on character length rather than display length.
For information about changing the default setting, see the TABSTOP statement, on page 407. Use
multiple commas together for multiple tabulations between expressions.

Expressions separated by colons are concatenated. That is, the expression following the colon is
printed immediately after the expression preceding the colon. To print a list without a LINEFEED and
RETURN, end print.list with a colon (:).

If NLS is enabled, calculations for the PRINT statement are based on character length rather than
display length. If print.channel has a map associated with it, data is mapped before it is output to the
device. For more information about maps, see the UniVerse NLS Guide.

Examples

A=25;B=30
C="ABCDE"
PRINT A+B
PRINT
PRINT "ALPHA ":C

PRINT "DATE ":PRINT "10/11/93"
*

PRINT ON 1 "FILE 1"
* The string "FILE 1" is printed on print file 1.

This is the program output:

55
ALPHA ABCDE
DATE 10/11/93
The following example clears the screen:
PRINT @ (-1)
The following example prints the letter X at location column 10, row 5:

PRINT @(10,5):'X"

PRINTER statement

PRINTER statement

Use the PRINTER statement to direct output either to the screen or to a printer. By default, all output is
sent to the screen unless a PRINTER ON is executed or the P option to the RUN command is used. See
the SETPTR command for more details about redirecting output.

Syntax

PRINTER { ON | OFF | RESET }

PRINTER CLOSE [ON print.channel]

PRINTER ON sends output to the system line printer via print channel 0. The output is stored in a
buffer until a PRINTER CLOSE statement is executed or the program terminates; the output is then
printed (see the PRINTER CLOSE statement).

PRINTER OFF sends output to the screen via print channel 0. When the program is executed, the data
is immediately printed on the screen.

The PRINTER ON or PRINTER OFF statement must precede the PRINT statement that starts the print
file.

Use the PRINTER RESET statement to reset the printing options. PRINTER RESET removes the header
and footer, resets the page count to 1, resets the line count to 1, and restarts page waiting.

Note: Use TPRINT statement to set a delay before printing. See also the TPARM function, on page
427 statement.

The PRINTER CLOSE statement

Use the PRINTER CLOSE statement to print all output data stored in the printer buffer.

You can specify print channel -1 through 255 with the ON clause. If you omit the ON clause from a
PRINTER CLOSE statement, print channel 0 is closed. Only data directed to the printer specified by the
ON clause is printed. Therefore, there must be a corresponding PRINTER CLOSE ON print.channel for
each ON clause specified in a PRINT statement. All print channels are closed when the program stops.
Logical print channel -1 prints the data on the screen, regardless of whether a PRINTER ON statement
has been executed.

If print.channel evaluates to the null value, the PRINTER CLOSE statement fails and the program
terminates with a run-time error message.

In PICK, IN2, and REALITY flavor accounts, the PRINTER CLOSE statement closes all print channels.

Example

PRINTER ON

PRINT "OUTPUT IS PRINTED ON PRINT FILE 0"

PRINTER OFF

PRINT "OUTPUT IS PRINTED ON THE TERMINAL"

*

PRINT ON 1 "OUTPUT WILL BE PRINTED ON PRINT FILE 1"
PRINT ON 2 "OUTPUT WILL BE PRINTED ON PRINT FILE 2"

This is the program output:

OUTPUT IS PRINTED ON THE TERMINAL

301

Chapter 1: Statements and functions

PRINTERR statement

302

Use the PRINTERR statement to print a formatted error message on the bottom line of the terminal.
The message is cleared by the next INPUT @ statement or is overwritten by the next PRINTERR or
INPUTERR statement. PRINTERR clears the type-ahead buffer.

Syntax

PRINTERR [error.message]

error.message is an expression that evaluates to the error message text. The elements of the
expression can be numeric or character strings, variables, constants, or literal strings. The null value
cannot be an element because it cannot be output. The expression can be a single expression or a
series of expressions separated by commas (,) or colons (:) for output formatting. If no error message
is designated, a blank line is printed. If error.message evaluates to the null value, the default message
is printed:

Message ID is NULL: undefined error

Expressions separated by commas are printed at preset tab positions. The default tabstop setting is 10
characters. For information about changing the default setting, see the TABSTOP statement, on page
407. Use multiple commas together to cause multiple tabulations between expressions.

Expressions separated by colons are concatenated: that is, the expression following the colon is
printed immediately after the expression preceding the colon.

See also the INPUTERR statement, on page 227.

REALITY flavor

In a REALITY flavor account the PRINTERR statement prints a formatted error message from the
ERRMSG file on the bottom line of the terminal. REALITY syntax is:

PRINTERR [dynamic.array] [FROM file.variable]

dynamic.array must contain a record ID and any arguments to the message, with each element
separated from the next by a field mark. If dynamic.array does not specify an existing record ID, a
warning message states that no error message can be found.

If dynamic.array evaluates to the null value, the default error message is printed:
Message ID is NULL: undefined error

The FROM clause lets you read the error message from an open file. If file.variable evaluates to the null
value, the PRINTERR statement fails and the program terminates with a run-time error message.

This statement is similar to the STOP statement on a Pick system except that it does not terminate the
program upon execution. You can use it wherever you can use a STOP or ABORT statement.

To use the REALITY version of the PRINTERR statement in PICK, IN2, INFORMATION, and IDEAL flavor
accounts, use the USE.ERRMSG option of the SOPTIONS statement.

UniVerse provides a standard Pick ERRMSG file. You can construct a local ERRMSG file using the
following syntax in the records. Each field must start with one of these codes, as shown in the
following table:

Code Action

Al(n)] Display next argument left-justified; n specifies field length.

D Display system date.

E [string] Display record ID of message in brackets; string displayed after ID.

PROCREAD statement

Code Action

H [string] Display string.

L [(n)] Output newline; n specifies number of newlines.

R [(n)] Display next argument right-justified; n specifies field length.
S[(n)] Output n blank spaces from beginning of line.

T Display system time.

PROCREAD statement

Use the PROCREAD statement to assign the contents of the primary input buffer to a variable. Your
BASIC program must be called by a proc. If your program was not called from a proc, the ELSE
statements are executed; otherwise the THEN statements are executed.

If variable evaluates to the null value, the PROCREAD statement fails and the program terminates with
a run-time error message.

Syntax

PROCREAD variable
{THEN statements [ELSE statements] | ELSE statements}

PROCWRITE statement

Use the PROCWRITE statement to write string to the primary input buffer. Your program must be
called by a proc.

If string evaluates to the null value, the PROCWRITE statement fails and the program terminates with a
run-time error message.

Syntax

PROCWRITE string

PROGRAM statement

Use the PROGRAM statement to identify a program. The PROGRAM statement is optional; if you use it,
it must be the first noncomment line in the program.

name can be specified for documentation purposes; it need not be the same as the actual program
name.

Syntax

PROG[RAM] [name]

Example

PROGRAM BYSTATE

303

Chapter 1: Statements and functions

PROMPT statement

Use the PROMPT statement to specify the character to be displayed on the screen when user input is
required. If no PROMPT statement is issued, the default prompt character is the question mark (?).

Syntax

PROMPT character

If character evaluates to more than one character, only the first character is significant; all others are
ignored.

The prompt character becomes character when the PROMPT statement is executed. Although the
value of character can change throughout the program, the prompt character remains the same until a
new PROMPT statement is issued or the program ends.

Generally, data the user enters in response to the prompt appears on the screen. If the source of the
input is something other than the keyboard (for example, a DATA statement), the data is displayed on
the screen after the prompt character. Use PROMPT " " to prevent any prompt from being displayed.
PROMPT " " also suppresses the display of input from DATA statements.

If character evaluates to the null value, no prompt appears.

Examples

Source Lines Program Output

Al(n)] Display next argument left-justified; n specifies field length.

D Display system date.

E [string] Display record ID of message in brackets; string displayed after ID.
H [string] Display string.

L [(n)] Output newline; n specifies number of newlines.

R [(n)] Display next argument right-justified; n specifies field length.

S [(n)] Output n blank spaces from beginning of line.

T Display system time.

protocollLogging function

304

The protocolLogging function starts or stops logging.

Syntax
protocollogging (log file, log action, log level)

log_file is the name of the file to which the logs will be recorded. The default log file name is httplog
and is created under the current directory.

log_action is either ON or OFF. The default is OFF.
log_level is the detail level of logging. Valid values are 0-10. See the table below for information about

each log level.

The following table describes each log level.

PWR function

Log level Description

0 No logging.

1 Socket open/read/write/close action (no real data) HTTP request: hostinfo(URL)
2 Level 1 logging plus socket data statistics (size, and so forth).

3 Level 2 logging plus all data actually transferred.

4-10 More detailed status data to assist debugging.

Return codes

The following table describes the status of each return code.

Return code Status
0 Success.
1 Failed to start logging.

PWR function

Use the PWR function to return the value of expression raised to the power specified by power.
Syntax
PWR (expression, power)

The PWR function operates like exponentiation (that is, PWR(X,Y) is the same as X**Y).

A negative value cannot be raised to a noninteger power. If it is, the result of the function is PWR(-X,Y)
and an error message is displayed.

If either expression or power is the null value, null is returned.

On overflow or underflow, a warning is printed and 0 is returned.

Example

A=3
B=PWR (5, A)
PRINT "B= ",B

This is the program output:

B= 125

PyCall function
The PyCall function calls a Python callable object.

Syntax
pyresult = PyCall (PyCallableObject[,argl, arg2, ...])

Parameters

The following table describes the parameters for this function.

305

Chapter 1: Statements and functions

Parameter Description

pyresult A standard U2 BASIC variable or a PYOBJECT variable.

pycallableobject A PYOBJECT variable pointing to a Python object that is callable, such as a
function object, class object, or method object.

arglarg2,... The arguments to the callable Python object that can be evaluated to a
string, a number, or a PYOBJECT.

PyCallFunction function

The PyCallFunction function calls a Python function on a Python module.

Syntax

pyresult = PyCallFunction (moduleName, functionNamel, argl,

Parameters

The following table describes the parameters for this function.

arg2,

-1)

Parameter Description

pyresult A standard U2 BASIC variable or a PYOBJECT variable.

moduleName The name of the module where the function is defined.

functionName The name of the function to be called.

argl,arg2 The arguments to the function object that can be evaluated to a string, a
number, or a PYOBJECT.

PyCallMethod function

The PyCallMethod function calls a method on a Python object.

Syntax
pyresult = PyCallMethod (pyobject, methodName [,argl, argZ2,

Parameters

The following table describes the parameters for this function.

or a PYOBJECT.

Parameter Description

pyresult A standard U2 BASIC variable or a PYOBJECT variable.

pyobject A PYOBJECT variable pointing to a Python object

methodName The name of the method to be called. Must be defined on the class of the
object.

argl,arg2 The arguments to the method that can be evaluated to a string, a number,

PyGetAttr function

306

The PyGetAttr function gets the value of an attribute of a Python object.

Pylmport function

Syntax

pyresult =

Parameters

PyGetAttr (pyobject, attrName)

The following table describes the parameters for this function.

Parameter Description

pyresult A standard U2 BASIC variable or a PYOBJECT variable.
pyobject A PYOBJECT variable pointing to a Python object.
attrName The name of the attribute whose value is to be retrieved.

Pylmport function

The PyImport function imports a Python module.

Syntax

pyresult =

Parameters

PyImport (moduleName)

The following table describes the parameters for this function.

Parameter Description
pyresult A PYOBJECT variable pointing to the Python module object.
moduleName The name of the module to be imported.

PySetAttr function

The PySetAttr function sets the value of an attribute of a Python object.

Syntax

pyresult =

Parameters

PySetAttr (pyobject, attrName, value)

The following table describes the parameters for this function.

Parameter Description

pyresult An integer value, -1: failure.

pyobject A PYOBJECT variable pointing to a Python object.

attrName The name of the attribute whose value to be set.

value Avalue expression that can be evaluated to a string, a number, or a
PYOBJECT.

307

Chapter 1: Statements and functions

OQUOTE function

Use the QUOTE function to enclose an expression in double quotation marks. If expression evaluates to
the null value, nullis returned (without quotation marks).

Syntax
QUOTE (expression)
Example

PRINT QUOTE (12 + 5) : "™ IS THE ANSWER."
END

This is the program output:

"1l7" IS THE ANSWER.

RAISE function

308

Use the RATSE function to return a value equal to expression, except that system delimiters in
expression are converted to the next higher-level delimiter: value marks are changed to field marks,
subvalue marks are changed to value marks, and so on. If expression evaluates to the null value, null is
returned.

Syntax

RAISE (expression)

The conversions are:

IM CHAR(255) to IM CHAR(255)
FM |CHAR(254) to IM CHAR(255)
VM |CHAR(253) to FM CHAR(254)
SM |CHAR(252) to VM CHAR(253)
TM | CHAR(251) to SM CHAR(252)

CHAR(250) CHAR(251)

CHAR(249) CHAR(250)

CHAR(248) CHAR(249)
PIOPEN flavor

In PIOPEN flavor, the delimiters that can be raised are CHAR(254) through CHAR(251). All other
characters are left unchanged. You can obtain PIOPEN flavor for the RATSE function by:

= Compiling your program in a PIOPEN flavor account
= Specifying the SOPTIONS INFO.MARKS statement

Examples

In the following examples an item mark is shown by 1, a field mark is shown by F, a value mark is
shown by V, and a subvalue mark is shown by S.

RANDOMIZE statement

The following example sets A to DDIEEI123I777:
A= RAISE('DD':FM'EE':FM:123:FM:777)
The next example sets B to 112F314V5:

B= RAISE(1:IM:2:VM:3:FM:4:SM:5)

The next example sets C to 9995888:

C= RAISE (999:TM:888)

RANDOMIZE statement

Use the RANDOMIZE statement with an expression to make the RND function generate the same
sequence of random numbers each time the program is run. expression must be a positive integer or
zero. If no expression is supplied, or if expression evaluates to the null value, the internal time of day is
used (the null value is ignored). In these cases the sequence is different each time the program is run.

Syntax

RANDOMIZE | (expression)]

Example

RANDOMIZE (0)
FOR N=1 TO 10
PRINT RND(4) :' '
NEXT N
PRINT
*
RANDOMIZE (0)
FOR N=1 TO 10
PRINT RND(4) :' '
NEXT
PRINT
*
RANDOMIZE (3)
FOR N=1 TO 10
PRINT RND(4) :' '
NEXT N
PRINT

This is the program output:
0212021211
0212021211
2011210123

READ statements

Use READ statements to assign the contents of a record from a UniVerse file to dynamic.array.

Syntax

READ dynamic.array FROM [file.variable,] record.ID [ON ERROR statements]

309

Chapter 1: Statements and functions

{ THEN statements [ELSE statements] | ELSE statements }

{ READL | READU } dynamic.array FROM [file.variable ,] record.ID
[ON ERROR statements] [LOCKED statements]
{ THEN statements [ELSE statements] | ELSE statements }

READV dynamic.array FROM [file.variable ,] record.ID , field#
[ON ERROR statements]
{ THEN statements [ELSE statements] | ELSE statements }

{ READVL | READVU } dynamic.array FROM [file.variable ,] record.ID , field#
[ON ERROR statements] [LOCKED statements]
{ THEN statements [ELSE statements] | ELSE statements }

Use this To do this...

statement...

READ Read a record.

READL Acquire a shared record lock and read a record.
READU Acquire an update record lock and read a record.
READV Read a field.

READVL Acquire a shared record lock and read a field.
READVU Acquire an update record lock and read a field.

file.variable specifies an open file. If file.variable is not specified, the default file is assumed (for more
information on default files, see the OPEN statement, on page 283). If the file is neither accessible
nor open, the program terminates with a run-time error message.

If record.ID exists on the specified file, dynamic.array is set to the contents of the record, and the THEN
statements are executed; any ELSE statements are ignored. If no THEN statements are specified,
program execution continues with the next statement. If record.ID does not exist, dynamic.array is set
to an empty string, and the ELSE statements are executed; any THEN statements are ignored.

If file.variable, record.ID, or field# evaluate to the null value, the READ statement fails and the program
terminates with a run-time error message.

Tables

If the file is a table, the effective user of the program must have SQL SELECT privilege to read records
in the file. For information about the effective user of a program, see the AUTHORIZATION statement,

on page 74.

Distributed files

If the file is a distributed file, use the STATUS function after a READ statement to determine the results
of the operation, as follows:

Value Description
-1 The partitioning algorithm does not evaluate to an integer.
-2 The part number is invalid.

310

READ statements

NLS mode

If NLS is enabled, READ and other BASIC statements that perform 1/O operations map external data to
the UniVerse internal character set using the appropriate map for the input file.

If the file contains unmappable characters, the ELSE statements are executed.
The results of the READ statements depend on all of the following:

= Theinclusion of the ON ERROR clause

= The setting of the NLSREADELSE parameter in the uvconfig file

* The location of the unmappable character

The values returned by the STATUS function are as follows:

Value Description
3 The unmappable character is in the record ID.
4 The unmappable character is in the record’s data.

Note: 4 isreturned only if the NLSREADELSE parameter is set to 1. If NLSREADELSE is 0, no value is
returned, data is lost, and you see a run-time error message.

For more information about maps, see the UniVerse NLS Guide.

The ON ERROR clause

The ON ERROR clause is optional in the READ statement. Its syntax is the same as that of the ELSE
clause. The ON ERROR clause lets you specify an alternative for program termination when a fatal
error is encountered during processing of the READ statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

= Anerror message appears.
= Any uncommitted transactions begun within the current execution environment roll back.
= The current program terminates.

= Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

= Afileis not open.

= file.variable is the null value.

= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

The LOCKED clause

You can use the LOCKED clause only with the READL, READU, READVL, and READVU statements. Its
syntax is the same as that of the ELSE clause.

The LOCKED clause handles a condition caused by a conflicting lock (set by another user) that
prevents the READ statement from being processed. The LOCKED clause is executed if one of the
following conflicting locks exists:

311

Chapter 1: Statements and functions

312

In this This requested lock... Conflicts with...
statement...

READL Shared record lock Exclusive file lock
READVL Update record lock
READU Update record lock Exclusive file lock
READVU Intent file lock

Shared file lock
Update record lock

Shared record lock

If a READ statement does not include a LOCKED clause, and a conflicting lock exists, the program will
timeout after 60 minutes or until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the terminal number of the
user who owns the conflicting lock.

Releasing Locks

A shared record lock can be released with a CLOSE statement, RELEASE statement, or STOP
statement. An update record lock can be released with a CLOSE statement, DELETE statements,
MATWRITE statements, RELEASE statement, STOP, WRITE statements, or WRITEV statement.

Locks acquired or promoted within a transaction are not released when the previous statements are
processed.

All record locks are released when you return to the UniVerse prompt.

READL and READU statements

Use the READL syntax to acquire a shared record lock and then read the record. This allows other
programs to read the record with no lock or a shared record lock.

Use the READU statement to acquire an update record lock and then read the record. The update
record lock prevents other users from updating the record until the user who owns it releases it.

An update record lock can only be acquired when no shared record lock exists. It can be promoted
from a shared record lock owned by the user requesting the update record lock if no shared record
locks exist.

To prevent more than one program or user from modifying the same record at the same time, use
READU instead of READ.

READV, READVL, and READVU statements

Use the READV statement to assign the contents of a field in a UniVerse file record to dynamic.array.

Use the READVL statement to acquire a shared record lock and then read a field from the record. The
READVL statement conforms to all the specifications of the READL and READV statements.

Use the READVU statement to acquire an update record lock and then read a field from the record. The
READVU statement conforms to all the specifications of the READU and READV statements.

You can specify field# only with the READV, READVL, and READVU statements. It specifies the index
number of the field to be read from the record. You can use a field# of 0 to determine whether the
record exists. If the field does not exist, dynamic.array is assigned the value of an empty string.

READBLK statement

PICK, IN2, and REALITY flavors

In PICK, IN2, and REALITY flavor accounts, if record.ID or field# does not exist, dynamic.array retains its
value and is not set to an empty string. The ELSE statements are executed; any THEN statements are
ignored. To specify PICK, IN2, and REALITY flavor READ statements in an INFORMATION or IDEAL flavor
account, use the READ.RETAIN option of the SOPTIONS statement.

Examples

OPEN '', 'SUN.MEMBER' TO FILE ELSE STOP

FOR ID=5000 TO 6000
READ MEMBER FROM FILE, ID THEN PRINT ID ELSE NULL

NEXT ID

OPEN '', 'SUN.SPORT' ELSE STOP 'CANT OPEN "SUN.SPORT"'

READ ID FROM "853333" ELSE
PRINT 'CANT READ ID "853333" ON FILE "SUN.SPORT"'

END

X="6100"

READ PERSON FROM FILE,X THEN PRINT PERSON<1> ELSE
PRINT "PERSON ":X:" NOT ON FILE"

END

The next example locks the record N in the file SUN.MEMBER, reads field 3 (STREET) from it, and prints
the value of the field:

OPEN '', 'SUN.MEMBER' TO FILE ELSE STOP
FOR N=5000 TO 6000
READVU STREET FROM FILE,N,3 THEN PRINT STREET ELSE NULL
RELEASE
NEXT
OPEN "DICT","MYFILE" TO DICT.FILE ELSE STOP
OPEN "","MYFILE"™ ELSE STOP ; *USING DEFAULT FILE VARIABLE
READU ID.ITEM FROM DICT.FILE,"QID" ELSE
PRINT "NO @ID"
STOP
END

This is the program output:

5205

5390

CANT READ ID "853333" ON FILE "SUN.SPORT"
MASTERS

4646 TREMAIN DRIVE

670 MAIN STREET

READBLK statement

Use the READBLK statement to read a block of data of a specified length from a file opened for
sequential processing and assign it to a variable. The READBLK statement reads a block of data
beginning at the current position in the file and continuing for blocksize bytes and assigns it to
variable. The current position is reset to just beyond the last byte read.

Syntax

READBLK variable FROM file.variable, blocksize

313

Chapter 1: Statements and functions

THEN statements [ELSE statements] | ELSE statements }

file.variable specifies a file previously opened for sequential processing.

If the data can be read from the file, the THEN statements are executed; any ELSE statements are
ignored. If the file is not readable or if the end of file is encountered, the ELSE statements are executed
and the THEN statements are ignored. If the ELSE statements are executed, variable is set to an empty
string.

If either file.variable or blocksize evaluates to the null value, the READBLK statement fails and the
program terminates with a run-time error message.

Note: A newline in UNIX files is one byte long, whereas in Windows NT it is two bytes long. This
means that for a file with newlines, the same READBLK statement may return a different set of data
depending on the operating system the file is stored under.

In the event of a timeout, READBLK returns no bytes from the buffer, and the entire I/0 operation must
be retried.

The difference between the READSEQ statement and the READBLK statement is that the READBLK
statement reads a block of data of a specified length, whereas the READSEQ statement reads a single
line of data.

On Windows NT systems, if you use READBLK to read data from a 1/4-inch cartridge drive (60 or 150
MB) that you open with the OPENDEV statement, on page 286, you must use a block size of 512 bytes
or a multiple of 512 bytes.

For more information about sequential file processing, see the OPENSEQ statement, on page 289,
READSEQ statement, on page 317, and WRITESEQ statement, on page 464.

If NLS is enabled and file.variable has a map associated with it, the data is mapped accordingly. For
more information about maps, see the UniVerse NLS Guide.

Example

OPENSEQ 'FILE.E', 'RECORD4' TO FILE ELSE ABORT
READBLK VAR1 FROM FILE, 15 THEN PRINT VARI1
PRINT
READBLK VAR2 FROM FILE, 15 THEN PRINT VAR2

This is the program output:

FIRST LINE
SECO

ND LINE
THIRD L

READL statement

Use the READL statement to acquire a shared record lock and perform the READ statement.

For details, see the READ statements, on page 309.

314

READLIST statement

READLIST statement

Use the READLIST statement to read the remainder of an active select list into a dynamic array.

Syntax

READLIST dynamic.array [FROM list.number]
{ THEN statements [ELSE statements] | ELSE statements }

list.number is an expression that evaluates to the number of the select list to be read. It can be from 0
through 10. If you do not use the FROM clause, select list 0 is used.

READLIST reads all elements in the active select list. If READ statements are used on the select list
before the READLIST statement, only the elements not read by the READNEXT statement are stored in
dynamic.array. READLIST empties the select list.

If one or more elements are read from list.number, the THEN statements are executed. If there are no
more elements in the select list or if a select list is not active, the ELSE statements are executed; any
THEN statements are ignored.

If list.number evaluates to the null value, the READLIST statement fails and the program terminates
with run-time error message.

In IDEAL and INFORMATION flavor accounts, use the VAR.SELECT option of the SOPTIONS statement to
get READLIST to behave as it does in PICK flavor accounts.

PICK, REALITY, and IN2 flavors

In PICK, REALITY, and IN2 flavor accounts, the READLIST statement has the following syntax:

READLIST dynamic.array FROM listname [SETTING variable]
{THEN statements [ELSE statements] | ELSE statements}

In these flavors the READLIST statement reads a saved select list from the &SAVEDLISTS& file without
activating a select list. In PICK and IN2 flavor accounts, READLIST lets you access a saved select list
without changing the currently active select list if there is one.

The select list saved in listname in the &SAVEDLISTS& file is put in dynamic.array. The elements of the
list are separated by field marks.

listname can be of the form
record.ID

or

record.IDaccount.name

record.ID specifies the record ID of the list in &SAVEDLISTS&, and account.name specifies the name of
another UniVerse account in which to look for the &SAVEDLISTS& file.

The SETTING clause assigns the count of the elements in the list to variable.

If the list is retrieved successfully (the list must not be empty), the THEN statements are executed; if
not, the ELSE statements are executed. If listname evaluates to the null value, the READLIST statement
fails and the program terminates with a run-time error message.

In PICK, REALITY, and IN2 flavor accounts, use the -VAR.SELECT option of the SOPTIONS statement to
get READLIST to behave as it does in IDEAL flavor accounts.

315

Chapter 1: Statements and functions

READNEXT statement

Use the READNEXT statement to assign the next record ID from an active select list to dynamic.array.

Syntax

READNEXT dynamic.array [,value [,subvalue]] [FROM 1list]
{THEN statements [ELSE statements] | ELSE statements}

list specifies the select list. If none is specified, select list 0 is used. list can be a number from 0 through
10 indicating a numbered select list, or the name of a select list variable.

The BASIC SELECT statements, on page 346 or the UniVerse GET.LIST, FORM.LIST, SELECT, or
SSELECT commands create an active select list; these commands build the list of record IDs. The
READNEXT statement reads the next record ID on the list specified in the FROM clause and assigns it to
the dynamic.array.

When the select list is exhausted, dynamic.array is set to an empty string, and the ELSE statements are
executed; any THEN statements are ignored.

If list evaluates to the null value, the READNEXT statement fails and the program terminates with a
run-time error message.

A READNEXT statement with value and subvalue specified accesses an exploded select list. The record
ID is stored in dynamic.array, the value number in value, and the subvalue number in subvalue. If only
dynamic.array is specified, it is set to a multivalued field consisting of the record ID, value number, and
subvalue number, separated by value marks.

INFORMATION flavor

In INFORMATION flavor accounts READNEXT returns an exploded select list. Use the RNEXT.EXPL
option of the SOPTIONS statement to return exploded select lists in other flavors.

Example

OPEN '', 'SUN.MEMBER' ELSE STOP "CAN'T OPEN FILE"
SELECT TO 1

10: READNEXT MEM FROM 1 THEN PRINT MEM ELSE GOTO 15:
GOTO 10:

*

15: PRINT
OPEN '', 'SUN.SPORT' TO FILE ELSE STOP

SELECT FILE

COUNT=0

20%*

READNEXT ID ELSE

PRINT 'COUNT= ', COUNT

STOP

END
COUNT=COUNT+1
GOTO 20

This is the program output:

4108
6100
3452
5390

316

READSEQ statement

7100
4500
2430
2342
6783
5205
4439
6203
7505
4309
1111
COUNT= 14

READSEQ statement

Use the READSEQ statement to read a line of data from a file opened for sequential processing.
Sequential processing lets you process data one line at a time. UniVerse keeps a pointer at the current
position in the file. The SOPTIONS statement sets this pointer to the first byte of the file, and it is
advanced by READSEQ, READBLK statement, WRITESEQ statement, and WRITEBLK statement.

Syntax

READSEQ variable FROM file.variable [ON ERROR statements]
{THEN statements [ELSE statements] | ELSE statements}

Each READSEQ statement reads data from the current position in the file up to a newline and assigns it
to variable. The pointer is then set to the position following the newline. The newline is discarded.

file.variable specifies a file previously opened for sequential processing. The FROM clause is required.
If the file is neither accessible nor open, or if file.variable evaluates to the null value, the READSEQ
statement fails and the program terminates with a run-time error message.

If data is read from the file, the THEN statements are executed, and the ELSE statements are ignored. If
the file is not readable, or the end of file is encountered, the ELSE statements are executed; any THEN
statements are ignored.

In the event of a timeout, READSEQ returns no bytes from the buffer, and the entire I/O operation must
be retried.

READSEQ affects the STATUS function in the following way:

Value Description

0 The read is successful.

1 The end of file is encountered.
2 Atimeout ended the read.

-1 The file is not open for a read.

If NLS is enabled, the READSEQ and other BASIC statements that perform 1/0 operations always map
external data to the UniVerse internal character set using the appropriate map for the input file if the
file has a map associated with it. For more information about maps, see the UniVerse NLS Guide.

317

Chapter 1: Statements and functions

The ON ERROR clause

The ON ERROR clause is optional in the READSEQ statement. Its syntax is the same as that of the ELSE
clause. The ON ERROR clause lets you specify an alternative for program termination when a fatal
error is encountered during processing of the READSEQ statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

= Anerror message appears.
= Any uncommitted transactions begun within the current execution environment roll back.
= The current program terminates.

= Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

= Afileis not open.

= file.variable is the null value.

= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

Example

OPENSEQ 'FILE.E', 'RECORD4' TO FILE ELSE ABORT
FOR N=1 TO 3
READSEQ A FROM FILE THEN PRINT A
NEXT N
CLOSESEQ FILE

This is the program output:

FIRST LINE
SECOND LINE
THIRD LINE

readSocket function

Use the readSocket() function to read data in the socket buffer up to max_read_size characters.

Syntax

readSocket (socket handle, socket data, max read size, time out, mode,
actual read size)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
socket_handle A handle to the open socket.
socket_data The data to be read from the socket.

318

READT statement

Parameter

Description

max_read_size

The maximum number of characters to return. If this is 0, then the entire
buffer should be returned.

time_out

The time (in milliseconds) before a return in blocking mode. This is
ignored for non-blocking read.

mode

0: using current mode
1: blocking mode (default)

2: non-blocking mode

actual_read_size

The number of characters actually read. -1 if error.

Return status

The following table describes the return status of each mode.

Mode Return status

Non-blocking The function will return immediately if there is no data in the socket. If
the max_read_size parameter is greater than the socket buffer then just
the socket buffer will be returned.

Blocking If there is no data in the socket, the function will block until data is put

into the socket on the other end. It will return up to the max_read_size

character setting.

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.

1-41 See Socket function error return codes, on page 599.
107 Encryption error.

108 Decryption error.

READT statement

Use the READT statement t
contents to a variable.

Syntax

READT [UNIT (mtu)]

{THEN statements

o read the next tape record from a magnetic tape unit and assign its

variable

[ELSE statements] | ELSE statements}

The UNIT clause specifies the number of the tape drive unit. Tape unit 0 is used if no unit is specified.

mtu is an expression that evaluates to a code made up of three decimal digits, as shown in the

following table:

319

Chapter 1: Statements and functions

Code Available Options

m (mode) 0= No conversion

1=EBCDIC conversion

2 =Invert high bit

3 =Invert high bit and EBCDIC conversion

t (tracks) 0 =9 tracks. Only 9-track tapes are supported.

U (unit number) 0 through 7

The mtu expression is read from right to left. Therefore, if mtu evaluates to a one-digit code, it
represents the tape unit number. If mtu evaluates to a two-digit code, the rightmost digit represents
the unit number and the digit to its left is the track number; and so on.

If either mtu or variable evaluates to the null value, the READT statement fails and the program
terminates with a run-time error message.

Each tape record is read and processed completely before the next record is read. The program waits
for the completion of data transfer from the tape before continuing.

If the next tape record exists, variable is set to the contents of the record, and the THEN statements are
executed. If no THEN statements are specified, program execution continues with the next statement.

Before a READT statement is executed, a tape drive unit must be attached (assigned) to the user.
Use the ASSTGN command to assign a tape unit to a user. If no tape unit is attached or if the unit
specification is incorrect, the ELSE statements are executed and the value assigned to variable is
empty. Any THEN statements are ignored.

The largest tape record that the READT statement can read is system-dependent. If a tape record is
larger than the system maximum, only the bytes up to the maximum are assigned to variable.

The STATUS function returns 1 if READT takes the ELSE clause, otherwise it returns 0.

If NLS is enabled, the READT and other BASIC statements that perform I/O operations always map
external data to the UniVerse internal character set using the appropriate map for the input file if the
file has a map associated with it. For more information about maps, see the UniVerse NLS Guide.

PIOPEN flavor
If you have a program that specifies the syntax UNIT ndmtu, the nd elements are ignored by the
compiler and no errors are reported.

Examples

The following example reads a tape record from tape drive 0:

READT RECORD ELSE PRINT "COULD NOT READ FROM TAPE"

The next example reads a record from tape drive 3, doing an EBCDIC conversion in the process:

READT UNIT (103) RECORD ELSE PRINT "COULD NOT READ"

READU statement

320

Use the READU statement to set an update record lock and perform the READ statement.

For details, see the READ statements, on page 309.

In 8.3.3.2, a new LOCK.WAIT clause was introduced into the SQL environment defaulting to 3600
seconds (60 Minutes), which caused the BASIC READU statement to follow that parameter. As a result,
if a program uses the READU statement with no LOCKED clause and waits for 60 minutes attempting

READV statement

to gain that lock, because it is already locked somewhere else, the program will proceed with the
ELSE clause of the READU statement. This will cause problems for most developers because the ELSE
clause will normally be followed by REC = "" which could result in unwanted results in the rest of the
program / application in that any subsequent WRITES in that program would be allowed.

The two methods to change this behavior are from UniVerse BASIC or from TCL via SQL. From BASIC
you can ASSTGN a value to SYSTEM(1999) denoting the number of seconds to wait on a READU. For
example, to set the wait time to 2 hours, you would use:

ASSIGN 7200 TO SYSTEM(1999)
You can also specify an indefinite wait time using:

ASSIGN 0 TO SYSTEM(1999)

Note: You cannot inquire on the current contents of SYSTEM(1999). It will always report 0 no
matter what has previously been assigned.

From TCL, you can increase the LOCK.WAIT time parameter as follows:
SET.SQL LOCK.WAIT n
where n is a number of seconds. n must be > 0.

Both of these methods can be done via an account LOGIN paragraph through an account change or
using the UV.LOGIN paragraph to set system wide. This parameter will stay set for the duration of the
UniVerse session.

Note: UniVerse also has a write timeout of 20 Minutes on any locked record and at present there is
no method to override this.

READV statement

Use the READV statement to read the contents of a specified field of a record in a UniVerse file.

For details, see the READ statements, on page 309.

READVL statement

Use the READVL statement to set a shared record lock and perform the READV statement.
For details, see the READ statements, on page 309.

READVU statement

Use the READVU statement to set an update record lock and read the contents of a specified field of a
record in a UniVerse file.

For details, see the READ statements, on page 309.

ReadXMLData function

After you open an XML document, read the document using the ReadXMLData function. UniVerse
BASIC returns the XML data as a dynamic array.

321

Chapter 1: Statements and functions

Syntax

Status=ReadXMLData (xml data handle, rec)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xml_data_handle Avariable that holds the XML data handle created by the OpenXMLData
function.

rec A mark-delimited dynamic array containing the extracted data. Status if one

of the following:

XML.SUCCESS: Success.

XML.ERROR: Failed

XML.INVALID.HANDLE2: Invalid xml_data_handle
XML.EOF: End of data

After you read the XML document, you can execute any UniVerse BASIC statement or function against
the data.

Example

The following example illustrates use of the ReadxXMLData function:

MOREDATA=1

LOOP WHILE (MOREDATA=1)

status = ReadXMLData (STUDENT XML, rec)
IF status = XML.ERROR THEN

STOP “Error when preparing the XML document.
END ELSE IF status = XML.EOF THEN
PRINT “No more data”

MOREDATA = 0

END ELSE

PRINT “rec = “:rec

END

REPEAT

A

REAL function

Use the REAL function to convert number into a floating-point number without loss of accuracy. If
number evaluates to the null value, null is returned.

Syntax

REAL (number)

RECORDLOCK statements

Use RECORDLOCK statements to acquire a record lock on a record without reading the record.

322

RECORDLOCK statements

Syntax

RECORDLOCKL file.variable , record.ID [ON ERROR statements]
[LOCKED statements]

RECORDLOCKU file.variable , record.ID [ON ERROR statements]
[LOCKED statements]

Use this To acquire this lock without reading the record...
statement...

RECORDLOCKL Shared record lock

RECORDLOCKU Update record lock

file.variable is a file variable from a previous OPEN statement.

record.ID is an expression that evaluates to the record ID of the record that is to be locked.

The RECORDLOCKL statement

The RECORDLOCKL statement lets other users lock the record using RECORDLOCK or any other
statement that sets a shared record lock, but cannot gain exclusive control over the record with
FILELOCK statement, or any statement that sets an update record lock.

The RECORDLOCKU statement

The RECORDLOCKU statement prevents other users from accessing the record using a FILELOCK
statement or any statement that sets either a shared record lock or an update record lock. You can
reread a record after you have locked it; you are not affected by your own locks.

The ON ERROR clause

The ON ERROR clause is optional in RECORDLOCK statements. The ON ERROR clause lets you specify
an alternative for program termination when a fatal error is encountered while a RECORDLOCK
statement is being processed.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

= Anerror message appears.
= Any uncommitted transactions begun within the current execution environment roll back.
= The current program terminates.

* Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

= Afileis not open.

= file.variable is the null value.

= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

The LOCKED clause

The LOCKED clause is optional, but recommended.

323

Chapter 1: Statements and functions

The LOCKED clause handles a condition caused by a conflicting lock (set by another user) that
prevents the RECORDLOCK statement from processing. The LOCKED clause is executed if one of the
following conflicting locks exists:

In this This requested lock... Conflicts with these locks...
statement...
RECORDLOCKL |Shared record lock Exclusive file lock

Update record lock

RECORDLOCKU | Update record lock Exclusive file lock
Intent file lock
Shared file lock
Update record lock

Shared record lock

If the RECORDLOCK statement does not include a LOCKED clause, and a conflicting lock exists, the
program pauses until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the terminal number of the
user who owns the conflicting lock.

Releasing locks

A shared record lock can be released with a CLOSE statement, RELEASE statement, or STOP
statement. An update record lock can be released with a CLOSE statement, DELETE statements,
MATWRITE statements, RELEASE statement, STOP statement, WRITE statements, or WRITEV
statement.

Locks acquired or promoted within a transaction are not released when the previous statements are
processed.

All record locks are released when you return to the UniVerse prompt.

Example

In the following example, the file EMPLOYEES is opened. Record 23694 is locked. If the record was
already locked, the program terminates, and an appropriate message is displayed. The RECORDLOCKL
statement allows other users to read the record with READL or lock it with another RECORDLOCKL, but
prevents any other user from gaining exclusive control over the record.

OPEN '','EMPLOYEES' TO EMPLOYEES ELSE STOP 'Cannot open file'
RECORDLOCKL EMPLOYEES, '23694"
LOCKED STOP 'Record previously locked by user ':STATUS()

RECORDLOCKED function

324

Use the RECORDLOCKED function to return the status of a record lock.

Syntax

RECORDLOCKED (file.variable , record.ID)

file.variable is a file variable from a previous OPEN statement.

record.ID is an expression that evaluates to the record ID of the record that is to be checked.

RECORDLOCKED function

An insert file of equate names is provided to let you use mnemonics (see the following table). The
insert file is called RECORDLOCKED.INS.IBAS, and is located in the INCLUDE directory in the UV
account directory. In PIOPEN flavor accounts, the VOC file has a file pointer called SYSCOM. SYSCOM
references the INCLUDE directory in the UV account directory.

To use the insert file, specify SINCLUDE SYSCOM RECORDLOCKED.INS.IBAS when you compile the
program.

Equate name Value Meaning

LOCKSMY.FILELOCK 3 This user has a FILELOCK.
LOCKSMY.READU 2 This user has an update record lock.
LOCKSMY.READL 1 This user has a shared record lock.
LOCKSNO.LOCK 0 The record is not locked.
LOCKSOTHER.READL |-1 Another user has a shared record lock.
LOCKSOTHER.READU |-2 Another user has an update record lock.
LOCK -3 Another user has a FILELOCK.
SOTHER.FILELOCK

If you have locked the file, the RECORDLOCKED function indicates only that you have the file lock for
that record. It does not indicate any update record or shared record lock that you also have on the
record.

Value returned by the STATUS function

Possible values returned by the STATUS function, and their meanings, are as follows:

Return value Description

>0 A positive value is the terminal number of the owner of the lock (or the first
terminal number encountered, if more than one user has locked records in the
specified file).

<0 A negative value is -1 times the terminal number of the remote user who has
locked the record or file.

Examples

The following program checks to see if there is an update record lock or FILELOCK held by the current
user on the record. If the locks are not held by the user, the ELSE clause reminds the user that an
update record lock or FILELOCK is required on the record. This example using the SYSCOM file pointer,
only works in Pl/open flavor accounts.

S$INCLUDE SYSCOM RECORDLOCKED.INS.IBAS
OPEN '', "EMPLOYEES' TO EMPLOYEES
ELSE STOP 'CANNOT OPEN FILE'

IF RECORDLOCKED (EMPLOYEES,RECORD.ID) >= LOCKS$SMY.READU THEN
GOSUB PROCESS.THIS.RECORD:
ELSE PRINT 'Cannot process record : ':RECORD.ID :', READU or FILELOCK required.'

The next program checks to see if the record lock is held by another user and prints a message where
the STATUS function gives the terminal number of the user who holds the record lock:

S$INCLUDE SYSCOM RECORDLOCKED.INS.IBAS
OPEN '', "EMPLOYEES' TO EMPLOYEES

325

Chapter 1: Statements and functions

ELSE STOP 'CANNOT OPEN FILE'

IF RECORDLOCKED (EMPLOYEES, RECORD.ID) < LOCKS$NO.LOCK THEN
PRINT 'Record locked by user' : STATUS()
END

RELEASE statement

326

Use the RELEASE statement to unlock, or release, locks set by a FILELOCK statement, MATREADL
statement, MATREADU statement, READL statement, READU statement, READVL statement, READVU
statement, and OPENSEQ statement. These statements lock designated records to prevent concurrent
updating by other users. If you do not explicitly release a lock that you have set, it is unlocked
automatically when the program terminates.

Syntax
RELEASE [file.variable [, record.ID]] [ON ERROR statements]
file.variable specifies an open file. If file.variable is not specified and a record ID is specified, the default

file is assumed (for more information on default files, see the OPEN statement, on page 283). If the
file is neither accessible nor open, the program terminates with a run-time error message.

record.ID specifies the lock to be released. If it is not specified, all locks in the specified file (that is,
either file.variable or the default file) are released. If either file.variable or record.ID evaluates to the
null value, the RELEASE statement fails and the program terminates with a run-time error message.

When no options are specified, all locks in all files set by any FILELOCK, READL, READU, READVL,
READVU, WRITEU, WRITEVU, MATREADL, MATREADU, MATWRITEU, or OPENSEQ statements during the
current login session are released.

A RELEASE statement within a transaction is ignored.

The ON ERROR Clause

The ON ERROR clause is optional in the RELEASE statement. The ON ERROR clause lets you specify
an alternative for program termination when a fatal error is encountered during processing of the
RELEASE statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

= Anerror message appears.
= Any uncommitted transactions begun within the current execution environment roll back.
= The current program terminates.

* Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

= Afileis not open.

= file.variable is the null value.

= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

ReleaseXML function

Examples

The following example releases all locks set in all files by the current program:
RELEASE

The next example releases all locks set in the NAMES file:

RELEASE NAMES

The next example releases the lock set on the record QTY in the PARTS file:

RELEASE PARTS, "QTY"

ReleaseXML function

Release the XML dynamic array after closing it using the Re1easeXML function. ReleaseXML
destroys the internal DOM tree and releases the associated memory.

Syntax

ReleaseXML (XMLhandle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
XMLhandle The XML handle created by the PrepareXML() function.

REM function

Use the REM function to calculate the remainder after integer division is performed on the dividend
expression by the divisor expression.

Syntax

REM (dividend, divisor)

The REM function calculates the remainder using the following formula:
REM (X,Y)=X- (INT (X/Y) *Y)

dividend and divisor can evaluate to any numeric value, except that divisor cannot be 0. If divisoris 0, a
division by 0 warning message is printed, and 0 is returned. If either dividend or divisor evaluates to the
null value, null is returned.

The REM function works like the MOD function, on page 269.

Example

X=85; Y=3
PRINT 'REM (X,Y)= ',REM (X,Y)

This is the program output:

REM (X,Y)= 1

327

Chapter 1: Statements and functions

REM statement

Use the REM statement to insert a comment in a BASIC program. Comments explain or document
various parts of a program. They are part of the source code only and are nonexecutable. They do not
affect the size of the object code.

A comment must be a separate BASIC statement, and can appear anywhere in a program. A comment
must be one of the following comment designators:

REM * 1 §*

Any text that appears between a comment designator and the end of a physical line is treated as
part of the comment. If a comment does not fit on one physical line, it can be continued on the next
physical line only by starting the new line with a comment designator. If a comment appears at

the end of a physical line containing an executable statement, you must treat it as if it were a new
statement and put a semicolon (;) after the executable statement, before the comment designator.

Syntax

REM [comment. text]

Example

PRINT "HI THERE"; REM This part is a comment.
REM This is also a comment and does not print.
REM
IF 5<6 THEN PRINT "YES"; REM A comment; PRINT "PRINT ME"
REM BASIC thinks PRINT "PRINT ME" is also part
REM of the comment.
IF 5<6 THEN
PRINT "YES"; REM Now it doesn't.
PRINT "PRINT ME"
END

This is the program output:

HI THERE
YES
YES
PRINT ME

REMOVE function

328

Use the REMOVE function to successively extract and return dynamic array elements that are
separated by system delimiters, and to indicate which system delimiter was found. When a system
delimiter is encountered, the value of the extracted element is returned. The REMOVE function is more
efficient than the EXTRACT function for extracting successive fields, values, and so on, for multivalue
list processing.

Syntax

REMOVE (dynamic.array, variable)

dynamic.array is the dynamic array from which to extract elements.

REMOVE function

variable is set to a code corresponding to the system delimiter which terminates the extracted
element. The contents of variable indicate which system delimiter was found, as follows:

Value Description

End of string

Item mark ASCII CHAR(255)
Field mark ASCII CHAR(254)
Value mark ASCII CHAR(253)
Subvalue mark ASCII CHAR(252)
Text mark ASCII CHAR(251)
ASCII CHAR(250)

ol W|IN|HF|O

Note: Not available in the PIOPEN flavor
7 ASCII CHAR(249)

Note: Not available in the PIOPEN flavor
8 ASCII CHAR(248)

Note: Not available in the PIOPEN flavor

The REMOVE function extracts one element each time it is executed, beginning with the first element
in dynamic.array. The operation can be repeated until all elements of dynamic.array are extracted. The
REMOVE function does not change the dynamic array.

As each successive element is extracted from dynamic.array, a pointer associated with dynamic.array
is set to the beginning of the next element to be extracted. Thus the pointer is advanced every time the
REMOVE function is executed.

The pointer is reset to the beginning of dynamic.array whenever dynamic.array is reassigned.
Therefore, dynamic.array should not be assigned a new value until all elements have been extracted
(thatis, until variable is 0).

If dynamic.array evaluates to the null value, nullis returned and variable is set to 0 (end of string). If an
element in dynamic.array is the null value, null is returned for that element, and variable is set to the
appropriate delimiter code.

Unlike the EXTRACT function, the REMOVE function maintains a pointer into the dynamic array. (The
EXTRACT function always starts processing at the beginning of the dynamic array, counting field
marks, value marks, and subvalue marks until it finds the correct element to extract.)

See the REMOVE statement, on page 330 for the statement equivalent of this function.

Examples

The first example sets the variable FIRST to the string MIKE and the variable X to 2 (field mark). The
second example executes the REMOVE function and PRINT statement until all the elements have been
extracted, at which point A= 0. Printed lines are 12, 4, 5, 7654, and 00.

Source lines Program output

FM=CHAR(254) FIRST =2 X = MIKE
NAME='MIKE":FM:' JOHN':FM
X=REMOVE(NAME,FIRST)

PRINT 'FIRST = ":FIRST, 'X="X

329

Chapter 1: Statements and functions

Source lines Program output
VM=CHAR(253) Y=3A=12
A=1 Y=3A=4
Z=12:VM:4:VM:5:VM:7654:VM:00 Y=3A=5

FOR X=1TO 20 UNTIL A=0 Y=3A=7654
A=REMOVE(Z)Y) Y=0A=0
PRINT'Y="Y,'A="A

NEXT X

REMOVE statement

330

Use the REMOVE statement to successively extract dynamic array elements that are separated
by system delimiters. When a system delimiter is encountered, the extracted element is assigned
to element. The REMOVE statement is more efficient than the EXTRACT function for extracting
successive fields, values, and so on, for multivalue list processing.

Syntax

REMOVE element FROM dynamic.array SETTING variable

dynamic.array is the dynamic array from which to extract elements.

variable is set to a code value corresponding to the system delimiter terminating the element just
extracted. The delimiter code settings assigned to variable are as follows:

Value Description

End of string

Iltem mark ASCIlI CHAR(255)
Field mark ASCII CHAR(254)
Value mark ASCII CHAR(253)
Subvalue mark ASCII CHAR(252)
Text mark ASCII CHAR(251)
ASCII CHAR(250)

Ol W|IN|HF|O

Note: Not supported in the PIOPEN flavor
7 ASCII CHAR(249)

Note: Not supported in the PIOPEN flavor
8 ASCII CHAR(248)

Note: Not supported in the PIOPEN flavor

The REMOVE statement extracts one element each time it is executed, beginning with the first element
in dynamic.array. The operation can be repeated until all elements of dynamic.array are extracted. The
REMOVE statement does not change the dynamic array.

As each element is extracted from dynamic.array to element, a pointer associated with
dynamic.array is set to the beginning of the next element to be extracted. Thus, the pointer is
advanced every time the REMOVE statement is executed.

REPEAT statement

The pointer is reset to the beginning of dynamic.array whenever dynamic.array is reassigned.
Therefore, dynamic.array should not be assigned a new value until all elements have been extracted
(that is, until variable = 0).

If an element in dynamic.array is the null value, nullis returned for that element.

Unlike the EXTRACT function, the REMOVE statement maintains a pointer into the dynamic array.
(The EXTRACT function always starts processing at the beginning of the dynamic array, counting field
marks, value marks, and subvalue marks until it finds the correct element to extract.)

See the REMOVE function, on page 328 for the function equivalent of this statement.

Examples

The first example sets the variable FIRST to the string MIKE and the variable X to 2 (field mark).
The second example executes the REMOVE and PRINT statements until all the elements have been
extracted, at which point A= 0. Printed lines are 12, 4, 5, 7654, and 00.

Source lines Program output

FM=CHAR(254) X=2 FIRST= MIKE
NAME='MIKE":FM:'"JOHN":FM
REMOVE FIRST FROM NAME

SETTING X

PRINT 'X=":X, 'FIRST= ":FIRST
VM=CHAR(253) Y=12 A=3
A=1 Y=4A=3

Z=12:VM:4:VM:5:VM:7654:VM:00 | Y=5 A=3
FOR X=1TO 20 UNTIL A=0 Y=7654 A=3
REMOVEY FROM Z SETTINGA |Y=0A=0
PRINT 'Y="Y, 'A="A

NEXT X

REPEAT statement

The REPEAT statement is a loop-controlling statement.

For syntax details, see the LOOP statement, on page 254.

REPLACE function

Use the REPLACE function to return a copy of a dynamic array with the specified field, value, or
subvalue replaced with new data.

Syntax

REPLACE (expression, field#, value#, subvalue# { , | ; } replacement)
REPLACE (expression [,field# [,value#]] ; replacement)

variable < field# [,value# [,subvalue#]] >

331

Chapter 1: Statements and functions

332

expression specifies a dynamic array.

The expressions field#, value#, and subvalue# specify the type and position of the element to be
replaced. These expressions are called delimiter expressions.

replacement specifies the value that the element is given.

The value# and subvalue# are optional. However, if either subvalue# or both value# and subvalue# are
omitted, a semicolon (;) must precede replacement, as shown in the second syntax.

You can use angle brackets to replace data in dynamic arrays. Angle brackets to the left of an
assignment operator change the specified data in the dynamic array according to the assignment
operator. Angle brackets to the right of an assignment operator indicate that an EXTRACT function is
to be performed (for examples, see the EXTRACT function, on page 157).

variable specifies the dynamic array containing the data to be changed.

The three possible results of delimiter expressions are described as case 1, case 2, and case 3.

Case Description
Case 1: Both value# and subvalue# are omitted or are specified as 0. A field is replaced
by the value of replacement.
= If field#is positive and less than or equal to the number of fields in the
dynamic array, the field specified by field# is replaced by the value of
replacement.
= If field#is negative, a new field is created by appending a field mark and the
value of replacement to the last field in the dynamic array.
= |Iffield#is positive and greater than the number of fields in the dynamic
array, a new field is created by appending the proper number of field marks,
followed by the value of replacement; thus, the value of field# is the number
of the new field.
Case 2: subvalue# is omitted or is specified as 0, and value# is nonzero. A value in the
specified field is replaced with the value of replacement.
* Ifvalue#is positive and less than or equal to the number of values in
the field, the value specified by the value# is replaced by the value of
replacement.
= Ifvalue# is negative, a new value is created by appending a value mark and
the value of replacement to the last value in the field.
= If value# is positive and greater than the number of values in the field, a
value is created by appending the proper number of value marks, followed
by the value of replacement, to the last value in the field; thus, the value of
value# is the number of the new value in the specified field.
Case 3: field#, value#, and subvalue# are all specified and are nonzero. A subvalue in the

specified value of the specified field is replaced with the value of replacement.

= |Ifsubvalue# is positive and less than or equal to the number of subvalues in
the value, the subvalue specified by the subvalue# is replaced by the value of
replacement.

= If subvalue# is negative, a new subvalue is created by appending a subvalue
mark and the subvalue of replacement to the last subvalue in the value.

= Ifthe subvaluet# is positive and greater than the number of subvalues in
the value, a new subvalue is created by appending the proper number of
subvalue marks followed by the value of replacement to the last subvalue in
the value; thus, the value of the expression subvalue# is the number of the
new subvalue in the specified value.

REPLACE function

In IDEAL, PICK, PIOPEN, and REALITY flavor accounts, if replacement is an empty string and an attempt
is made to append the new element to the end of the dynamic array, field, or value, the dynamic array,
field, or value is left unchanged; additional delimiters are not appended. Use the EXTRA.DELIM option
of the SOPTIONS statement to make the REPLACE function append a delimiter to the dynamic array,
field, or value.

If replacement is the null value, the stored representation of null (CHAR(128)) is inserted into
dynamic.array. If dynamic.array evaluates to the null value, it remains unchanged by the replacement.
If the REPLACE statement references a subelement of an element whose value is the null value, the
dynamic array is unchanged.

INFORMATION and IN2 flavors

In INFORMATION and IN2 flavor accounts, if expression is an empty string and the new element

is appended to the end of the dynamic array, the end of a field, or the end of a value, a delimiter

is appended to the dynamic array, field, or value. Use the -EXTRA.DELIM option of the SOPTIONS
statement to make the REPLACE function work as it does in IDEAL, PICK, and REALITY flavor accounts.

Examples

In the following examples a field mark is shown by F, a value mark is shown by V, and a subvalue mark
is shown by S.

The first example replaces field 1 with # and sets Q to # FAVBVDSEFDFFF:
R=@FM:"A":@VM:"B":@VM:"D" :@SM:"E" : @FM:"D" : @FM: @FM: "F"

0=R
Q=REPLACE (Q,1;"#")

The next example replaces the first subvalue of the third value in field 2 with # and sets Q to
FAVBV#SEFDFFF:

Q=R
0<2,3,1>="4#"

The next example replaces field 4 with # and sets Q to FAVBVDSEFDF#FF:

0=R
Q=REPLACE (Q, 4,0,0;"4#")

The next example replaces the first value in fields 1 through 4 with # and sets Q to
#F#VBVDSEF#F#FF:

0=R

FOR X=1 TO 4

Q=REPLACE (Q,X,1,0;"#")
NEXT

The next example appends a value mark and # to the last value in field 2 and sets Q to
FAVBVDSEV#FDFFF

0=R
Q=REPLACE (Q, 2, -1;"#")

333

Chapter 1: Statements and functions

RETURN statement

334

Use the RETURN statement to terminate a subroutine and return control to the calling program or
statement.

Syntax

RETURN [TO statement.label]

If the TO clause is not specified, the RETURN statement exits either an internal subroutine called

by a GOSUB statement or an external subroutine called by a CALL statement. Control returns to the
statement that immediately follows the CALL or GOSUB statement.

Use a RETURN statement to terminate an internal subroutine called with a GOSUB statement to
ensure that the program proceeds in the proper sequence.

Use a RETURN statement or an END statement to terminate an external subroutine called with a CALL
statement. When you exit an external subroutine called by CALL, all files opened by the subroutine are
closed, except files that are open to common variables.

Use the TO clause to exit only an internal subroutine; control passes to the specified statement label.
If you use the TO clause and statement.label does not exist, an error message appears when the
program is compiled.

Note: Usingthe TO clause can make program debugging and modification extremely difficult. Be
careful when you use the RETURN TO statement, because all other GOSUBs or CALLs active at the
time the GOSUB is executed remain active, and errors can result.

If the RETURN or RETURN TO statement does not have a place to return to, control is passed to the
calling program or to the command language.

Example

In the following example, subroutine XYZ prints the message “THIS IS THE EXTERNAL SUBROUTINE”
and returns to the main program:

20: GOSUB 80:

25: PRINT "THIS LINE WILL NOT PRINT"
30: PRINT "HI THERE"

40: CALL XYZ

60: PRINT "BACK IN MAIN PROGRAM"

70: STOP

80: PRINT "THIS IS THE INTERNAL SUBROUTINE"
90: RETURN TO 30:

END

This is the program output:

THIS IS THE INTERNAL SUBROUTINE
HI THERE

THIS IS THE EXTERNAL SUBROUTINE
BACK IN MAIN PROGRAM

RETURN (value) statement

RETURN (value) statement

Use the RETURN (value) statement to return a value from a user-written function.

expression evaluates to the value you want the user-written function to return. If you use a RETURN
(value) statement in a user-written function and you do not specify expression, an empty string is
returned by default.

You can use the RETURN (value) statement only in user-written functions. If you use one in a program
or subroutine, an error message appears.

Syntax

RETURN (expression)

REUSE function

Use the REUSE function to specify that the value of the last field, value, or subvalue be reused in a
dynamic array operation.

Syntax

REUSE (expression)

expression is either a dynamic array or an expression whose value is considered to be a dynamic array.

When a dynamic array operation processes two dynamic arrays in parallel, the operation is always
performed on corresponding subvalues. This is true even for corresponding fields, each of which
contains a single value. This single value is treated as the first and only subvalue in the first and only
value in the field.

A dynamic array operation isolates the corresponding fields, values, and subvalues in a dynamic array.
It then operates on them in the following order:

1. Thesubvaluesin the values
2. Thevaluesin the fields
3. Thefields of each dynamic array

A dynamic array operation without the REUSE function adds zeros or empty strings to the shorter
array until the two arrays are equal. (The DIVS function, on page 138 is an exception. If a divisor
element is absent, the divisor array is padded with ones, so that the dividend value is returned.)

The REUSE function reuses the last value in the shorter array until all elements in the longer array are
exhausted or until the next higher delimiter is encountered.

After all subvalues in a pair of corresponding values are processed, the dynamic array operation
isolates the next pair of corresponding values in the corresponding fields and repeats the procedure.

After all values in a pair of corresponding fields are processed, the dynamic array operation isolates
the next pair of corresponding fields in the dynamic arrays and repeats the procedure.

If expression evaluates to the null value, the null value is replicated, and null is returned for each
corresponding element.

Example

B = (1:@5M:6:@VM:10:@SM:11)
A = ADDS (REUSE (5),B)

335

Chapter 1: Statements and functions

PRINT "REUSE(5) + 1:@SM:6:@VM:10:@SM:11 = ": A

*

PRINT "REUSE (1:@SM:2) + REUSE(10:@VM:20:@SM:30) = ":
PRINT ADDS (REUSE (1:@SM:2),REUSE(10:@VM:20:@SM:30))

*

PRINT " (4:@SM:7:@SM:8:@VM:10) *REUSE (10) = ":

PRINT MULS((4:@SM:7:@SM:8:@VM:10),REUSE (10))

This is the program output:

REUSE (5) + 1:@SM:6:@VM:10:@SM:11 = 6S11V15516
REUSE (1:@SM:2) + REUSE(10:@VM:20:@SM:30) = 11512V22S32
(4:@SM:7:@SM:8:@VM:10) *REUSE (10) = 40S70S80V100

REVREMOVE statement

336

Use the REVREMOVE statement to successively extract dynamic array elements that are separated

by system delimiters. The elements are extracted from right to left, in the opposite order from those
extracted by the REMOVE statement. When a system delimiter is encountered, the extracted element is
assigned to element.

Syntax

REVREMOVE element FROM dynamic.array SETTING variable

dynamic.array is an expression that evaluates to the dynamic array from which to extract elements.

variable is set to a code value corresponding to the system delimiter terminating the element just
extracted. The delimiter code settings assigned to variable are as follows:

Value Description

0 End of string

1 Item mark ASCII CHAR(255)

2 Field mark ASCII CHAR(254)

3 Value mark ASCII CHAR(253)

4 Subvalue mark ASCII CHAR(252)
5 Text mark ASCII CHAR(251)

6 ASCII CHAR(250)

7 ASCII CHAR(249)

8 ASCIl CHAR(248)

The REVREMOVE statement extracts one element each time it is executed, beginning with the “remove
pointer” of the dynamic.array. The operation can be repeated until all elements of dynamic.array are
extracted. The REVREMOVE statement does not change the dynamic array.

As each element is extracted from dynamic.array to element, a pointer associated with dynamic.array
moves back to the beginning of the element just extracted.

The pointer is reset to the beginning of dynamic.array whenever dynamic.array is reassigned.
Therefore, dynamic.array should not be assigned a new value until all elements have been extracted
(that s, until variable = 0).

If an element in dynamic.array is the null value, nullis returned for that element.

REWIND statement

Use REVREMOVE with the REMOVE statement. After a REMOVE statement, REVREMOVE returns the
same string as the preceding REMOVE, setting the pointer to the delimiter preceding the extracted
element. Thus, a subsequent REMOVE statement extracts the same element yet a third time.

If no REMOVE statement has been performed on dynamic.array or if the leftmost dynamic array
element has been returned, element is set to the empty string and variable indicates end of string (that
is, 0).

Example

DYN = "THIS":Q@FM:"HERE":Q@FM:"STRING"
REMOVE VAR FROM DYN SETTING X

PRINT VAR

REVREMOVE NVAR FROM DYN SETTING X
PRINT NVAR

REMOVE CVAR FROM DYN SETTING X
PRINT CVAR

The program output is:

THIS
THIS
THIS

REWIND statement

Use the REWIND statement to rewind a magnetic tape to the beginning-of-tape position.

The UNIT clause specifies the number of the tape drive unit. Tape unit 0 is used if no unit is specified. If
the UNIT clause is used, mtu is an expression that evaluates to a code made up of three decimal digits.
Although the mtu expression is a function of the UNIT clause, the REWIND statement uses only the
third digit (the u). Its value must be in the range of 0 through 7. If mtu evaluates to the null value, the
REWIND statement fails and the program terminates with a run-time error message.

Before a REWIND statement is executed, a tape drive unit must be attached to the user. Use the
ASSIGN command to assign a tape unit to a user. If no tape unit is attached or if the unit specification
isincorrect, the ELSE statements are executed.

The STATUS function returns 1 if REWIND takes the ELSE clause, otherwise it returns 0.

Syntax

REWIND [UNIT (mtu)]
{THEN statements [ELSE statements] | ELSE statements}

PIOPEN flavor

If you have a program that specifies the syntax UNIT ndmtu, the nd elements are ignored by the
compiler and no errors are reported.

Example

REWIND UNIT (002) ELSE PRINT "UNIT NOT ATTACHED"

337

Chapter 1: Statements and functions

RIGHT function

RND

338

Use the RIGHT function to extract a substring comprising the last n characters of a string. It is
equivalent to the following substring extraction operation:

string [length]
If you use this function, you need not calculate the string length.

If string evaluates to the null value, null is returned. If n evaluates to the null value, the RIGHT function
fails and the program terminates with a run-time error message.

Syntax

RIGHT (string, n)

Example
PRINT RIGHT ("ABCDEFGH", 3)
This is the program output:

FGH

function

Use the RND function to generate any positive or negative random integer or 0.

expression evaluates to the total number of integers, including 0, from which the random number can
be selected. That is, if n is the value of expression, the random number is generated from the numbers
0 through (n - 1).

If expression evaluates to a negative number, a random negative number is generated. If expression
evaluates to 0, 0 is the random number. If expression evaluates to the null value, the RND function fails
and the program terminates with a run-time error message.

See the RANDOMIZE statement, on page 309 for details on generating repeatable sequences of
random numbers.

Syntax

RND (expression)

Example

A=20

PRINT RND (A)
PRINT RND (A)
PRINT RND (A)
PRINT RND (A)

This is the program output:

10
3
6
10

ROLLBACK statement

ROLLBACK statement

RPC.

Use the ROLLBACK statement to cancel all file I/O changes made during a transaction. The WORK
keyword provides compatibility with SQL syntax conventions; it is ignored by the compiler.

A transaction includes all statements executed since the most recent BEGIN TRANSACTION statement.
The ROLLBACK statement rolls back all changes made to files during the active transaction. If a
subtransaction rolls back, none of the changes resulting from the active subtransaction affect the
parent transaction. If the top-level transaction rolls back, none of the changes made are committed to
disk, and the database remains unaffected by the transaction.

Use the ROLLBACK statement in a transaction without a COMMIT statement to review the results
of a possible change. Doing so does not affect the parent transaction or the database. Executing a
ROLLBACK statement ends the current transaction. After the transaction ends, execution continues
with the statement following the next END TRANSACTION statement.

If no transaction is active, the ROLLBACK statement generates a run-time warning, and the ELSE
statements are executed.
Syntax

ROLLBACK [WORK] [THEN statements] [ELSE statements |

Example

This example begins a transaction that applies locks to recl and rec2. If errors occur (such as a failed
READU statement or a failed WRITE statements), the ROLLBACK statements ensure that no changes
are written to the file.

BEGIN TRANSACTION
READU datal FROM filel, recl ELSE ROLLBACK
READU data2 FROM file2,rec2 ELSE ROLLBACK

WRITE new.datal ON filel,recl ELSE ROLLBACK
WRITE new.data?2 ON file2,rec2 ELSE ROLLBACK
COMMIT WORK

END TRANSACTION

The update record lock on recl is not released on successful completion of the first WRITE statement.

CALL function

Use the RPC. CALL function to make requests of a connected server. The request is packaged and
sent to the server using the C client RPC library. RPC.CALL returns the results of processing the remote
request: 1 for success, 0 for failure.

Syntax

RPC.CALL (connection.ID, procedure, #args, MAT arg.list, #values, MAT
return.list)

connection.ID is the handle of the open server connection on which to issue the RPC request. The
RPC.CONNECT function, on page 340 gets the connection.ID.

procedure is a string identifying the operation requested of the server.

339

Chapter 1: Statements and functions

#args is the number of elements of arg.list to pass to the RPC server.

arg.list is a two-dimensional array (matrix) containing the input arguments to pass to the RPC server.
The elements of this array represent ordered pairs of values. The first value is the number of the
argument to the server operation, the second value is an argument-type declarator. (Data typing
generalizes the RPC interface to work with servers that are data-type sensitive.)

#values is the number of values returned by the server.

return.list is a dimensioned array containing the results of the remote operation returned by
RPC.CALL. Like arg.list, the results are ordered pairs of values.

RPC.CALL builds an RPC packet from #args and arg.list. Functions in the C client RPC library transmit
the packet to the server and wait for the server to respond. When a response occurs, the RPC packet is
separated into its elements and stored in the array return.list.

Use the STATUS function after an RPC . CALL function is executed to determine the result of the
operation, as follows:

Value Description

81001 Connection closed, reason unspecified.

81002 connection.ID does not correspond to a valid bound connection.

81004 Error occurred while trying to store an argument in the transmission packet.
81005 Procedure access denied because of a mismatch of RPC versions.

81008 Error occurred because of a bad parameter in arg.list.

81009 Unspecified RPC error.

81010 #args does not match expected argument count on remote machine.

81015 Timeout occurred while waiting for response from server.

Example

The following example looks for jobs owned by fred. The server connection was made using the
RPC.CONNECT function.

args (1,1) = "fred"; args (1,2) = UNIRPC.STRING
IF (RPC.CALL (server.handle, "COUNT.USERS", 1, MAT args,
return.count, MAT res)) ELSE
PRINT "COUNT.JOBS request failed, error code is: " STATUS()
GOTO close.connection:
END

RPC.CONNECT function

Use the RPC . CONNECT function to establish a connection to a server process. Once the host and
server are identified, the local UVNet daemon tries to connect to the remote server. If the attempt
succeeds, RPC.CONNECT returns a connection ID. If it fails, RPC . CONNECT returns 0. The connection
ID is a nonzero integer used to refer to the server in subsequent calls to RPC . CALL function and
RPC.DISCONNECT function.

Syntax

RPC.CONNECT (host, server)

340

RPC.DISCONNECT function

Note: Beginning at UniVerse 11.2, you must run SET.REMOTE.ID prior to using RPC . CONNECT. A
client prior to UniVerse 11.1.14 will not be able to connect to UniVerse 11.1.14 or greater.

host is the name of the host where the server resides:
= UNIXThisis defined in the local /etc/hostsfile.
= Windows NT This is defined in the system32\drivers\etc\hosts file.

server is the name, as defined in the remote /etc/services file, of the RPC server class on the target
host.

If hostis notin the /etc/hosts file, orif server is notin the remote /etc/services file, the
connection attempt fails.

Use the STATUS function after an RPC . CONNECT function is executed to determine the result of the
operation, as follows:

Value Description

81005 Connection failed because of a mismatch of RPC versions.

81007 Connection refused because the server cannot accept more clients.

81009 Unspecified RPC error.

81011 Host is not in the local /etc/hosts file.

81012 Remote unirpcd cannot start service because it could not fork the process.
81013 Cannot open the remote unirpcservices file.

81014 Service not found in the remote unirpcservices file.

81015 Connection attempt timed out.

Example

The following example connects to a remote server called MONITOR on HOST.A:

MAT args(l,2), res(l,2)
server.handle = RPC.CONNECT ("HOST.A", "MONITOR")
IF (server.handle = 0) THEN
PRINT "Connection failed, error code is: ": STATUS()
STOP
END

RPC.DISCONNECT function

Use the RPC . DISCONNECT function to end an RPC session.

Syntax

RPC.DISCONNECT (connection.ID)

connection.ID is the RPC server connection you want to close.

RPC.DISCONNECT sends a request to end a connection to the server identified by connection.ID.
When the server gets the request to disconnect, it performs any required termination processing. If the
callis successful, RPC . DISCONNECT returns 1. If an error occurs, RPC . DISCONNECT returns 0.

Use the STATUS function after an RPC.DISCONNECT function is executed to determine the result of
the operation, as follows:

341

Chapter 1: Statements and functions

Value Description

81001 The connection was closed, reason unspecified.

81002 connection.ID does not correspond to a valid bound connection.
81009 Unspecified RPC error.

Example

The following example closes the connection to a remote server called MONITOR on HOST.A:

MAT args(l,2), res(l,2)

server.handle = RPC.CONNECT ("HOST.A", "MONITOR")

IF (server.handle = 0) THEN
PRINT "Connection failed, error code is: ": STATUS()
STOP

END

close.connection:
IF (RPC.DISCONNECT (server.handle)) ELSE

PRINT "Bizarre disconnect error, result code is: " STATUS()
END

saveSecurityContext function

342

The saveSecurityContext() function encrypts and saves a security context to a system security
file. The file is maintained on a per account basis for UniData and UniVerse. The name is used as the
record ID to access the saved security information. Since the information is encrypted, you should not
attempt to directly manipulate it.

You might want your application to save a security context to be used later. Multiple contexts can
be created to suit different needs. For example, you might want to use different protocols to talk to
different servers. These contexts can be saved and reused.

When creating a saved context, you must provide both a name and a passPhrase to be used to encrypt
the contents of the context. The same name and passPhrase must be provided to load the saved
context back. To ensure a high level of security, we recommend that the passPhrase be relatively long,
yet easy to remember.

Syntax

saveSecurityContext (context, name, passPhrase)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

context The security context handle.

name String containing the name of the saved context.

passPhrase String containing the password to encrypt the context contents.

Return code status

The following table describes the status of each return code.

SADD function

Return code Status

0 Success.

Invalid security context handle.

Invalid parameters (empty name or passPhrase).

WIN| =

Context could not be saved.

SADD function

Use the SADD function to add two string numbers and return the result as a string number. You can
use this function in any expression where a string or string number is valid, but not necessarily where
a standard number is valid, because string numbers can exceed the range of numbers that standard
arithmetic operators can handle.

Either string number can evaluate to any valid number or string number.

If either string number contains nonnumeric data, an error message is generated, and 0 replaces the
nonnumeric data. If either string number evaluates to the null value, null is returned.

Syntax

SADD (string.number.l, string.number.Z2)

Example

A = 88888888888888888

B = 77777777777777777
X — "88888888838888888"
Y = "77777777777777777"

PRINT A + B
PRINT SADD(X,Y)

This is the program output:

166666666666667000
166666666666666665

SCMP function

Use the SCMP function to compare two string numbers and return one of the following three numbers:
-1 (less than), 0 (equal), or 1 (greater than). If string.number.1 is less than string.number.2, the result is
-1. If they are equal, the result is 0. If string.number.1 is greater than string.number.2, the result is 1. You
can use this function in any expression where a string or string number is valid.

Either string number can be a valid number or string number. Computation is faster with string
numbers.

If either string number contains nonnumeric data, an error message is generated and 0 is used instead
of the nonnumeric data. If either string number evaluates to the empty string, null is returned.

Syntax

SCMP (string.number.l, string.number.Z)

343

Chapter 1: Statements and functions

Example

X = "123456789"

Y = "123456789"

IF SCMP(X,Y) = 0 THEN PRINT "X is equal to Y"
ELSE PRINT "X is not equal to Y"

END

This is the program output:

XisequaltoY

SDIV function

Use the SDIV function to divide string.number.1 by string.number.2 and return the result as a string
number. You can use this function in any expression where a string or string number is valid, but

not necessarily where a standard number is valid, because string numbers can exceed the range of
numbers which standard arithmetic operators can handle. Either string number can be a valid number
or a string number.

precision specifies the number of places to the right of the decimal point. The default precision is 14.

If either string number contains nonnumeric data, an error message is generated and 0 is used for that
number. If either string number evaluates to the null value, null is returned.

Syntax

SDIV (string.number.l, string.number.2 [,precision])

Example

X = "
Yy = "3"
7z = SDIV (X,Y)
727 = SDIV (X,Y,20)
PRINT Z
PRINT Z7Z

This is the program output:

0.33333333333333
0.33333333333333333333

SEEK statement

344

Use the SEEK statement to move the file pointer by an offset specified in bytes, relative to the current
position, the beginning of the file, or the end of thefile.

file.variable specifies a file previously opened for sequential access.

offset is the number of bytes before or after the reference position. A negative offset results in the
pointer being moved before the position specified by relto. If offset is not specified, 0 is assumed.

SEEK statement

Note: On Windows NT systems, line endings in files are denoted by the character sequence
RETURN + LINEFEED rather than the single LINEFEED used in UNIX files. The value of offset should
take into account this extra byte on each line in Windows NT file systems.

The permissible values of relto and their meanings follow:

Value Description

0 Relative to the beginning of the file
1 Relative to the current position

2 Relative to the end of the file

If relto is not specified, 0 is assumed.

If the pointer is moved, the THEN statements are executed and the ELSE statements are ignored. If the
THEN statements are not specified, program execution continues with the next statement.

If the file cannot be accessed or does not exist, the ELSE statements are executed; any THEN
statements are ignored.

If file.variable, offset, or relto evaluates to the null value, the SEEK statement fails and the program
terminates with a run-time error message.

Note: On Windows NT systems, if you use the OPENDEV statement to open a 1/4-inch cartridge
tape (60 MB or 150 MB) for sequential processing, you can move the file pointer only to the
beginning or the end of the data. For diskette drives, you can move the file pointer only to the start
of the data.

Seeking beyond the end of the file and then writing creates a gap, or hole, in the file. This hole
occupies no physical space, and reads from this part of the file return as ASCII CHAR 0 (neither the
number nor the character 0).

For more information about sequential file processing, see the OPENSEQ statement, on page 289,
READSEQ statement, on page 317, and WRITESEQ statement, on page 464.

Syntax

SEEK file.variable [, offset [, relto]]
{THEN statements [ELSE statements] | ELSE statements}

Example

The following example reads and prints the first line of RECORD4. Then the SEEK statement moves the
pointer five bytes from the front of the file, then reads and prints the rest of the current line.

OPENSEQ 'FILE.E', 'RECORD4' TO FILE ELSE ABORT
READSEQ B FROM FILE THEN PRINT B

SEEK FILE, 5, 0 THEN READSEQ A FROM FILE
THEN PRINT A ELSE ABORT

This is the program output:

FIRST LINE
LINE

345

Chapter 1: Statements and functions

SEEK(ARG.) statement

Use the SEEK(ARG.) statement to move the command line argument pointer to the next command line
argument from left to right, or to a command line argument specified by arg#. The command line is
delimited by blanks, and the first argument is assumed to be the first word after the program name.
When a cataloged program is invoked, the argument list starts with the second word in the command
line.

Syntax

SEEK(ARG. [,arg#]) I[THEN statements] [ELSE statements]

Blanks in quoted strings are not treated as delimiters. A quoted string is treated as a single argument.

arg# specifies the command line argument to move to. It must evaluate to a number. If arg# is not
specified , the pointer moves to the next command line argument. SEEK(ARG.) works similarly to
GET(ARG.) statement except that SEEK(ARG.) makes no assignments.

THEN and ELSE statements are both optional. The THEN clause is executed if the argument is found.
The ELSE clause is executed if the argument is not found. The SEEK(ARG.) statement fails if arg#
evaluates to a number greater than the number of command line arguments or if the last argument
has been assigned and a SEEK(ARG.) with no arg# is used. To move to the beginning of the argument
list, set arg# to 1.

If arg# evaluates to the null value, the SEEK(ARG.) statement fails and the program terminates with a
run-time error message.

Example
If the command line is:
RUN BP PROG ARGl ARG2 ARG3

and the programis:

A=5;B=2
SEEK (ARG.)
SEEK (ARG.,B)
SEEK (ARG.)
SEEK (ARG.,A-B)
SEEK (ARG., 1)

the system pointer moves as follows:

ARG2
ARG2
ARG3
ARG3
ARG1

SELECT statements

346

Use a SELECT statement to create a numbered select list of record IDs from a UniVerse file or a
dynamic array. A subsequent READNEXT statement can access this select list, removing one record ID
at a time from the list. READNEXT instructions can begin processing the select listimmediately.

SELECT statements

Syntax

SELECT [variable] [TO list.number] [ON ERROR statements]
SELECTN [variable] [TO list.number] [ON ERROR statements]

SELECTV [variable] TO list.variable [ON ERROR statements]

variable can specify a dynamic array or a file variable. If it specifies a dynamic array, the record IDs
must be separated by field marks (ASCII 254). If variable specifies a file variable, the file variable
must have previously been opened. If variable is not specified, the default file is assumed (for more
information on default files, see the OPEN statement, on page 283). If the file is neither accessible
nor open, or if variable evaluates to the null value, the SELECT statement fails and the program
terminates with a run-time error message.

If the file is an SQL table, the effective user of the program must have SQL SELECT privilege to read
records in the file. For information about the effective user of a program, see the AUTHORIZATION
statement, on page 74.

You must use a file lock with the SELECT statement when it is within a transaction running at isolation
level 4 (serializable). This prevents phantom reads.

The TO clause specifies the select list that is to be used. list.number is an integer from 0 through 10. If
no list.number is specified, select list 0 is used.

The record IDs of all the records in the file, in their stored order, form the list. Each record ID is one
entry in the list.

The SELECT statement does not process the entire file at once. It selects record IDs group by group.
The @SELECTED variable is set to the number of elements in the group currently being processed.

You often want a select list with the record IDs in an order different from their stored order or with

a subset of the record IDs selected by some specific criteria. To do this, use the SELECT or SSELECT
commands in a BASIC EXECUTE statement. Processing the list by READNEXT is the same, regardless of
how the list is created.

Use the SELECTV statement to store the select list in a named list variable instead of to a numbered
select list. list.variable is an expression that evaluates to a valid variable name. This is the default
behavior of the SELECT statement in PICK, REALITY, and IN2 flavor accounts. You can also use the
VAR.SELECT option of the SOPTIONS statement to make the SELECT statement act as it does in PICK,
REALITY, and IN2 flavor accounts.

The ON ERROR clause

The ON ERROR clause is optional in the SELECT statement. The ON ERROR clause lets you specify an
alternative for program termination when a fatal error is encountered during processing of the SELECT
statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

= An error message appears.
= Any uncommitted transactions begun within the current execution environment roll back.
= The current program terminates.

= Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

Afatal error can occur if any of the following occur:

= Afileis not open.

347

Chapter 1: Statements and functions

= file.variable is the null value.
= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS statement is the error number.

PICK, REALITY, and IN2 flavors

In a PICK, REALITY, or IN2 flavor account, the SELECT statement has the following syntax:
SELECT [V] [variable] TO list.variable

SELECTN [variable] TO list.number

You can use either the SELECT or the SELECTV statement to create a select list and store it in a named
list variable. The only useful thing you can do with a list variable is use a READNEXT statement to read
the next element of the select list.

Use the SELECTN statement to store the select list in a numbered select list. list.number is an
expression that evaluates to a number from 0 through 10. You can also use the -VAR.SELECT option
of the SOPTIONS statement to make the SELECT statement act as it does in IDEAL and INFORMATION
flavor accounts.

Example

The following example opens the file SUN.MEMBER to the file variable MEMBER.F, then creates an
active select list of record IDs. The READNEXT statement assigns the first record ID in the select list to
the variable @ID, then prints it. Next, the file SUN.SPORT is opened to the file variable SPORT.F, and a
select list of its record IDs is stored as select list 1. The READNEXT statement assigns the first record ID
in the select list to the variable A, then prints DONE.

OPEN '', 'SUN.MEMBER' TO MEMBER.F ELSE PRINT "NOT OPEN"

SELECT

READNEXT Q@ID THEN PRINT @ID
*

OPEN '', "SUN.SPORT' TO SPORT.F ELSE PRINT "NOT OPEN"
SELECT TO 1
READNEXT A FROM 1 THEN PRINT "DONE" ELSE PRINT "NOT"

This is the program output:

4108
DONE

SELECTE statement

Use the SELECTE statement to assign the contents of select list 0 to list.variable. list.variable is
activated in place of select list 0 and can be read with the READNEXT statement.

Syntax

SELECTE TO list.variable

SELECTINDEX statement

Use the SELECTINDEX statement to create select lists from secondary indexes.

348

SELECTINDEX statement

Syntax

SELECTINDEX index [, alt.key] FROM file.variable [TO list.number]

index is an expression that evaluates to the name of an indexed field in file.variable. index must be the
name of the field that was used in the CREATE . INDEX command when the index was built.

alt.key is an expression that evaluates to a secondary index key. If alt.key is specified, a select list is
created of the record IDs referenced by alt.key. If alt.key is not specified, a select list is created of the
record IDs referenced by all of the index’s keys.

file.variable specifies an open file.

list.n umber is an expression that evaluates to the select list number. It can be a number from 0 through

10. The default list number is 0.

Note: In PICK, REALITY, and IN2 flavors, list. number is a variable rather than a list number.

Note: If index is multivalued, each value is indexed even if the field contains duplicate values in the

same record. Except in PIOPEN flavor accounts, such duplicate values are returned to list.number.
To prevent the return of duplicate key values, use the PIOPEN.SELIDX option of the SOPTIONS
statement.

If the field is not indexed, the select list is empty, and the value of the STATUS function is 1; otherwise
the STATUS function is 0. If index, alt.key, or file.variable evaluates to the null value, the SELECTINDEX
statement fails and the program terminates with a run-time error message.

PIOPEN flavor

In a PIOPEN flavor account, the SELECTINDEX statement eliminates duplicate key values when it
creates a select list from index. To do this in other flavors, use the PIOPEN.SELIDX option of the
SOPTIONS statement.

Example

In the following example, the first SELECTINDEX selects all data values to list 1. The second
SELECTINDEX selects record IDs referenced by STOREDVAL to list 2.

OPEN "", "DB" TO FV ELSE STOP "OPEN FAILED"
SELECTINDEX "F1" FROM FV TO 1
EOV = 0
LOOP
SELECTINDEX "F1" FROM FV TO 1

UNTIL EOV DO
SELECTINDEX "F1", STOREDVAL FROM FV TO 2
EOK = 0
LOOP
READNEXT KEY FROM 2 ELSE EOK=1
UNTIL EOK DO
PRINT "KEY IS ":KEY:" STOREDVAL IS ":STOREDVAL
REPEAT
REPEAT
END

349

Chapter 1: Statements and functions

SELECTINFO function

Use the SELECTINFO function to determine whether a select list is active, or to determine the
number of items it contains.

list is an expression evaluating to the number of the select list for which you require information. The
select list number must be in the range of 0 through 10.

key specifies the type of information you require. You can use equate names for the keys as follows:

Syntax

SELECTINFO (list, key)

Key Description

IKSSLACTIVE Returns 1 if the select list specified is active, and returns 0 if the select list
specified is not active.

IKSSLCOUNT Returns the number of items in the select list. 0 is returned if the select list is not
active or is an empty select list.

Equate names

An insert file of equate names is provided for the SELECTINFO keys. To use the equate names, specify
the directive SINCLUDE UNIVERSE.INCLUDE INFO_KEYS.INS.IBAS when you compile your program.

Example

In the following example, the insert file containing the equate name is inserted by the SINCLUDE
statement. The conditional statement tests if select list 0 is active.

$INCLUDE SYSCOM INFO KEYS.INS.IBAS
IF SELECTINFO (0, IKSSLACTIVE)
THEN PRINT 'SELECT LIST ACTIVE'
ELSE PRINT 'SELECT LIST NOT ACTIVE'

END

SEND statement

350

Use the SEND statement to write a block of data to a device. The SEND statement can be used to write
data to a device that has been opened for I/O using the OPENDEV statement or OPENSEQ statement.

Syntax

SEND output [:] TO device
{ THEN statements [ELSE statements] | ELSE statements }

output is an expression evaluating to a data string that will be written to device. If the optional colon is
used after output, the terminating newline is not generated.

device is a valid file variable resulting from a successful OPENDEV or OPENSEQ statement. This is the
handle to the I/0 device that supplies the data stream for the operation of the SEND statement.

SENTENCE function

The SEND syntax requires that either a THEN or an ELSE clause, or both, be specified. If data is
successfully sent, the SEND statement executes the THEN clause. If data cannot be sent, it executes
the ELSE clause.

The data block specified by output is written to the device followed by a newline. Upon successful
completion of the SEND operation, program control is passed to the THEN clause if specified. If an
error occurs during the SEND operation, program control is passed to the ELSE clause if specified.

Example

The following code fragment shows how the SEND statement is used to write a series of messages on a
connected device:

OPENDEV "TTY10" TO TTYLINE ELSE STOP "CANNOT OPEN TTY10"

LOOP
INPUT MESSAGE

WHILE MESSAGE # "QUIT" DO
SEND MESSAGE TO TTYLINE
ELSE
STOP "ERROR WRITING DATA TO TTY10"
END
REPEAT

SENTENCE function

Use the SENTENCE function to return the stored sentence that invoked the current process. Although
the SENTENCE function uses no arguments, parentheses are required to identify it as a function. The
SENTENCE function is a synonym for the @SENTENCE system variable.

A PERFORM statement in a program updates the system variable, @SENTENCE, with the command
specified in the PERFORM statement.

Syntax

SENTENCE ()

Example

PRINT SENTENCE ()
This is the program output:
RUN BP TESTPROGRAM

SEQ function

Use the SEQ function to convert an ASCII character to its numeric string equivalent.

Syntax

SEQ (expression)

expression evaluates to the ASCII character to be converted. If expression evaluates to the null value,
nullis returned.

The SEQ function is the inverse of the CHAR function, on page 90.

351

Chapter 1: Statements and functions

In NLS mode, use the UNISEQ function to return Unicode values in the range x0080 through x00F8.

Using the SEQ function to convert a character outside its range results in a run-time message, and the
return of an empty string.

For more information about these ranges, see the UniVerse NLS Guide.

PICK, IN2, and REALITY flavors

In PICK, IN2, and REALITY flavors SEQ(" ") is 255 instead of 0. In IDEAL and INFORMATION flavor
accounts, use the SEQ.255 option of the SOPTIONS statement to cause SEQ(" ") to be interpreted as
255.

Example

G="T"

A=SEQ (G)
PRINT A, A+l
PRINT SEQ("G")

This is the program output:

84 85
71

SEQS function

352

Use the SEQS function to convert a dynamic array of ASCll characters to their numeric string
equivalents.

Syntax
SEQS (dynamic.array)
CALL -SEQS (return.array, dynamic.array)

CALL !SEQS (return.array, dynamic.array)

dynamic.array specifies the ASCII characters to be converted. If dynamic.array evaluates to the null
value, nullis returned. If any element of dynamic.array is the null value, null is returned for that
element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

In NLS mode, you can use the UNISEQS function to return Unicode values in the range x0080 through
Xx00F8.

Using the SEQS function to convert a character outside its range results in a run-time message, and
the return of an empty string.

For more information about these ranges, see the UniVerse NLS Guide.

Example

G="T":@VM:"G"
A=SEQS (G)
PRINT A
PRINT SEQS ("G")

setAuthenticationDepth function

This is the program output:

84V71
71

setAuthenticationDepth function

The setAuthenticationDepth() function sets how deeply UniData and UniVerse should verify
before deciding that a certificate is not valid.

Syntax

setAuthenticationDepth (context, depth, ServerOrClient)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

context The security context handle.

depth Numeric value for verification depth.
ServerOrClient Flag:

1- Server (SSL_SERVER)
2- Client (SSL_CLIENT)

Any other value is treated as a value of 1.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.

Invalid security context handle.

1
2 Invalid depth (must be greater than or equal to 0).
3 Invalid value for ServerOrClient (must be 1 or 2)

This function can be used to set both server authentication and client certification, determined by the
value in parameter ServerOrClient. The default depth for both is 1.

The depth is the maximum number of intermediate issuer certificate, or CA certificates which must be
examined while verifying an incoming certificate. Specifically, a depth of 0 means that the certificate
must be self-signed. A depth of 1 means that the incoming certificate can be either self-signed, or
signed by a CA which is known to the context.

You should set this value according to your organization’s Public Key Infrastructure setup. Usually it
should not be more than 5, but it should be large enough to allow the whole certificate chain to be
examined.

353

Chapter 1: Statements and functions

setCipherSuite function

354

The setCiphersSuite() function allows you to identify which cipher suites should be supported for
the specified context. It affects the cipher suites and public key algorithms supported during the SSL/
TLS handshake and subsequent data exchanges.

When a context is created, its cipher suites will all be set to SSLv3 suites by default.

Syntax

setCipherSuite (context,cipherSpecs)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
context The security context handle.
CipherSpecs String containing cipher suite specification described above.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.

1 Invalid security context handle.
2 Invalid cipher suite specification.

The CipherSpecs parameter is a string containing cipher-spec separated by colons. An SSL cipher
specification in cipher-spec is composed of 4 major attributes as well as several, less significant
attributes. These are defined below.

Some of this information on ciphers is excerpted from the mod_ssl open source package of the Apache
web server.

= Key Exchange Algorithm - RSA or Diffie-Hellman variants.

= Authentication Algorithm - RSA, Diffie-Hellman, DSS or none.

= Cipher/Encryption Algorithm - AES, DES, Triple-DES, RC4, RC2 or none.
= MAC Digest Algorithm - MD5, SHA, SHA1, or the SHA2 family.

An SSL cipher can also be an export cipher and is either an SSLv2 or SSLv3/TLSv1 cipher (here TLSv1
is equivalent to SSLv3). To specify which ciphers to use, one can either specify all the ciphers, one at a
time, or use aliases to specify the preference and order for the ciphers.

The following table describes each tag for the Key Exchange Algorithm.

Tag Description
KRSA RSA key exchange
KEDH Ephemeral (temp.key) Diffie-Hellman key exchange (no cert)

The following table describes each tag for the Authentication Algorithm.

setCipherSuite function

Tag Description

aNULL No authentication

aRSA RSA authentication

aDSS DSS authentication

aDH Diffie-Hellman authentication

The following table describes each tag for the Cipher Encoding Algorithm.

Tag Description

eNULL No encoding

DES DES encoding

3DES Triple-DES encoding
RC4 RC4 encoding

RC2 RC2 encoding

AES AES encoding

The following table describes each tag for the MAC Digest Algorithm.

Tag Description

MD5 MD5 hash function

SHA2 SHA2 family of hash functions

SHA1 SHA1 hash function

SHA SHA hash function
The following table describes each of the Aliases.

Alias Description

SSLv3 ALl SSL version 3.0 ciphers

TLSv1 AUl TLS version 1.0 ciphers

EXP All export ciphers

Low All low strength ciphers (no export, single DES)

MEDIUM All ciphers with 128 bit encryption

HIGH All ciphers using Triple-DES

RSA All ciphers using RSA key exchange

DH All ciphers using Diffie-Hellman key exchange

EDH All ciphers using Ephemeral Diffie-Hellman key exchange
ADH All ciphers using Anonymous Diffie-Hellman key exchange
DSS All ciphers using DSS authentication

NULL All cipher using no encryption

These can be put together to specify the order and ciphers you wish to use. To speed this up there are
also aliases (SSLv2, SSLv3, TLSv1, EXP, LOW, MEDIUM, HIGH) for certain groups of ciphers. These tags
can be joined together with prefixes to form the cipher-spec.

The following table describes the available prefixes.

Tag

Description

none

Add cipher to the list

355

Chapter 1: Statements and functions

Tag Description

+ Add ciphers to the list and pull them to the current location in the list

- Remove the cipher from the list (it can be added again later)

! Kill the cipher from the list completely (cannot be added again later)

A more practical way of looking at all of this is to use the getCiphersSuite() function, which
provides a nice way to successively create the correct cipher-spec string. The default setup for a cipher-
spec string is shown in the following example:

“ALL: !ADH=RC4+RSA:+HIGH:+MEDIUM:+LOW: SSLV2:+EXP”

As shown in the example, you must first remove from consideration any ciphers that do not
authenticate, for example, for SSL only the Anonymous Diffie-Hellman ciphers. Next, use ciphers using
RC4 and RSA. Next include the high, medium, and then the low security ciphers. Finally pull all SSLv2
and export the ciphers to the end of the list.

Example:
SetCipherSuite (ctxHandle, “"RSA: !EXP: !NULL:+HIGH:+MEDIUM:-LOW")
SetCipherSuite (ctxHandle, "SSLv3”)

To see a full list of the available ciphers, open a command prompt and navigate to the UniData or
UniVerse bin directory. Enter the following command:

openssl ciphers -v

TLSv1.3 CipherSpecs are not compatible with TLSv1.2. Conversely, TLSv1.2 CipherSpecs are not
compatible with TLSv1.3.

Parameters for TLSv1.3

Table1:
Parameter Description
context The security context handle.
CipherSpecs A colon (:) separated list of TLSv1.3 ciphersuite

names in order of preference. Valid TLSv1.3
ciphersuite names are:

= TLS_AES_128_GCM_SHA256

* TLS_AES_256_GCM_SHA384

* TLS_CHACHA20_POLY1305_SHA256
= TLS_AES_128 CCM_SHA256

= TLS_AES_128_CCM_8_SHA256

setClientAuthentication function

356

The setClientAuthentication() function turns on or off client authentication for a server
socket.

When option is set to on, during the initial SSL handshake, the server sends a client authentication
request to the client. It also receives the client certificate and performs authentication according to
the issuer’s certificate (or certificate chain) set in the security context.

setlpv

Syntax

setClientAuthentication (context,option)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
context The security context handle.
option 1-ON (SSL_CLIENT_AUTH)

2 - OFF (SSL_NO_CLIENT_AUTH)

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.

1 Invalid security context handle.
setlpv

Use the setIpv function to set the default IPv connection for the whole system or for only Socket
networks or UVNet. The function also returns the setting back for display.

Syntax

setIpv (option[,sockettypel)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

option The option name. Enter one of the following options:

IPV4 specifies using IPv4 only.

IPV6 specifies using IPv6 only.

IPVANY specifies using any available IPv option.

IPV4 IPV6 specifies using IPv4 as the first option and then IPv6.

IPV6 IPV4 specifies using IPv6 as the first option and then IPv4.

sockettype Available socket type options:

Socket specifies the socket network type.

UVNET specifies the NFA network type.

Example

statl=setIpv("IPV67IPV4", "SOCKET")
CRT statl

357

Chapter 1: Statements and functions

stat2=getIpv ("SOCKET")
CRT stat2

The return code is the value of the current option. Invalid options will not change the current IP
version.

setPrivateKey function

The setPrivateKey() function loads the private key into a security context so that it can be used by
SSL functions. If the context already had a set private key, it will be replaced.

Syntax

setPrivateKey (key, format, keyLoc, passPhrase, validate, context,
pllpass)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
Key A string containing either the key or path for a key file.
format 1- PEM (Base64 encoded) format (SSL_FMT_PEM)

2 - DER (ASN.1 binary) format (SSL_FMT_DER)
3 - PKCS #12 format (SSL_FMT_P12)

KeylLoc 1-key contained in key string (SSL_LOC_STRING)
2 - key is in a file specified by key (SSL_LOC_FILE)

passPhrase String containing the passPhrase required for gaining access to the key.
It can be empty if the key is not pass-phrase protected.

Warning: This method is not recommended.

Validate 1-Validate against matching public key (SSL_VALIDATE)
0 - Won’t bother to validate (SSL_NO_VALIDATE)
context The security context handle.
pl2pass Optional. Sets a password on the PKCS #12 file. This parameter should

only be included if using a PKCS #12 certificate that has a password.
Otherwise the parameter should be omitted.

Return code status

The following table describes the status of each return code.

Return code Status

Success.

Invalid security context handle.

Invalid format

Invalid key type

Key file cannot be accessed (non-existent or wrong pass phrase)

|l bh|WIN| =] O

Certificate cannot be accessed

358

setRandomSeed function

Return code Status

6 Private key does not match public key in certificate

7 Private key cannot be interpreted

99 Other errors that prevent private key from being accepted by UniData or
UniVerse.

SSL depends on public-key crypto algorithms to perform its functions. A pair of keys is needed for each
communicating party to transfer data over SSL. The public key is usually contained in a certificate,
signed by a CA, while the private key is kept secretly by the user.

A private key is used to digitally sign a message or encrypt a symmetric secret key to be used for data
encryption.

The Key parameter contains either the key string itself or a path that specifies a file that contains the
key. UniData and UniVerse only accept PKCS #8 style private keys.

The Format parameter specifies if the key is in binary format or Base64 encoded format. If the key is in
a file, Base64 format also means that it must be in PEM format.

The KeyLoc parameter specifies if the key is provided in a file or in a dynamic array string.

If the key is previously encrypted, a correct passPhrase must be given to decrypt the key first. It
is recommended that the private key be always in encrypted form. Note that if the private key is
generated by the generateKey() function described in the generateKey function, on page 186,
then itis always in PEM format and always encrypted by a pass phrase.

If the validate parameter is set, the private key is verified with the public key contained in the
certificate specified for either the server or client. They must match for SSL to work. In some cases
there is no need or it is impossible to check against a certificate. For example, the certificate might
already be distributed to the other end and there is no need for a user application to authenticate
itself. In that case, validate can be set to 0 (SSL_NO_VALIDATE).

If validate is required, the corresponding certificate should be added first by calling the
addCertificate() function.

The direct form of this function might be preferred by some applications where a hard coded private
key can be incorporated into the application, eliminating the need to access an external key file, which
might be considered a security hazard.

Note: The private key is the single most important piece of secret information for a public-
key-based crypto system. You must take every precaution to keep it secure. If the private key is
compromised, there will be no data security. This is especially true for server private keys.

setRandomSeed function

The setRandomSeed() function generates a random seed file from a series of source files and sets
that file as the default seed file for the supplied security context.

Syntax

setRandomSeed (inFiles, outFile, length, context)

Parameters

The following table describes each parameter of the syntax.

359

Chapter 1: Statements and functions

Parameter Description

inFiles A string containing source file names.

outFile A string containing the generated seed file.

length The number of bytes that should be generated (the default is 1024 if less
than 1024 is specified).

context The security context handle.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.

1 Invalid parameter(s).

2 Random file generation error.
3 Random file set error.

The strength of cryptographic functions depends on the true randomness of the keys. This function
generates and sets the random seed file used by many of the UniData and UniVerse cryptographic
functions. By default, UniData and UniVerse use the . rnd file in your UniData or UniVerse
application’s current UDTHOME or UVHOME directory. You can override the default by calling this
function.

Note: Your application on a U2 server might be running under a system directory such as C:
\WINDOWS\system32 or /usr/ud82 (UniData) or /usr/uv112 (UniVerse), which might not
allow the file to be created. To avoid this situation, you should always specify a location that allows
random files to be created.

The random seed file is specified by outFile, which is generated based on source files specified
in inFiles. For Windows platforms, multiple files must be separated by a semi-colon (;). For UNIX
platforms, multiple files must be separated by a colon (:).

The length parameter specifies how many bytes of seed data should be generated.
If no source is specified in the inFiles parameter, then the outFile parameter must already exist.

If context is not specified, the seed file will be used as a global seed file that applies to all
cryptographic functions. However, a seed file setting in a particular security context will always
override the global setting.

SET TRANSACTION ISOLATION LEVEL statement

360

Use the SET TRANSACTION ISOLATION LEVEL statement to set the default transaction isolation level
you need for your program.

Syntax

SET TRANSACTION ISOLATION LEVEL Ievel

setHTTPDefault function

Note: The isolation level you set with this statement remains in effect until another such
statement is issued. This affects all activities in the session, including UniVerse commands and SQL
transactions.

The SET TRANSACTION ISOLATION LEVEL statement cannot be executed while a transaction exists.
Attempting to do so results in a run-time error message, program failure, and the rolling back of all
uncommitted transactions started in the execution environment.

level has the following syntax:
{n | keyword | expression}

level is an expression that evaluates to 0 through 4, or one of the following keywords:

Integer Keyword Effect on This Transaction

0 NO.ISOLATION Prevents lost updates.

Lost updates are prevented if the ISOMODE
configurable parameteris setto 1 or 2.

READ.UNCOMMITTED Prevents lost updates.
READ.COMMITTED Prevents lost updates and dirty reads.
REPEATABLE.READ Prevents lost updates, dirty reads, and
nonrepeatable reads.
4 SERIALIZABLE Prevents lost updates, dirty reads, nonrepeatable

reads, and phantom writes.

Examples

The following example sets the default isolation level to 3 then starts a transaction at isolation level 4.
The isolation level is reset to 3 after the transaction finishes.

SET TRANSACTION ISOLATION LEVEL REPEATABLE.READ

PRINT "We are at isolation level 3."

BEGIN TRANSACTION ISOLATION LEVEL SERIALIZABLE
PRINT "We are at isolation level 4."
COMMIT WORK

END TRANSACTION

PRINT "We are at isolation level 3"

The next example uses an expression to set the transaction level:

PRINT "Enter desired transaction isolation level:":
INPUT TL

SET TRANSACTION LEVEL TL

BEGIN TRANSACTION

END TRANSACTION

setHTTPDefault function

The setHTTPDefault function configures the default HTTP settings, including proxy server and
port, buffer size, authentication credential, HTTP version, and request header values. These settings
are used with every HTTP request that follows.

361

Chapter 1: Statements and functions

362

Syntax

setHTTPDefault (option, value)

If you require all outgoing network traffic to go through a proxy server, you should call
setHTTPDefault() with values containing the proxy server name or IP address, as well as the port
(if other than the default of 80).

option is a string containing an option name. See the table below for the options currently defined.

value is a string containing the appropriate option value.

The following table describes the available options for set HTTPDefault.

Option Description

PROXY_NAME Name or IP address of the proxy server.

PROXY_PORT The port number to be used on the proxy server. This only needs to be specified
if the port is other than the default of 80.

VERSION The version of HTTP to be used. The default version is 1.0, but it can be set to 1.1
for web servers that understand the newer protocol. The string should be “1.0”
or“1.1.”

BUFSIZE The size of the buffer for HTTP data transfer between UniVerse and the web
server. The default is 4096, however, the buffer size can be increased to improve
performance. It should be entered as an integer greater than or equal to 4096.

AUTHENTICATE The user name and password to gain access. The string should be
“username:password.” Default Basic authentication can also be set. If a request
is denied (HTTP status 401/407), UniVerse BASIC will search for the default
credential to automatically resubmit the request.

HEADERS The header to be sent with the HTTP request. If default_headers contains

an empty string, any current user-specified default header will be cleared.
Currently, the only default header UniVerse BASIC sets automatically is “User-
Agent UniVerse 9.6.” If you do not want to send out this header, you should
overwrite it with setHTTPDefault().

Per RFC 2616, for “net politeness” an HTTP client should always send out

this header. UniVerse BASIC also sends a date/time stamp with every HTTP
request. According to RFC 2616, the stamp represents time in Universal Time
(UT) format. A header should be entered as a dynamic array in the form of
<HeaderName>@VM<HeaderValue>@Fm<HeaderName>@VM<HeaderValue>.

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.

1 Invalid option.
2 Invalid Value.

setRequestHeader function

Note: All defaults set by set HTTPDefault() stay in effect until the end of the current UniVerse
session. If you do not want the setting to affect subsequent programs, you need to clear it before
exiting the current program. If the you want to set the “Authorization” or “Proxy-Authorization”
header as defaults, see the description under setRequestHeader(). To clear the default
settings, pass an empty string with PROXY_NAME, AUTHENTICATE and HEADERS, and 0 for
PROXY_PORT and BUFSIZE.

setRequestHeader function

The setRequestHeader function enables you to set additional headers for a request.
request_handle is the handle to the request returned by createRequest().
header_name is the name of the header.

header_value is the value of the header.

Syntax

setRequestHeader (request handle, header name, header value)

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.

1 Invalid request handle.

2 Invalid header (Incompatible with method).
3 Invalid header value.

Note: Since a user-defined header or header value can be transferred, it is difficult to check the
validity of parameters passed to the function. UniVerse BASIC currently will not perform syntax
checking on the parameters, although it will reject setting a response header to a request. Refer
to RFC 2616 for valid request headers. The header set by this function will overwrite settings by
setHTTPDefault().

The header set by this function will overwrite settings by setHTTPDefault().

Example

The following example changes the default Content-Type of the HTTP header from “Content-Type:
application/x-www-form-urlencoded” to “Content-Type: text/xml; charset=utf-8.”

ret=setRequestHeader (REQUEST.HANDLE, "Content-Type",
"text/xml; charset=utf-8")

SETLOCALE function

In NLS mode, use the SETLOCALE function to enable or disable a locale for a specified category or
change its setting.

363

Chapter 1: Statements and functions

364

Syntax

SETLOCALE (category, value)

category is one of the following tokens that are defined in the UYNLSLOC.H file:

Category Description

UVLCSALL Sets or disables all categories as specified in value. value is the name of a
locale, OFF, or DEFAULT. value can also be a dynamic array whose elements
correspond to the categories.

UVLCSTIME Sets or disables the Time category. value is the name of a locale, OFF, or

DEFAULT.

UVLCSNUMERIC

Sets or disables the Numeric category. value is the name of a locale, OFF, or
DEFAULT.

Note: Programs must be compiled in the locale in which the numeric
constraints were intended. For example, if LOCALE CH-GERMAN is enabled in
a US-ENGLISH locale, incorrect results are returned. The US-ENGLISH locale
must be compiled with LOCALE US-ENGLISH.

UVLCSMONETARY Sets or disables the Monetary category. value is the name of a locale, OFF, or
DEFAULT.

UVLCSCTYPE Sets or disables the Ctype category. value is the name of a locale, OFF, or
DEFAULT.

UVLCSCOLLATE Sets or disables the Collate category. value is the name of a locale, OFF, or
DEFAULT.

UVLCSSAVE Saves the current locale state, overwriting any previous saved locale. value
isignored.

UVLCSRESTORE Restores the saved locale state. value is ignored.

value specifies either a dynamic array whose elements are separated by field marks or the string OFF.
An array can have one or five elements:

= Ifthe array has one element, all categories are set or unset to that value.

= Ifthe array has five elements, it specifies the following values in this order: TIME, NUMERIC,
MONETARY, CTYPE, and COLLATE.

The MD, MR, and ML conversions require both Numeric and Monetary categories to be set in order for
locale information to be used.

The STATUS function returns 0 if SETLOCALE is successful, or one of the following error tokens if it

fails:

Error token

Description

LCESNO.LOCALES

UniVerse locales are disabled.

LCESBAD.LOCALE

value is not the name of a locale that is currently loaded, or the string OFF.

LCESBAD.CATEGORY

You specified an invalid category.

LCESNULL.LOCALE

value has more than one field and a category is missing.

The error tokens are defined in the UVNLSLOC.H file.

For more information about locales, see the UniVerse NLS Guide.

Examples

The following example sets all the categories in the locale to FR-FRENCH:

SETREM statement

status = SETLOCALE (UVLCSALL, "FR-FRENCH")

The next example saves the current locale. This is the equivalent of executing the SAVE . LOCALE
command.

status = SETLOCALE (UVLCS$SAVE,"")
The next example sets the Monetary category to DE-GERMAN:
status = SETLOCALE (UVLCSMONETARY, "DE-GERMAN")

The next example disables the Monetary category. UniVerse behaves as though there were no locales
for the Monetary category only.

status = SETLOCALE (UVLC$SMONETARY, "OFF")

The next example completely disables locale support for all categories:
status = SETLOCALE (UVLCS$SALL, "OFF")

The next example restores the locale setting saved earlier:

status = SETLOCALE (UVLCSRESTORE,"")

SETREM statement

Use the SETREM statement to set the remove pointer in dynamic.array to the position specified by
position.

Syntax

SETREM position ON dynamic.array

position is an expression that evaluates to the number of bytes you want to move the pointer forward.
If it is larger than the length of dynamic.array, the length of dynamic.array is used. If it is less than 0, 0
is used.

dynamic.array must be a variable that evaluates to a string. If it does not evaluate to a string, an
improper data type warning is issued.

If the pointer does not point to the first character after a system delimiter, subsequent REMOVE
statement and REVREMOVE statement act as follows:

= A REMOVE statement returns a substring, starting from the pointer and ending at the next
delimiter.

= A REVREMOVE statement returns a substring, starting from the previous delimiter and ending at
the pointer.

If NLS is enabled and you use a multibyte character set, use GETREM function to ensure that position is
at the start of a character. For more information about locales, see the UniVerse NLS Guide.

Example

DYN = "THIS":QFM:"HERE":@FM:"STRING"
REMOVE VAR FROM DYN SETTING X

A = GETREM (DYN)

REMOVE VAR FROM DYN SETTING X

PRINT VAR

SETREM A ON DYN

REMOVE VAR FROM DYN SETTING X

PRINT VAR

365

Chapter 1: Statements and functions

The program output is:

HERE
HERE

setSocketMap function

The setSocketMap() function sets the default NLS map for either server or client sockets. If you
call openSocket() or acceptConnection() priorto calling set SocketMap(), UniVerse uses the
default map defined in uvconfig.

Syntax

setSocketMap (mapname)

setSocketOptions function

366

The setSocketOptions() function sets the current value for a socket option associated with a

socket of any type.

Syntax

setSocketOptions (socket handle, options)

Parameters

The following table describes each parameter of the syntax.

Parameter

Description

socket_handle

The socket handle from openSocket(), acceptSocket(), or
initServerSocket().

options

Dynamic Array containing information about the socket options and their
current settings. The dynamic array is configured as:

optNamel<VM=>optValuela[<VM>optValuelb]<FM>
optName2<VM=>optValue2a[<VM>optValue2b]<FM>
optName3...

Where optName is specified by the caller and must be an option name
string listed below. For all options other than LINGER, the first optValue
specifies whether the option is ON or OFF and must be one of two
possible values: “1” for ON or “2” for OFF. The second optValue is
optional and can hold additional data for a specific option.

For the LINGER option, the first value will be zero for OFF and non-zero
for ON. The second optValue is the timeout value, which is the number
of time units to wait before closing the socket. The timeout value's
unit type (seconds, milliseconds, and so forth) is dependent on the
implementation of the SELECT() function on your operating system.

The following table describes the available options (case-sensitive) for set SocketOptions.

Option

Description

DEBUG

Enable/disable recording of debug information.

showSecurityContext function

Option Description

REUSEADDR Enable/disable the reuse of a location address (default)

KEEPALIVE Enable/disable keeping connections alive.

DONTROUTE Enable/disable routing bypass for outgoing messages.

LINGER Linger on close if data is present.

BROADCAST Enable/disable permission to transmit broadcast messages.

OOBINLINE Enable/disable reception of out-of-band data in band.

SNDBUF Set buffer size for output (the default value depends on operating-system
type).

RCVBUF Set buffer size for input (the default value depends on operating-system
type).

Return codes

The following table describes the status of each return code.

Return code Description
0 Success.
Non-zero See Socket function error return codes, on page 599.

showSecurityContext function

The showSecurityContext() function dumps the SSL configuration parameters of a security
context into a readable format.

The security context handle must have been returned by a successful execution of
createSecurityContext()or loadSecurityContext().

The configuration information includes: protocol, version, certificate, cipher suite used by this
connection and other properties.

Warning: For security reasons, the privateKey installed into the context is not displayed. Once
installed, there is no way for you to extract it.

Syntax

showSecurityContext (context, config)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
context The security context handle.
config A dynamic array containing the security context data.

Return code status

The following table describes the status of each return code.

367

Chapter 1: Statements and functions

Return code Status

0 Success.

1 Invalid security context handle.

2 Configuration data could not be obtained.

SIGNATURE function

368

The SIGNATURE() function generates a digital signature or verifies a signature using the supplied
key. Digital signature is generally created over a piece of data or document by some cryptographic
algorithm and used to prove the authenticity and integrity of the data or document, for example, the
recipient of the data with a valid digital signature has reason to believe that the data is from a trusted
sender and its contents are not modified.

The algorithm parameter specifies the digest algorithm used to construct the signature. There are four
actions that can be specified: RSA-Sign, RSA-Verify, DSA-Sign, and DSA-Verify. Note that if DSA is
chosen, only SHA1 can be specified in algorithm.

The data to be signed or verified against a signature can be supplied either directly in data, or read
from a file whose names is in data.

For signing action, a private key should be specified. For verification, a public key is usually expected.
However, a private key is also accepted for verification purposes. Key can be either in PEM or DER
format. If a private key is password protected, the password must be supplied with pass.

For verification, key can also contain a certificate or name of a certificate file. A signature is expected in
sigin.

For signing action, the generated signature is put into result.

Syntax

SIGNATURE (algorithm, action, data, dataLoc, key, keyLoc, keyFmt, pass,
sigIn, result, plZpass)

Parameters

The following table describes each parameter of the syntax.

SIGNATURE function

Parameter Description
algorithm A string containing the digest algorithm name (uppercase or lowercase).
UniVerse 11.3.2+ supports the following algorithms:
= MD4
= MD5
= SHA
= SHAL
= SHA224
= SHA256
= SHA384
= SHA512
* SHA512-224
= SHA512-226
* SHA3-224
* SHA3-256
* SHA3-384
* SHA3-512
Versions prior to 11.2.4 support MD2, MDC2, and RMD160. These
algorithms are no longer supported in later versions.
action 1- RSA-Sign (SSL_RSA_SIGN)
2 - RSA-Verify (SSL_RSA_VERIFY)
3 - DSA-Sign (SSL_DSA_SIGN)
4 - DSA-Verify (SSL_DSA_VERIFY)
data Data or the name of the file containing the data to be signed or verified.
dataloc 1-Datain astring (SSL_LOC_STRING)
2 -Datain afile (SSL_LOC_FILE)
key The key or the name of the file containing the key to be used to sign or
verify. In the case of verification, key can be a certificate string or a file.
keylLoc 1-Keyisinastring (SSL_LOC_STRING)
2-Keyisinafile (SSL_LOC_FILE)
3 - Key isin a certificate for verification. (Currently, no constant is
defined)
keyFmt 1- PEM (SSL_FMT_PEM)
2 - DER (SSL_FMT_DER)
3-PKCS #12 (SSL_FMT_P12)
pass A string containing the pass phrase for the private key.
sigln A string containing a digital signature.
result A generated signature or a file to store the signature.
pl2pass Optional. Sets a password on the PKCS #12 file. This parameter should

only be included if using a PKCS #12 certificate that has a password.
Otherwise the parameter should be omitted.

369

Chapter 1: Statements and functions

Return code status

The following table describes the status of each return code.

Return code Status

Success.

Unsupported digest algorithm.

The data cannot be read.

Message digest cannot be obtained.

Invalid parameters.

Key cannot be read or is in the wrong format / algorithm.

Incorrect password.

Signature cannot be generated.

| N[fojfo| b~ W|IN|H|O

Signature cannot be verified.

SIN function

Use the SIN function to return the trigonometric sine of an expression. expression represents
the angle expressed in degrees. Numbers greater than 1E17 produce a warning message, and 0 is
returned. If expression evaluates to the null value, null is returned.

Syntax

SIN (expression)

Example

PRINT SIN(45)
This is the program output:
0.7071

SINH function

Use the STINH function to return the hyperbolic sine of expression. expression must be numeric and
represents the angle expressed in degrees. If expression evaluates to the null value, nullis returned.

Syntax

SINH (expression)

Example
PRINT "SINH(2) = ":SINH(2)
This is the program output:

SINH(2) = 3.6269

370

SLEEP statement

SLEEP statement

Use the SLEEP statement to suspend execution of a BASIC program, pausing for a specified number of
seconds.

seconds is an expression evaluating to the number of seconds for the pause. If seconds is not specified,
avalue of 1 is used. If seconds evaluates to the null value, it is ignored and 1 is used.

Syntax

SLEEP [seconds]

Example

In the following example the program pauses for three seconds before executing the statement after
the SLEEP statement. The EXECUTE statement clears the screen.

PRINT "STUDY THE FOLLOWING SENTENCE CLOSELY:"
PRINT

PRINT

PRINT "There are many books in the"

PRINT "the library."

SLEEP 3

EXECUTE 'CS'

PRINT "DID YOU SEE THE MISTAKE?"

This is the program output:
STUDY THE FOLLOWING SENTENCE CLOSELY:
There are many books in the

the library.
DID YOU SEE THE MISTAKE?

SMUL function

Use the SMUL function to multiply two string numbers and return the result as a string number. You
can use this function in any expression where a string or string number is valid, but not necessarily
where a standard number is valid, because string numbers can exceed the range of numbers that
standard arithmetic operators can handle.

Syntax

SMUL (string.number.1l, string.number.Z)

Either string number can be any valid number or string number.

If either string number contains nonnumeric data, an error message is generated and 0 is used for that
number. If either string number evaluates to the null value, null is returned.

Example
X = "5436"
Y = "234"
Z = SMUL (X,Y)

371

Chapter 1: Statements and functions

PRINT Z

This is the program output:

1272024

SOAPCreateRequest function

The SOAPCreateRequest function creates a SOAP request and returns a handle to the request.

Syntax

SOAPCreateRequest (URL, soapAction, Request)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

URL A string containing the URL where the web service is located. UniVerse sends the
SOAP request to this URL. For information about the format of the URL, see URL
format, on page 372. [IN]

soapAction A string UniVerse uses as the SOAPAction HTTP header for this SOAP request.
[IN]
Request The returned handle to the SOAP request. You can use this handle can be used

in subsequent calls to the SOAP API for UniVerse BASIC. [OUT]

URL format
The URL you specify must follow the syntax defined in RFS 1738. The general format is:
http://<host>:<port>/path>?<searchpart>

The following table describes each parameter of the syntax.

Parameter Description

host Either a name string or an IP address of the host system.

port The port number to which you want to connect. If you do not specify port,
UniVerse defaults to 80. Omit the preceding colon if you do not specify this
parameter.

path Defines the file you want to retrieve on the web server. If you do not specify
path, UniVerse defaults to the home page.

searchpart Use searchpart to send additional information to a web server.

Note: If the URL you define contains a searchpart, you must define it in its encoded format. For
example, a space is converted to +, and other nonalphanumeric characters are converted to
%HH format. You do not need to specify the host and path parameters in their encoded formats.
UniVerse BASIC encodes these parameters prior to communicating with the web server.

Return codes

The following table describes the status of each return code.

372

SOAPCreateSecureRequest function

Return code Status

0 Success.

1 Invalid URL (Syntactically).

2 Invalid HTTP method (indicates the POST method is not supported by the HTTP

server).

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

Example

The following code segment illustrates the SOAPCreateRequest function:

* Create the Request

Ret = SoapCreateRequest (URL,

SoapAction, SoapReq)

IF Ret <> 0 THEN

STOP "Error in SoapCreateRequest:

END

" : Ret

SOAPCreateSecureRequest function

The SOAPCreateSecureRequest function creates a secure SOAP request and returns a handle to

the request.

Syntax

SOAPCreateSecureRequest (URL, soapAction, Request, security context)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

URL A string containing the URL where the web service is located. UniVerse sends
the SOAP request to this URL. For information about the format of the URL, see
SOAPCreateRequest function, on page 372. [IN]

soapAction A string UniVerse uses as the SOAPAction HTTP header for this SOAP request.
[IN]

Request The returned handle to the SOAP request. You can use this handle can be used
in subsequent calls to the SOAP API for UniVerse BASIC. [OUT]

security_context A handle to the security context.

URL format

The URL you specify must follow the syntax defined in RFS 1738. The general format is:

http://<host=:<port>/path>?<searchpart>

The following table describes each parameter of the syntax.

Parameter

Description

host

Either a name string or an IP address of the host system.

373

Chapter 1: Statements and functions

Parameter Description

port The port number to which you want to connect. If you do not specify port,
UniVerse defaults to 80. Omit the preceding colon if you do not specify this
parameter.

path Defines the file you want to retrieve on the web server. If you do not specify
path, UniVerse defaults to the home page.

searchpart Use searchpart to send additional information to a web server.

Note: If the URL you define contains a searchpart, you must define it in its encoded format. For
example, a space is converted to +, and other nonalphanumeric characters are converted to
%HH format. You do not need to specify the host and path parameters in their encoded formats.
UniVerse BASIC encodes these parameters prior to communicating with the web server.

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.

1 Invalid URL (Syntactically).

2 Invalid HTTP method (indicates the POST method is not supported by the HTTP
server).

101 Invalid security context handle.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.
Example
The following code segment illustrates the SOAPCreateSecureRequest function:

* Create the Request
Ret = SoapCreateSecureRequest (URL, SoapAction, SoapReq, SecurityContext)
IF Ret <> 0 THEN
STOP "Error in SoapCreateSecureRequest: " : Ret
END

SOAPGetDefault function

The SOAPGetDefault function retrieves default SOAP settings, such as the SOAP version.

Syntax

SOAPGetDefault (option, value)

Parameters

The following table describes each parameter of the syntax.

374

SOAPGetFault function

Parameter Description

option A string containing an option name. UniVerse currently only supports the
VERSION option. [IN]

value A string returning the option value. [OUT]

Return codes

The following table describes the status of each return code.

Return code Status
0 Success.
1 Invalid option (currently, UniVerse only supports the VERSION option).

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

SOAPGetFault function

If the SOAPSubmitRequest function receives a SOAP Fault, the SOAPGetFault function parses
the response data from SOAPSubmitRequest into a dynamic array of SOAP Fault components.

Syntax

SOAPGetFault (respData, soapFault)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
respData Response data from SOAPSubmitRequest after receiving a SOAP fault. [IN]
soapFault Dynamic array consisting of Fault Code, Fault String, and optional Fault Detail,

for example:
<faultcode>@AM<faultstring=@AM<faultdetail>@AM<faultactor>
Fault code values are XML-qualified names, consisting of:

= VersionMismatch

= MustUnderstand

= DTDNotSupported

= DataEncoding Unknown

= Sender

= Receiver

Return codes

The following table describes the status of each return code.

Return code Status
0 Success.
1 Invalid response data, possibly not a valid XML document.

375

Chapter 1: Statements and functions

Return code Status

2 SOAP Fault not found in response data.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

SOAPGetResponseHeader function

The SOAPGetResponseHeader function gets a specific response header after issuing a SOAP
request.

Syntax

SOAPGetResponseHeader (Request, headerName, headerValue)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

Request Handle to the request created with SOAPCreateRequest function. [IN]

headerName The header name whose value is being queried. [IN]

headerValue The header value, if present in the response, or empty string if not (in which
case the return status of the function is 2). [OUT]

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.

1 Invalid request handle.

2 Header not found in set of response headers.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

SOAPSetRequestBody function

376

The SOAPSetRequestBody function sets up a SOAP request body directly, as opposed to having it
constructed via the SOAPSetParameters function. With this function, you can also attach multiple
body blocks to the SOAP request.

Each SOAP request should include at least one body block.

Syntax

SOAPSetRequestBody (Request, value)

Parameters

The following table describes each parameter of the syntax.

SOAPSetRequestContent function

Parameter Description
Request Handle to the request created with SOAPCreateRequest function. [IN]
value A dynamic array containing SOAP body blocks, for example:

<body block>@AM<body block=>... [IN]

Return codes

The following table describes the status of each return code.

Return code Description
0 Success.
1 Invalid request handle.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

SOAPSetRequestContent function

The SOAPSetRequestContent function sets the entire SOAP request's content from an input

string or from a file.

Syntax

SOAPSetRequestContent (Request,

Parameters

reqDoc, docTypeFlaqg)

The following table describes each parameter of the syntax.

Parameter Description

Request Handle to the request created with SOAPCreateRequest function. [IN]
reqDoc The input document to use as the SOAP request content. [IN]

docTypeFlag Aflag indicating whether reqDoc is a string holding the actual content, or the

path to a file holding the content.
= 0-reqDocis afile holding the request content.

= 1-reqDocis a string holding the request content.

[IN]

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.

1 Invalid request handle.

2 Unable to open the file named by regDoc.
3 Unable to read the file named by regDoc.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

377

Chapter 1: Statements and functions

SOAPSetRequestHeader function

The SOAPSetRequestHeader function sets up a SOAP request header. By default, there is no SOAP
header.

Syntax

SOAPSetRequestHeader (Request, value)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
Request Handle to the request created with SOAPCreateRequest function. [IN]
value A dynamic array containing SOAP header blocks, for example:

<header block>@AM<header block>...[IN]

Return codes

The following table describes the status of each return code.

Return code Description
0 Success.
1 Invalid request handle.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

SOAPRequestWrite function

The SOAPRequestWrite function outputs the SOAP request, in XML format, to a string or to a file.

Syntax

SOAPRequestWrite (Request, regDoc, docTypeFlag)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

Request Handle to the request created with SOAPCreateRequest function. [IN]

reqDoc Depending on docTypeFlag, either an output string containing the SOAP request
content, or a path to a file where the SOAP request content will be written.
[OUT]

378

SOAPSetDefault function

Parameter Description

docTypeFlag Aflagindicating whether regDoc is an output string that is to hold the request
content, or a path to a file where the SOAP request content will be written.

= 0-reqDocis a file where the request content will be written upon successful
completion.

= 1-reqDocis a string that will hold the request upon successful completion.
[IN]

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.

1 Invalid request handle.

2 Unable to open the file named by reqDoc.

3 Unable to write to the file named by regDoc.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

SOAPSetDefault function

Use the SOAPSetDefault function to define default SOAP settings, such as the SOAP version. By
default, the SOAP version is 1.1, although you can specify version 1.2.

Syntax

SOAPSetDefault (option, value)

For SOAP version 1.1, the namespace prefixes "env" and "enc" are associated with the SOAP
namespace names http://schemas.xmlsoap.org/soap/envelope/ and http://schemas.xmlsoap.org/
soap/encoding/ respectively. The namespace prefixed "xsi" and "xsd" are associated with the
namespace names http://www.w3.0rg/1999/XMLSchema-instance and http://www.w3.0rg/1999/
XMLSchema respectively.

The SOAP version can be set to 1.2 to support the newer SOAP 1.2 protocol. The namespace prefixes
"env" and "enc" are associated with the SOAP namespace names "http://www.w3.0rg/2001/12/soap-
envelope" and "http://www.w3.0rg/2001/12/soap-encoding" respectively. The namespace prefixes
"xsd" and "xsi" will be associated with the namespace names "http://www.w3.0rg/2001/XMLSchema
and "http://www.w3.0rg/2001/XMLSchema-instance" respectively.

Note: All defaults set by SOAPSetDefault remain in effect until the end of the current UniVerse
session. If you do not want the setting to affect subsequent programs, clear it before exiting the
current program.

Along with SOAPSetDefault, you can use the Cal1HTTP function setHTTPDefault to set HTTP-
specific settings or headers, if the HTTP default settings are not sufficient.

Parameters

The following table describes each parameter of the syntax.

379

Chapter 1: Statements and functions

Parameter Description

option A string containing an option name. UniVerse currently only supports the
“VERSION” option. [IN]

value A string containing the appropriate option value. For the VERSION option, the

string should be 1.0, 1.1, or 1.2. [IN]

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.

1 Invalid option (currently, UniVerse only supports VERSION).

2 Invalid value. If you do not specify a value, UniVerse uses the default of 1.1.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

SOAPSetParameters function

The SOAPSetParameters function sets up the SOAP request body, specifying a remote method to
call along with the method's parameter list.

Syntax

SOAPSetParameters (Request,

Parameters

URI, serviceName, paramArray)

The following table describes each parameter of the syntax.

Parameter Description

Request Handle to the request created with SOAPCreateRequest function. [IN]
namespace A string is used as the namespace URI for the SOAP call. [IN]

serviceName The name of the SOAP service. [IN]

paramArray A dynamic array containing the method parameters for the SOAP call. Each

method parameter consists of the following values:

* Aparameter name

= Aparametervalue

= Aparameter type (if type is omitted, xsd:string will be used.

name, value, and type are separated by @VM. Additional parameters are sepa-
rated by @AM, as shown in the following example:

<paramlName>@VM<paramlValue>@VM<param1Type>@AM
<param2Name>@VM<param2Value>@VM<param2Type>...[IN]

Return codes

The following table describes the status of each return code.

SOAPSubmitRequest function

Return code Description
0 Success.
1 Invalid request handle.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

Example

As an example, the following inputs:

Input Description

serviceName “getStockQuote”

namespace “http://host/#StockQuoteService”
paramArray “symbol”:@VM:"U2”:@VM:"xsd:string”

set the SOAP body as follows:

<SOAP-ENV:Body>
<nsl:getStockQuote
xmlns:nsl="http://host/#StockQuoteService">
<symbol xsi:type="xsd:string">U2</symbol>
</nsl:getQuote>
<SOAP-ENV:Body>

The following code example illustrates the SOAPSetParameters function:

* Set up the Request Body

Ret = SoapSetParameters (SoapReq, NameSpace, Method, MethodParms)
IF Ret <> 0 THEN

STOP "Error in SoapSetParameters: " : Ret
END

SOAPSubmitRequest function

The SOAPSubmitRequest function submits a request and gets the response.

Internally, SOAPSubmitRequest utilizes CallHTTP's submitRequest() function to send the
SOAP message. The soapStatus variable holds the status from the underlying CallHTTP function. If
an error occurs on the SOAP server while processing the request, soapStatus will indicate an HTTP
500 "Internal Server Error", and respData will be a SOAP Fault message indicating the server-side
processing error.

Syntax

SOAPSubmitRequest (Request, timeout, respHeaders, respData, soapStatus)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
Request Handle to the request created with SOAPCreateRequest function. [IN]
timeout Timeout, in milliseconds, to wait for a response. [IN]

381

Chapter 1: Statements and functions

Parameter Description

respHeaders Dynamic array of HTTP response headers and their associated values. [OUT]
respData The SOAP response message. [OUT]

soapStatus Dynamic array containing status code and explanatory text. [OUT]

Return codes

The following table describes the status of each return code.

Return code Status

Success.

Invalid request handle.

Request timed out.

Network error occurred.

Hlw|N|—| O

Other error occurred.

99 UniVerse failed to obtain a license for an interactive PHANTOM process.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

Example

The following code sample illustrates the SOAPSubmitRequest function:
* Submit the Request

Ret = SoapSubmitRequest (SoapReqg, Timeout, RespHeaders, RespData, SoapStatus)
IF Ret <> 0 THEN

STOP "Error in SoapSubmitRequest: " : Ret
END

PRINT "Response status : " : SoapStatus
PRINT "Response headers: " : RespHeaders
PRINT "Response data : " : RespData

SOUNDEX function

382

The SOUNDEX function evaluates expression and returns the most significant letter in the input string
followed by a phonetic code. Non-alphabetic characters are ignored. If expression evaluates to the null
value, nullis returned.

This function uses the soundex algorithm (the same as the one used by the SAID keyword in RetrieVe)
to analyze the input string. The soundex algorithm returns the first letter of the alphabetic string
followed by a one- to three-digit phonetic code.

Syntax

SOUNDEX (expression)

SPACE function

Example

Source lines Program output
DATA "MCDONALD", "MACDONALD", "MACDOUGALL" | ?MCDONALD
FORI=1TO3 M235

INPUT CUSTOMER ?MACDONALD
PHONETIC.CODE=SOUNDEX(CUSTOMER) M235

PRINT PHONETIC.CODE ?MACDOUGALL
NEXT M232

SPACE function

Use the SPACE function to return a string composed of blank spaces. expression specifies the number
of spaces in the string. If expression evaluates to the null value, the SPACE function fails and the
program terminates with a run-time error message.

There is no limit to the number of blank spaces that can be generated.

Syntax

SPACE (expression)

Example

PRINT "HI":SPACE (20) :"THERE"

*

*

VAR=SPACE (5)
PRINT "TODAY IS":VAR:OCONV (DATE(),"D")

This is the program output:

HI THERE
TODAY IS 18 JUN 1992

SPACES function

Use the SPACES function to return a dynamic array with elements composed of blank spaces.
dynamic.array specifies the number of spaces in each element. If dynamic.array or any element of
dynamic.array evaluates to the null value, the SPACES function fails and the program terminates with
arun-time error message.

There is no limit to the number of blank spaces that can be generated except available memory.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Syntax

SPACES (dynamic.array)
CALL -SPACES (return.array, dynamic.array)

383

Chapter 1: Statements and functions

CALL !SPACES (return.array, dynamic.array)

SPLICE function

Use the SPLICE function to create a dynamic array of the element-by-element concatenation of two
dynamic arrays, separating concatenated elements by the value of expression.

Syntax
SPLICE (arrayl, expression, arrayZ2)
CALL -SPLICE (return.array, arrayl, expression, arrayZ2)

CALL !'SPLICE (return.array, arrayl, expression, arrayZ2)

Each element of arrayl is concatenated with expression and with the corresponding element of array2.
The result is returned in the corresponding element of a new dynamic array. If an element of one
dynamic array has no corresponding element in the other dynamic array, the element is returned
properly concatenated with expression. If either element of a corresponding pair is the null value, null
is returned for that element. If expression evaluates to the null value, null is returned for the entire
dynamic array.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Example

A="A":@VM:"B":@SM:"C"
B="D":@SM:"E":QVM: "F"

—r_

PRINT SPLICE(A,C,B)

This is the program output:

A-DS-EVB-FSC-

SORT function

384

Use the SQRT function to return the square root of expression. expression must evaluate to a numeric
value that is greater than or equal to 0. If expression evaluates to a negative value, the result of the
function is SQRT(-n) and an error message is printed. If expression evaluates to the null value, null is
returned.

Syntax

SQRT (expression)

Example

A=SQRT (144)
PRINT A
*

PRINT "SQRT (45) IS ":SQRT (45)
This is the program output:

12

SQUOTE function

SQRT (45) IS 6.7082

SOUOTE function

Use the SQUOTE function to enclose an expression in single quotation marks. If expression evaluates
to the null value, null is returned, without quotation marks.

Syntax
SQUOTE (expression)

CALL !SQUOTE (quoted.expression, expression)

quoted.expression is the quoted string.

expression is the input string.

Example

PRINT SQUOTE (12 + 5) : " IS THE ANSWER."
END
This is the program output:

'17' IS THE ANSWER.

SSELECT statement

Use an SSELECT statement to create:
*= Anumbered select list of record IDs in sorted order from a UniVerse file

= Anumbered select list of record IDs from a dynamic array. A select list of record IDs from a dynamic
array is not in sorted order.

You can then access this select list by a subsequent READNEXT statement which removes one record
ID at a time from the list.

Syntax
SSELECT ([variable] [TO list.number] [ON ERROR statements]
SSELECTN [variable] [TO list.number] [ON ERROR statements]

SSELECTV [variable] TO list.variable [ON ERROR statements]

variable can specify a dynamic array or a file variable. If it specifies a dynamic array, the record IDs
must be separated by field marks (ASCII 254). If variable specifies a file variable, the file variable
must have previously been opened. If variable is not specified, the default file is assumed (for more
information on default files, see the OPEN statement). If the file is neither accessible nor open, or if
variable evaluates to the null value, the SSELECT statement fails and the program terminates with a
run-time error message.

385

Chapter 1: Statements and functions

386

Note: The select list created by the SSELECT command is only sorted when you supply a file
variable as an argument to the command. If you supply a dynamic array, UniVerse returns the
information in the dynamic array as a select list sorted in the same order as the dynamic array.

If the file is an SQL table, the effective user of the program must have SQL SELECT privilege to read
records in the file. For information about the effective user of a program, see the AUTHORIZATION
statement, on page 74.

You must use a file lock with the SSELECT statement when it is within a transaction running at
isolation level 4 (serializable). This prevents phantom reads.

The TO clause specifies the select list that is to be used. list. number is an integer from 0 through 10. If
no list.number is specified, select list 0 is used.

The record IDs of all the records in the file form the list. The record IDs are listed in ascending order.
Each record ID is one entry in the list.

You often want a select list with the record IDs in an order different from their stored order or with a
subset of the record IDs selected by some specific criteria. To do this, use the SELECT statements or
SSELECT commands in a BASIC EXECUTE statement. Processing the list by READNEXT statement is
the same, regardless of how the list is created.

Use the SSELECTV statement to store the select list in a named list variable instead of to a numbered
select list. list.variable is an expression that evaluates to a valid variable name. This is the default
behavior of the SSELECT statement in PICK, REALITY, and IN2 flavor accounts. You can also use the
VAR.SELECT option of the SOPTIONS statement to make the SSELECT statement act as it does in PICK,
REALITY, and IN2 flavor accounts.

In NLS mode when locales are enabled, the SSELECT statements use the Collate convention of the
current locale to determine the collating order. For more information about locales, see the UniVerse
NLS Guide.

The ON ERROR clause

The ON ERROR clause is optional in SSELECT statements. The ON ERROR clause lets you specify an
alternative for program termination when a fatal error is encountered during processing of a SSELECT
statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

= Anerror message appears.
* Any uncommitted transactions begun within the current execution environment roll back.
* Thecurrent program terminates.

= Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

= Afileis not open.

= file.variable is the null value.

= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

SSUB function

PICK, REALITY, and IN2 flavors

In a PICK, REALITY, or IN2 flavor account, the SSELECT statement has the following syntax:

SSELECT [V] [variable] TO list.variable
SSELECTN [variable] TO 1list.number

You can use either the SSELECT or the SSELECTV statement to create a select list and storeitin a
named list variable. The only useful thing you can do with a list variable is use a READNEXT statement
to read the next element of the select list.

Use the SSELECTN statement to store the select list in a numbered select list. list.number is an
expression that evaluates to a number from 0 through 10. You can also use the -VAR.SELECT option of
the SOPTIONS statement to make the SSELECT statement act as it does in IDEAL and INFORMATION
flavor accounts.

Example

The following example opens the file SUN.MEMBER to the file variable MEMBER.F, then creates an
active sorted select list of record IDs. The READNEXT statement assigns the first record ID in the select
list to the variable @ID, then prints it. Next, the file SUN.SPORT is opened to the file variable SPORT.F,
and a sorted select list of its record IDs is stored as select list 1. The READNEXT statement assigns the
first record ID in the select list to the variable A, then prints DONE.

OPEN '', 'SUN.MEMBER' ELSE PRINT "NOT OPEN"
SSELECT
READNEXT @ID THEN PRINT @ID

*

OPEN '', "SUN.SPORT' ELSE PRINT "NOT OPEN"
SSELECT TO 1
READNEXT A FROM 1 THEN PRINT "DONE" ELSE PRINT "NOT"

This is the program output:

0001
DONE

SSUB function

Use the SSUB function to subtract string.number.2 from string.number.1 and return the result as a
string number. You can use this function in any expression where a string or string number is valid, but
not necessarily where a standard number is valid, because string numbers can exceed the range of
numbers that standard arithmetic operators can handle.

Either string number can be any valid number or string number.

If either string number contains nonnumeric data, an error message is generated, and 0 replaces the
nonnumeric data. If either string number evaluates to the null value, null is returned.

Syntax

SSUB (string.number.l, string.number.Z)

Example

X = "123456"
Y = "225"

387

Chapter 1: Statements and functions

Z = SSUB (X,Y)
PRINT Z

This is the program output:

123231

STATUS function

388

Use the STATUS function to determine the results of the operations performed by certain statements
and functions.

The parentheses must be used with the STATUS function to distinguish it from potential user-named
variables called STATUS. However, no arguments are required with the STATUS function.

Syntax

STATUS ()

The following sections describe STATUS function values.

After a BSCAN statement, on page 81:

Value Description

0 The scan proceeded beyond the leftmost or rightmost leaf node. ID.variable and
rec.variable are set to empty strings.

The scan returned an existing record ID, or a record ID that matches record.

2 The scan returned a record ID that does not match record. ID.variable is either
the next or the previous record ID in the B-tree, depending on the direction of
the scan.

3 The file is not a B-tree (type 25) file, or, if the USING clause is used, the file has

no active secondary indexes.

indexname does not exist.

seq does not evaluate to A or D.

The index specified by indexname needs to be built, or is currently being built
concurrently.

10 An internal error was detected.

After a DELETE statement:

After DELETE statements with an ON ERROR clause, the value returned is the error number. In some
instances, the error number returned corresponds to a record in the SYS.MESSAGE file. Record IDs in
the SYS.MESSAGE file are numeric and consist of six digits. The error message number returned does
not contain leading zeros. If the number returned is less than six digits, it should be prefixed with zeros
before reading from the SYS.MESSAGE file.

After a FILEINFO function:

After a successful execution of the FILEINFO function, STATUS returns 0. If the function fails to execute,
STATUS returns a nonzero value. For complete information, see the FILEINFO function.

After a FILELOCK statement:

After a FILELOCK statement with a LOCKED clause, the value returned is the terminal number of the
user who has a conflicting lock.

STATUS function

After an FMT function:

Value Description
0 The conversion is successful.
1 The string expression passed as an argument is invalid.
If NLS is enabled: the data supplied cannot be converted.
2 The conversion code passed as an argument to the function is invalid.

After a GET or GETX statement:

Value

Description

0

The timeout limit expired.

Any nonzero value

A device input error occurred.

After an ICONV or OCONV function:

Value Description

0 The conversion is successful.

1 The string expression passed as an argument to the function is not convertible
using the conversion code passed. An empty string is returned as the value of
the function.

2 The conversion code passed as an argument to the function is invalid. An empty
string is returned as the value of the function.

3 Successful conversion of a possibly invalid date.

After an INPUT @ statement:

A 0is returned if the statement was completed by a Return. The trap number is returned if the
statement was completed by one of the trapped keys (see the INPUT @ and KEYTRAP statement, on

page 240).

After a MATWRITE, WRITE, WRITEU, WRITEV, or WRITEVU statement:

Value Description

0 The record was locked before the operation.

3 In NLS mode, the unmappable character is in the record ID.

4 In NLS mode, the unmappable character is in the record’s data.

-2 The record was unlocked before the operation.

-3 The record failed an SQL integrity check.

-4 The record failed a trigger program.

-6 Failed to write to a published file while the subsystem was shut down.

After an OPEN, OPENCHECK, OPENPATH, or OPENSEQ statement:

The file type is returned if the file is opened successfully. If the file is not opened successfully, the
following values may return:

Value Description
-1 File name not found in the VOC file.
-2 A generic error that can occur for various reasons.

Null file name or file. This error may also occur when you cannot open a file
across UVNet.

389

Chapter 1: Statements and functions

Value Description

-3 Operating system access error that occurs when you do not have permission to
access a UniVerse file in a directory. For example, this may occur when trying to
access a type 1 or type 30 file.

-4 Access error when you do not have operating system permissions or if DATA.30
is missing for a type 30 file.

-5 Read error detected by the operating system.

-6 Unable to lock file header.

-7 Invalid file revision or wrong byte-ordering for the platform.

-8 Invalid part file information.

-9 Invalid type 30 file information in a distributed file.

-10 A problem occurred while the file was being rolled forward during warmstart
recovery. Therefore, the file is marked “inconsistent.”

-11 The file is a view, therefore it cannot be opened by a BASIC program.

-12 No SQL privileges to open the table.

-13 Index problem.

-14 Cannot open the NFSfile.

-15 There is a problem with the OVER.30 file in a dynamic file.

-16 Modulo over limit.

-17 Freechain corruption.

-18 SICA corruption.

-19 External Database Access (EDA) setup error.

-20 Automatic Data Encryption (ADE) setup error.

After a READ statement:
If the file is a distributed file, the STATUS function returns the following:

Value Description
-1 The partitioning algorithm does not evaluate to an integer.
-2 The part number is invalid.

After a READBLK statement:

Value Description

0 The read is successful.

1 The end of file is encountered, or the number of bytes passed in was less than or
equal to 0.

The read failed.

A partial read failed.

-1 The file is not open for a read.

After a READL, READU, READVL, or READVU statement:

If the statement includes the LOCKED clause, the returned value is the terminal number, as returned
by the WHO command, of the user who set the lock.

If NLS is enabled, the results depend on the following:
= The existence of the ON ERROR clause

390

STATUS function

= The setting of the NLSREADELSE parameter in the uvconfigfile

* The location of the unmappable character.

Value Description
3 The unmappable character is in the record ID.
4 The unmappable characteris in the record’s data.

After a READSEQ statement:

Value Description

0 The read is successful.

1 The end of file is encountered, or the number of bytes passed in was less than or
equal to 0.

2 Atimeout ended the read.

-1 The file is not open for a read.

After a READT, REWIND, WEOF, or WRITET statement:
If the statement takes the ELSE clause, the returned value is 1. Otherwise the returned value is 0.

After an RPC.CALL function, RPC.CONNECT function, or RPC.DISCONNECT function:

Value Description

81001 A connection was closed for an unspecified reason.

81002 connection.ID does not correspond to a valid bound connection.

81004 Error occurred while trying to store an argument in the transmission packet.
81005 Procedure access denied because of a mismatch of RPC versions.

81007 Connection refused because the server cannot accept more clients.

81008 Error occurred because of a bad parameter in arg.list.

81009 An unspecified RPC error occurred.

81010 #args does not match the expected argument count on the remote machine.
81011 Host was not found in the local /etc/hosts file.

81012 Remote unirpcd cannot start the service because it could not fork the process.
81013 The remote unirpcservices file cannot be opened.

81014 Service was not found in the remote unirpcservices file.

81015 A timeout occurred while waiting for a response from the server.

After a SETLOCALE function:

The STATUS function returns 0 if SETLOCALE function, on page 363 is successful, or one of the
following error tokens if it fails:

Value Description

LCESNO.LOCALES |[UniVerse locales are disabled.

LCESBAD.LOCALE | The specified locale name is not currently loaded, or the string OFF.

LCE You specified an invalid category.
$BAD.CATEGORY

LCESNULL.LOCALE | The specified locale has more than one field and a category is missing.

391

Chapter 1: Statements and functions

After a WRITESEQ, WRITESEQF, or WRITEBLK statement:

The STATUS function returns -4 if a write operation runs out of disk space on the device being written

to.

Example

Source lines

Program output

OPEN "",'EX.BASIC' TO FILE ELSE STOP PRINT | STATUS() IS 1
'STATUS() IS :STATUS()

Q=123456 Q=0CONV(Q,"MD2") PRINT
'STATUS() IS :STATUS()

Q='ASDF' Q=0CONV(Q,"D2/") PRINT 'STATUS()
IS ":STATUS()

STATUS() IS0
STATUS() IS 1

STATUS statement

Use the STATUS statement to determine the status of an open file. The STATUS statement returns the
file status as a dynamic array and assigns it to dynamic.array.

Syntax

STATUS dynamic.array FROM file.variable
{THEN statements [ELSE statements] | ELSE statements}

The following table lists the values of the dynamic array returned by the STATUS statement:

Field Stored value Description
1 Current position in the | Offset in bytes from beginning of the file.
file
End of file reached 1if EOF, 0 if not.
Error accessing file 1if error, 0 if not.
Number of bytes
available to read
5 File mode UNIX: A combination of permissions (convert to octal) and file type.
For example, if the permissions were 777, this value would be:
100777’ : standard file’ ‘40777’ : directory (for example, type 1 or
19) ‘10777’ : pipe
Windows platforms. This is the UNIX owner-group-other format as
converted from the full Windows NT ACL format by the C run-time
libraries.
File size In bytes.
Number of hard links | 0 if no links.
Windows NT: The value is always 1 on non-NTFS partitions, >0 on
NTFS partitions.
8 User ID of owner UNIX: The number assigned in /etc/passwd.
Windows NT: It is a UniVerse pseudo user ID based on the user
name and domain of the user.

392

STATUS statement

Field Stored value Description

9 Group ID of owner UNIX: The number assigned in /etc/passwd.
Windows NT: It is always 0.

10 I-node number Unique ID of file on file system; on Windows NT the value is the
Pelican internal version of the i-node for a file. For dynamic files,
the i-node number is the number of the directory holding the
components of the dynamic file.

11 Device on which i- Number of device. The value is an internally calculated value on

node resides Windows NT.

12 Device for special Number of device. The value is the drive number of the disk

character or block containing the file on Windows NT.

13 Time of last access Timein internal format.

14 Date of last access Date in internal format.

15 Time of last Time in internal format.

modification

16 Date of last Date in internal format.

modification

17 Time and date of last | Time and date in internal format. On Windows NT it is the time the

status change file was created.

18 Date of last status Date in internal format. On Windows NT it is the date the file was

change created.

19 Number of bytes

left in output queue
(applicable to
terminals only)

20 Operating system file | The internal path name UniVerse uses to access the file.

name

21 UniVerse file type For file types 1-19, 25, or 30.

22 UniVerse file modulo | For file types 2-18 only.

23 UniVerse file For file types 2-18 only.

separation
24 Part numbers of part | Multivalued list. If file is a part file, this field contains the part
files belonging to a number, and field 25 is empty.
distributed file
25 Path names of part Multivalued list. If file is a part file, this field is empty.
files belonging to a
distributed file
26 File names of part Multivalued list. If file is a part file, this field is empty.
files belonging to a
distributed file
27 Full path name The full path name of the file. On Windows NT, the value begins

with the UNC share name, if available; if not, the drive letter.

393

Chapter 1: Statements and functions

394

Field

Stored value

Description

28

Integer from 1 through
-

SQL file privileges:
1 write-only

2 read-only

3 read/write

4 delete-only

5 delete/write

6 delete/read

7 delete/read/write

29

1if thisis an SQL table, 0 if not. If the file is a view, the STATUS
statement fails. (No information on a per-column basis is
returned.)

30

User name

User name of the owner of the file.

31

File revision stamp

One of the following:
ACEF01xx = 32-bit file
ACEF02xx = 64-bit file

xx is the file revision level

32

Addressing and
Header Support Style

1 =old style file header, 32-bit addressing
3 =new style file header, 32-bit addressing
5=new style file header, 64-bit addressing

33

Maximum record ID
length

See the following table.

file.variable specifies an open file. If file.variable evaluates to the null value, the STATUS statement
fails and the program terminates with a run-time error message.

If the STATUS array is assigned to dynamic.array, the THEN statements are executed and the ELSE
statements are ignored. If no THEN statements are present, program execution continues with the
next statement. If the attempt to assign the array fails, the ELSE statements are executed; any THEN
statements are ignored.

The following table shows maximum record ID lengths for different file sizes:

Separation Block size Maximum ID Comments
length
1 512 256 Existing maximum
2 1024 512
3 1536 768
4 2048 1024 Dynamic file GROUP.SIZE of 1
5 2560 1280
6 3076 1538
7 3584 1792
8 4096 2048 Dynamic file GROUP.SIZE of 2
9 or higher 4608 and up |2048 All remaining separations

STOP statement

Example

OPENSEQ '/etc/passwd' TO test THEN PRINT "File Opened" ELSE ABORT
STATUS stat FROM test THEN PRINT stat
field5 = stat<5,1,1>
field6 = stat<o,1,1>
field8 = stat<s8,1,1>

PRINT "permissions:": fieldb
PRINT "filesize:": fieldo6
PRINT "userid:": field8

CLOSESEQ test
This is the program output:

File Opened
OFOF0F4164F33188F4164F1F0F2F2303F
0F6856F59264F6590F42496F6588F42496F6588
FOF/etc/passwdFOFOFO
permissions:33188
filesize:4164
userid:0

STOP statement

Use the STOP statement to terminate program execution and return system control to the invoking
process. To terminate a subroutine and return to the calling program, use the RETURN statement.

When expression is specified, its value is displayed before the STOP statement is executed. If
expression evaluates to the null value, nothing is printed.

To stop all processes and return to the command level, use the ABORT statement.

Use the ERRMSG statement if you want to display a formatted error message from the ERRMSG file
when the program stops.

Syntax
STOP [expression]
STOPE [expression]

STOPM [expression]

STOPE and STOPM statements

The STOPE statement uses the ERRMSG file for error messages instead of using text specified by
expression. The STOPM statement uses text specified by expression rather than messages in the
ERRMSG file. If expression in the STOPE statement evaluates to the null value, the default error
message is printed:

Message ID is NULL: undefined error

PICK, IN2, and REALITY flavors

In PICK, IN2, and REALITY flavor accounts, the STOP statement uses the ERRMSG file for error
messages instead of using text specified by expression. Use the STOP.MSG option of the SOPTIONS
statement to get this behavior in IDEAL and INFORMATION flavor accounts.

395

Chapter 1: Statements and functions

Example

PRINT "1+42=":1+2
STOP "THIS IS THE END"

This is the program output:

1+2=3
THIS IS THE END

STORAGE statement

The STORAGE statement performs no function. It is provided for compatibility with other Pick systems.

Syntax

STORAGE arglarglarg3

STR function

Use the STR function to produce a specified number of repetitions of a particular character string.

Syntax

STR (string, repeat)

string is an expression that evaluates to the string to be generated.

repeat is an expression that evaluates to the number of times string is to be repeated. If repeat does
not evaluate to a value that can be truncated to a positive integer, an empty string is returned.

If string evaluates to the null value, null is returned. If repeat evaluates to the null value, the STR
function fails and the program terminates with a run-time error message.

Example

PRINT STR('A',10)
*

X=STR(5,2)

PRINT X

*

X="HA"

PRINT STR(X,7)

This is the program output:

AAAAAAAAAA
55
HAHAHAHAHAHAHA

396

STRS function

STRS function

Use the STRS function to produce a dynamic array containing the specified number of repetitions of
each element of dynamic.array.

Syntax

STRS (dynamic.array, repeat)
CALL -STRS (return.array, dynamic.array, repeat)

CALL !STRS (return.array, dynamic.array, repeat)

dynamic.array is an expression that evaluates to the strings to be generated.

repeatis an expression that evaluates to the number of times the elements are to be repeated. If it
does not evaluate to a value that can be truncated to a positive integer, an empty string is returned for
dynamic.array.

If dynamic.array evaluates to the null value, null is returned. If any element of dynamic.array is the null
value, nullis returned for that element. If repeat evaluates to the null value, the STRS function fails
and the program terminates with a run-time error message.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Example

ABC="A":QVM:"B":QVM:"C"
PRINT STRS (ABC, 3)
This is the program output:

AAAVBBBVCCC

submitRequest function

The submitRequest function will submit a request and get a response.

Syntax

submitRequest (request handle, time out,
post data,response headers,response data, http status)

The request is formed on the basis of default HTTP settings and previous setRequestHeader|)
and addRequestParameter() values. Specifically, for a GET method with parameters added, a
parameter string (properly encoded) is created and attached to the URL string after the “?” character.

For a POST request with nonempty post_data, the data is attached to the request message as is.
No encoding is performed, and any parameters added through addRequestParameter() will be
totally ignored. Otherwise the following processing will be performed.

For a POST request with default content type, the parameter string is assembled, a Content-Length
header created, and then the string is attached as the last part of the request message.

For a POST request with multipart/* content type, a unique boundary string is created
and then multiple parts are generated in the sequence they were added through calling
addRequestParameter(). Each will have a unique boundary, followed by optional Content-*

397

Chapter 1: Statements and functions

headers, and data part. The total length is calculated and a Content-Length header is added to the
message header.

The request is then sent to the Web server identified by the URL supplied with the request and created
through createRequest() (maybe via a proxy server). UniVerse BASIC then waits for the web server
to respond. Once the response message is received, the status contained in the response is analyzed.

If the response status indicates that redirection is needed (status 301, 302, 305 or 307), it will be
performed automatically, up to five consecutive redirections (the limit is set to prevent looping,
suggested by RFC 2616).

If the response status is 401 or 407 (access denied), the response headers are examined to see if the
server requires (or accepts) BASIC authentication. If no BASIC authentication request is found, the
function returns with an error. Otherwise, default Authentication (set by set HTTPDefault) is used
to re-send the request. If no default authentication is set, and no other cached user authentication is
found, the function will return with an error.

If the user provides authentication information through “Authorization” or “Proxy-Authorization”
header, the encoded information is cached. If later, a Basic authentication request is raised, no default
authentication is found, and only one user/password encoding is cached, it will be used to re-send the
request.

The response from the HTTP server is disposed into response_header and response_data. It is the
user’s responsibility to parse the headers and data. UniVerse BASIC only performs transfer encoding
(chunked encoding), and nothing else is done on the data. In other words, content-encoding (gzip,
compress, deflate, and so forth) are supposed to be handled by the user, as with all MIME types.

Also, if a response contains header “Content-type: multipart/*”, all the data (multiple bodies enclosed
in “boundary delimiters,” see RFC 2046) is stored in response_data. It is the user’s responsibility to
parse it according to “boundary” parameter.

request_handle is the handle to the request.

time_out is the timeout value (in milliseconds) before the wait response is abandoned.
post_data is the data sent with the POST request.

response_headers is a dynamic array to store header/value pairs.

response_data is the resultant data (may be in binary format).

http_status is a dynamic array containing the status code and explanatory ext.

Return codes

The following table describes the status of each return code.

Return code Status

Success.

Invalid request handle.

Timed out.

Network Error.

Nw|Nn|+|oO

Other Errors.

99 UniVerse failed to obtain a license for an interactive PHANTOM process.

SUBR function

Use the SUBR function to return the value of an external subroutine. The SUBR function is commonly
used in I-descriptors.

398

SUBR function

Syntax

SUBR (name, [argument [,argument ..]])

name is an expression that evaluates to the name of the subroutine to be executed. This subroutine
must be cataloged in either a local catalog or the system catalog, or it must be a record in the same
object file as the calling program. If name evaluates to the null value, the SUBR function fails and the
program terminates with a run-time error message.

argument is an expression evaluating to a variable name whose value is passed to the subroutine. You
can pass up to 254 variables to the subroutine.

Subroutines called by the SUBR function must have a special syntax. The SUBROUTINE statement
defining the subroutine must specify a dummy variable as the first parameter. The value of the
subroutine is the value of the dummy variable when the subroutine finishes execution. Because the
SUBROUTINE statement has this dummy parameter, the SUBR function must specify one argument
less than the number of parameters in the SUBROUTINE statement. In other words, the SUBR

function does not pass any argument to the subroutine through the first dummy parameter. The first
argument passed by the SUBR function is referenced in the subroutine by the second parameter in the
SUBROUTINE statement, and so on.

Example

The following example uses the globally cataloged subroutine *TEST:

OPEN "","SUN.MEMBER" TO FILE ELSE STOP "CAN'T OPEN DD"
EXECUTE "SELECT SUN.MEMBER"

10%

READNEXT KEY ELSE STOP

READ ITEM FROM FILE,KEY ELSE GOTO 10

X=ITEM<7> ;* attribute 7 of file contains year

Z=SUBR ("*TEST", X)

PRINT "YEARS=", Z

GOTO 10

This is the subroutine TEST:

SUBROUTINE TEST (RESULT, X)
DATE=0CONV (DATE (), "D2/")
YR=FIELD (DATE, '/', 3)
YR='19"':YR
RESULT=YR-X
RETURN

This is the program output:

15 records selected to Select List #0
YEARS= 3

YEARS=
YEARS=
YEARS=
YEARS=
YEARS=
YEARS=
YEARS=
YEARS=
YEARS=
YEARS=
YEARS=
YEARS=

NP OB P OO ONO

399

Chapter 1: Statements and functions

YEARS= 1
YEARS= 0

SUBROUTINE statement

Use the SUBROUTINE statement to identify an external subroutine. The SUBROUTINE statement
must be the first noncomment line in the subroutine. Each external subroutine can contain only one
SUBROUTINE statement.

An external subroutine is a separate program or set of statements that can be executed by other
programs or subroutines (called calling programs) to perform a task. The external subroutine must be
compiled and cataloged before another program can call it.

The SUBROUTINE statement can specify a subroutine name for documentation purposes; it need
not be the same as the program name or the name by which it is called. The CALL statement must
reference the subroutine by its name in the catalog, in the VOC file, or in the object file.

variables are variable names used in the subroutine to pass values between the calling programs and
the subroutine. To pass an array, you must precede the array name with the keyword MAT. When an
external subroutine is called, the CALL statement must specify the same number of variables as are
specified in the SUBROUTINE statement. See the CALL statement, on page 84 for more information.

Syntax

SUBROUTINE [name] [([MAT] variable [, [MAT] variable ..])]

Example

The following SUBROUTINE statements specify three variables, EM, GROSS, and TAX, the values of
which are passed to the subroutine by the calling program:

SUBROUTINE ALONE (EM, GROSS, TAX)

SUBROUTINE STATE (EM, GROSS, TAX)

SUBS function

400

Use the SUBS function to create a dynamic array of the element-by-element subtraction of two
dynamic arrays.

Each element of array2 is subtracted from the corresponding element of arrayl with the result being
returned in the corresponding element of a new dynamic array.

If an element of one dynamic array has no corresponding element in the other dynamic array, the
missing element is evaluated as 0. If either of a corresponding pair of elements is the null value, null is
returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Syntax
SUBS (arrayl, arrayZ)
CALL -SUBS (return.array, arrayl, array2)

CALL !SUBS (return.array, arrayl, arrayZ2)

SUBSTRINGS function

Example

A=2:@VM:4:QVM:6:@SM:18
B=1:Q@VM:2:@VM:3:Q@QVM:9
PRINT SUBS (A, B)

This is the program output:

1v2v3s518Vv-9

SUBSTRINGS function

Use the SUBSTRINGS function to create a dynamic array each of whose elements are substrings of
the corresponding elements of dynamic.array.

Syntax
SUBSTRINGS (dynamic.array, start, length)
CALL -SUBSTRINGS (return.array, dynamic.array, Start, length)

CALL !SUBSTRINGS (return.array, dynamic.array, Start, length)

start indicates the position of the first character of each element to be included in the substring. If
startis 0 or a negative number, the starting position is assumed to be 1. If start is greater than the
number of characters in the element, an empty string is returned.

length specifies the total length of the substring. If length is 0 or a negative number, an empty string
is returned. If the sum of start and length is larger than the element, the substring ends with the last
character of the element.

If an element of dynamic.array is the null value, null is returned for that element. If start or length
evaluates to the null value, the SUBSTRINGS function fails and the program terminates with a run-
time error message.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Example

A="ABCDEF":QVM:"GH":@SM:"IJK"
PRINT SUBSTRINGS (A, 3,2)

This is the program output:
CDVSK

SUM function

Use the SUM function to calculate the sum of numeric data. Only elements at the lowest delimiter level
of a dynamic array are summed. The total is returned as a single element at the next highest delimiter
level.

The delimiters from highest to lowest are field, value, and subvalue.

There are seven levels of delimiters from CHAR(254) to CHAR(248): field mark, value mark, subvalue
mark, text mark, CHAR(250), CHAR(249), and CHAR(248).

401

Chapter 1: Statements and functions

The suM function removes the lowest delimiter level from a dynamic array. In a dynamic array that
contains fields, values, and subvalues, the SUM function sums only the subvalues, returning the sums
as values. In a dynamic array that contains fields and values, the SUM function sums only the values,
returning the sums as fields. In a dynamic array that contains only fields, the SUM function sums the
fields, returning the sum as the only field of the array. SUM functions can be applied repeatedly to raise
multilevel data to the highest delimiter level or to a single value.

Nonnumeric values, except the null value, are treated as 0. If dynamic.array evaluates to the null value,
nullis returned. Any element that is the null value is ignored, unless all elements of dynamic.array are
null, in which case null is returned.

Syntax

SUM (dynamic.array)

Examples

In the following examples a field mark is shown by F, a value mark is shown by V, and a subvalue mark
is shown by S.

Source lines Program output
X=20:@VM:18:@VM:9: @VM:30:@VM:80 SUM(X)= 157
PRINT "SUM(X)=",SUM(X)

X=17:@FM:18:@FM:15 SUM(X)+SUM(Y)= 80
Y=10:@FM:20

PRINT "SUM(X)+SUM(Y)=",SUM(X)+SUM(Y)
X=3:@SM:4:@SM:10:@VM:3:@VM:20 Y=17V3V20
Y=SUM(X) 7=40

PRINT "Y=")Y

Z=SUM(Y)

PRINT "Z=",Z

SUMMATION function

402

Use the SUMMATION function to return the sum of all the elements in dynamic.array. Nonnumeric
values, except the null value, are treated as 0.

Syntax

SUMMATION (dynamic.array)

CALL !SUMMATION (result , dynamic.array)

result is a variable containing the result of the sum.

dynamic.array is the dynamic array whose elements are to be added together.

Example

A=1:@VM:"ZERO" :@SM:20:@FM:-25
PRINT "SUMMATION (A)=", SUMMATION (A)

SWAP statement

This is the program output:

SUMMATION (A)= -4

SWAP statement

The SWAP statement interchanges the values in the variables you specify. variable can be any valid
variable, for example, integers, numbers, characters, and so forth.

You must ensure that the descriptor contains valid values for SWAP.

Syntax

Forvariables: SWAP variablel, variable?l

For arrays: SWAP MAT variablel, MAT variable2

Example

The following example illustrates the SWAP statement.

A=123
b=123.45
SWAP A, B
PRINT A, B
123.45 123

SYSTEM function

Use the SYSTEM function to check on the status of a system function. Use the SYSTEM function to test
whether NLS is on when you run a program, and to display information about NLS settings.

Syntax

SYSTEM (expression)

expression evaluates to the number of the system function you want to check. If expression evaluates
to the null value, the SYSTEM function fails and the program terminates with a run-time error
message.

The following table lists the values for expression and their meanings. Values 100 through 107 (read-
only) for the SYSTEM function contain NLS information. See the include file UVNLS . H for their tokens.

Value Action

1 Checks to see if the PRINTER ON statement has turned the printer on. Returns 1 if the
printer is on and 0 if it is not.

Returns the page width as defined by the terminal characteristic settings.

Returns the page length as defined by the terminal characteristic settings.

Returns the number of lines remaining on the current page.

Returns the current page number.

Returns the current line number.

~N|joflolb~lwWN

Returns the terminal code for the type of terminal the system believes you are using.

403

Chapter 1: Statements and functions

404

Value Action

8,n Checks whether the tape is attached. Returns the current block size if itis and -1 if it is
not. n is the number of the tape unit. If it is not specified, tape unit 0 is assumed.

9 Returns the current CPU millisecond count.

10 Checks whether the DATA stack is active. Returns 1 if it is active and 0 if it is not.

11 Checks whether select list 0 is active. Returns 1 if select list 0 is active and 0 if it is not.

12 By default, returns the current system time in seconds (local time). If the
TIME.MILLISECOND option is set (see SOPTIONS statement, on page 26), returns the
current system time in milliseconds.

13 Not used. Returns 0.

14 Not used. Returns 0.

15 Not used. Returns 0.

16 Returns 1 if running from a proc, otherwise returns 0.

17 Not used. Returns 0.

18 Returns the terminal number.

19 Returns the login name.

20 Not used. Returns 0.

21 Not used. Returns 0.

22 Not used. Returns 0.

23 Checks whether the Break key is enabled. Returns 1 if the Break key is enabled and 0 if it
is not.

24 Checks whether character echoing is enabled. Returns 1 if character echoing is enabled
and 0ifitis not.

25 Returns 1 if running from a phantom process, otherwise returns 0.

26 Returns the current prompt character.

27 Returns the user ID of the person using the routine.

28 Returns the effective user ID of the person using the routine.

Windows NT: This is the same value as 27.

29 Returns the group ID of the person using the routine.
Windows NT: This value is 0.

30 Returns the effective group ID of the person using the routine.
Windows NT: This value is 0.

31 Returns the UniVerse serial number.

32 Returns the location of the UV account directory.

33 Returns the last command on the command stack.

34 Returns data pending.

35 Returns the number of users currently in UniVerse.

36 Returns the maximum number of UniVerse users.

37 Returns the number of UNIX users; on Windows NT systems returns same value as 35.

38 Returns the path name of the temporary directory.

42 Returns an empty string. On Windows NT systems returns the current value of the telnet
client’s IP address, or an empty string if the process evaluating the SYSTEM function is
not the main UniVerse telnet process.

43 Returns 1 if db suspension is on, returns 0 if it is not.

44 Returns the number of UniVerse processes.

SYSTEM function

Value Action

45 Returns the BREAK count, which is the number of times breaks were disabled.

50 Returns the field number of the last READNEXT statement when reading an exploded
select list.

51 Returns information about device licensing. If you are not using device licensing,
SYSTEM(51) returns a null string. If device licensing is enabled but you are not using
uvdls as a shell, UniVerse returns an IP address of 0.0.0.0.

55 Returns the number of the Python level at which the current BASIC program is
running.Returns 0 without Python.

Returns the value of a positive integer with Python.
Note: SYSTEM(55) has been implemented to return the same value as @U2PY.

60 Returns the current value of the UniVerse configurable parameter TXMODE. The value
can be either 1 or 0.

61 Returns the status of the transaction log daemon. 1 indicates the daemon is active; 0
indicates it is inactive.

62 MODFPTRS status.

63 BLKMAX value.

64 MAXKEYSIZE value.

91 Returns 0; on Windows NT, returns 1.

99 Returns the system time in the number of seconds since midnight Coordinated
Universal Time (UTC), January 1, 1970.

100 Returns 1 if NLS is enabled, otherwise returns 0.

101 Returns the value of the NLSLCMODE parameter, otherwise returns 0.

102 Reserved for future NLS extensions.

103 Returns the terminal map name assigned to the current terminal print channel,
otherwise returns 0.

104 Returns the auxiliary printer map name assigned to the current terminal print channel,
otherwise returns 0.

105 Returns a dynamic array with field marks separating the elements, containing the
current values of the uvconfig file parameters for NLS maps, otherwise 0. Starting at
11.3.1, the value of NLSDEFSOCKMAP is reported in attribute 18 of the result. See the
UVNLS.H include file for a list of tokens that define the field order.

106 Returns the current map name used for sequential I/O. Token is NLSSSEQMAP unless
overridden by a SET . SEQ.MAP command.

107 Returns the current map name for GCl string arguments unless overridden by a
SET.GCI.MAP command.

108 NLSsvrmap

109 Returns or sets the AUTOLOGOUT value. The value returned and/or passed to this
function uses a unit of seconds. The TCL command AUTOLOGOUT uses a unit of
minutes.

1000 Q_PGBRK

1001 Returns the UniVerse flavor: 1 for IDEAL, 2 for PICK, 4 for INFORMATION, 8 for REALITY, 16
for IN2, and 64 for PIOPEN.

1002-1016 | Printer definition settings.

1017 Returns the user’s supplementary UNIX groups in a dynamic array.

1020 Reuse.

1021 Returns the GCl error number.

405

Chapter 1: Statements and functions

406

Value Action

1022 NLSopenelse

1030 Parse @SENTENCE.

1031 Turn string into a quoted argument. This is used for quoting SQL table names.

1050 Returns a dynamic array of key_cntrl_entries.

1200, Returns the UVNet link number associated with hostname. If there is an internal error

hostname | adding hostname, 0 returns. hostname is an expression that contains the host name
from a file opened through UVNet. It refers to the host name portion of the file’s path
name. For example, in the path name ORION!/ul/filename, hostname is ORION.

1201, Returns the RPC connection number associated with hostname. The UVNet REMOTE.B

hostname |interface program uses this number. If there is an internal error adding hostname, or if
RPC has not yet opened, 0 returns. If the RPC connection was opened but is now closed,
-1returns.

1202, Returns the timeout associated with hostname. If there is no timeout associated with

hostname | hostname, 0 returns.

1203 Returns the last RPC connection error number. This number is in the range 81000
through 81999. 81015 indicates that a timeout occurred. These error numbers
correspond to error messages in the SYS.MESSAGE file.

1210 Changes a string of 4 characters (IEEE float) to a double (number).

1300 Set to “TRUE” if uvadm is installed. Otherwise it is set to “FALSE.”

1301 User name.

1302 Returns information for the IGET.USERS function call in UniVerse BASIC.

1401 Returns all local user accounts on the local machine.

1402 Returns all global users accounts on the domain (MSWIN).

1403 Returns all local group accounts on the system.

1999 Assigns a delay per session to exclusive read locks (READU).

3001-3005 |Assigns a value database wide to the UniVerse performance counter, visible through
XAdmin (5 counters).

4000 Mode (HP only).

4001 Class (HP only).

4002 Prompt (HP only).

9000 R+R timestamp set up features.

9001 Returns the call stack.

9002 Changes the GtatolTrunc flag.

9003 MCT conversion.

9004 TCL CASe support.

9005 For the XTOOLSUB subroutine, gets the Driver list.

9006 For the XTOOLSUB subroutine, function with LOGTO.

9007 The MAXRLOCK value.

9010 The database type.

9012 Returns 1 if the client access is from InterCall, UniObjects, or other client tools;
otherwise 0.

9013 Returns the hostname.

TABSTOP statement

Examples

The first example returns the number of lines left to print on a page, with the maximum defined by the
TERM command. The second example returns the current page number.

Source lines Program output
Q=4 SYSTEM(Q) 20
PRINT

'SYSTEM(Q)',SYSTEM(Q)
PRINT 'X=',SYSTEM(5) |X=0

The next example sets a 30-second timeout for the UVNet connection to the system ORION:

TIMEOUT SYSTEM(1200, "ORION"), 30

TABSTOP statement

Use the TABSTOP statement to set the current tabstop width for PRINT statement. The initial tabstop
setting is 10.

If expression evaluates to the null value, the TABSTOP statement fails and the program terminates
with a run-time error message.
Syntax

TABSTOP expression

Example

1A="FIRST"
B="LAST"

PRINT A,B
TABSTOP 15
PRINT A,B

This is the program output:

FIRST LAST
FIRST LAST

TAN function

Use the TAN function to return the trigonometric tangent of expression. expression represents an angle
expressed in degrees.

Trying to take the tangent of a right angle results in a warning message, and a return value of 0.
Numbers greater than 1E17 produce a warning message, and 0 is returned. If expression evaluates to
the null value, null is returned.

Syntax

TAN (expression)

407

Chapter 1: Statements and functions

Example
PRINT TAN (45)
This is the program output:

1

TANH function

Use the TANH function to return the hyperbolic tangent of expression. expression must be numeric and
represents the angle expressed in degrees. If expression evaluates to the null value, nullis returned.
Syntax

TANH (expression)

Example
PRINT TANH (45)
This is the program output:

1

TERMINFO function

408

Use the TERMINFO function to access the device-independent terminal handler string defined for
the current terminal type. The TERMINFO function returns a dynamic array containing the terminal
characteristics for the terminal type set by TERM or SET.TERM.TYPE.

Syntax

TERMINFO (argument)

argument can be 0 or 1, depending on whether the terminal characteristics are returned as stored,
or converted to printable form. If argument is 0, the function returns the terminal characteristics in
the form usable by BASIC applications for device-independent terminal handling with the TPARM
function and the TPRINT statement. If argument is 1, the function returns characteristics in terminfo
source format. Boolean values are returned as Y = true and N = false. The terminfo files contain many
unprintable control characters that may adversely affect your terminal.

If argument evaluates to the null value, the TERMINFO function fails and the program terminates with
a run-time error message.

The easiest way to access the terminfo characteristics is by including the BASIC file
UNIVERSE.INCLUDE TERMINFO inyour program. The syntaxis:

SINCLUDE UNIVERSE.INCLUDE TERMINFO

The file contains lines that equate each dynamic array element returned by TERMINFO with a name,
so that each element can be easily accessed in your program. Once this file has been included in your
program, you can use the defined names to access terminal characteristics. The following table lists
the contents of this file:

terminfo contents

terminfo$ = terminfo(0)

TERMINFO function

terminfo contents

EQU TERMINAL.NAME

TO terminfo$<1>

EQU COLUMNS

TO terminfo$<2>

EQU LINES

TO terminfo$<3>

EQU CARRIAGE.RETURN

TO terminfo$<4>

EQU LINE.FEED

TO terminfo$<5>

EQU NEWLINE TO terminfo$<6>
EQU BACKSPACE TO terminfoS$<7>
EQU BELL TO terminfo$<8>

EQU SCREEN.FLASH

TO terminfo$<9>

EQU PADDING.CHARACTER

TO terminfo$<10>

EQU PAD.BAUD.RATE

TO terminfo$<11>

EQU HARD.COPY

TO terminfo$<12>

EQU OVERSTRIKES

TO terminfo$<13>

EQU ERASES.OVERSTRIKE

TO terminfo$<14>

EQU AUTOMATIC.RIGHT.MARGIN

TO terminfo$<15>

EQU RIGHT.MARGIN.EATS.NEWLINE

TO terminfo$<16>

EQU AUTOMATIC.LEFT.MARGIN

TO terminfo$<17>

EQU UNABLE.TO.PRINT.TILDE

TO terminfo$<18>

EQU ERASE.SCREEN

TO terminfo$<19>

EQU ERASE.TO.END.OF.SCREEN

TO terminfo$<20>

EQU ERASE.TO.BEGINNING.OF.SCREEN

TO terminfo$<21>

EQU ERASE.LINE

TO terminfo$<22>

EQU ERASE.TO.END.OF.LINE

TO terminfo$<23>

EQU ERASE.TO.BEGINNING.OF.LINE

TO terminfo$<24>

EQU ERASE.CHARACTERS

TO terminfo$<25>

EQU MOVE.CURSOR.TO.ADDRESS

TO terminfo$<26>

EQU MOVE.CURSOR.TO.COLUMN

TO terminfo$<27>

EQU MOVE.CURSOR.TO.ROW

TO terminfo$<28>

EQU MOVE.CURSOR.RIGHT

TO terminfo$<29>

EQU MOVE.CURSOR.LEFT

TO terminfo$<30>

EQU MOVE.CURSOR.DOWN

TO terminfo$<31>

EQU MOVE.CURSOR.UP

TO terminfo$<32>

EQU MOVE.CURSOR.RIGHT.PARM

TO terminfo$<33>

EQU MOVE.CURSOR.LEFT.PARM

TO terminfo$<34>

EQU MOVE.CURSOR.DOWN.PARM

TO terminfo$<35>

EQU MOVE.CURSOR.UP.PARM

TO terminfo$<36>

EQU MOVE.CURSOR.TO.HOME

TO terminfo$<37>

EQU MOVE.CURSOR.TO.LAST.LINE

TO terminfo$<38>

EQU CURSOR.SAVE

TO terminfo$<39>

EQU CURSOR.RESTORE

TO terminfo$<40>

EQU INSERT.CHARACTER

TO terminfo$<41>

EQU INSERT.CHARACTER.PARM

TO terminfo$<42>

EQU INSERT.MODE.BEGIN

TO terminfo$<43>

409

Chapter 1: Statements and functions

410

terminfo contents

EQU INSERT.MODE.END

TO terminfo$<44>

EQU INSERT.PAD

TO terminfo$<45>

EQU MOVE.INSERT.MODE

TO terminfo$<46>

EQU INSERT.NULL.SPECIAL

TO terminfo$<47>

EQU DELETE.CHARACTER

TO terminfo$<48>

EQU DELETE.CHARACTER.PARM

TO terminfo$<49>

EQU INSERT.LINE

TO terminfo$<50>

EQU INSERT.LINE.PARM

TO terminfo$<51>

EQU DELETE.LINE

TO terminfo$<52>

EQU DELETE.LINE.PARM

TO terminfo$<53>

EQU SCROLL.UP

TO terminfo$<54>

EQU SCROLL.UP.PARM

TO terminfo$<55>

EQU SCROLL.DOWN

TOterminfo$<56>

EQU SCROLL.DOWN.PARM

TOterminfo$<57>

EQU CHANGE.SCROLL.REGION

TOterminfo$<58>

EQU SCROLL.MODE.END

TOterminfo$<59>

EQU SCROLL.MODE.BEGIN

TOterminfo$<60>

EQU VIDEO.NORMAL

TO terminfo$<61>

EQU VIDEO.REVERSE

TO terminfo$<62>

EQU VIDEO.BLINK

TO terminfo$<63>

EQU VIDEO.UNDERLINE

TO terminfo$<64>

EQU VIDEO.DIM

TO terminfo$<65>

EQU VIDEO.BOLD

TO terminfo$<66>

EQU VIDEO.BLANK

TO terminfoS$<67>

EQU VIDEO.STANDOUT

TO terminfo$<68>

EQU VIDEO.SPACES

TO terminfo$<69>

EQU MOVE.VIDEO.MODE

TO terminfo$<70>

EQU TAB TO terminfo$<71>
EQU BACK.TAB TO terminfoS$<72>
EQU TAB.STOP.SET TO terminfo$<73>
EQU TAB.STOP.CLEAR TO terminfo$<74>
EQU CLEAR.ALL.TAB.STOPS TO terminfo$<75>

EQU TAB.STOP.INITIAL

TO terminfo$<76>

EQU WRITE.PROTECT.BEGIN

TO terminfoS<77>

EQU WRITE.PROTECT.END

TO terminfo$<78>

EQU SCREEN.PROTECT.BEGIN

TO terminfo$<79>

EQU SCREEN.PROTECT.END

TO terminfo$<80>

EQU WRITE.PROTECT.COLUMN

TO terminfo$<81>

EQU PROTECT.VIDEO.NORMAL

TO terminfo$<82>

EQU PROTECT.VIDEO.REVERSE

TO terminfo$<83>

EQU PROTECT.VIDEO.BLINK

TO terminfo$<84>

EQU PROTECT.VIDEO.UNDERLINE

TO terminfo$<85>

EQU PROTECT.VIDEO.DIM

TO terminfo$<86>

TERMINFO function

terminfo contents

EQU PROTECT.VIDEO.BOLD

TO terminfo$<87>

EQU PROTECT.VIDEO.BLANK

TO terminfo$<88>

EQU PROTECT.VIDEO.STANDOUT

TO terminfo$<89>

EQU BLOCK.MODE.BEGIN

TO terminfo$<90>

EQU BLOCK.MODE.END

TO terminfo$<91>

EQU SEND.LINE.ALL

TO terminfo$<92>

EQU SEND.LINE.UNPROTECTED

TO terminfo$<93>

EQU SEND.PAGE.ALL

TO terminfo$<94>

EQU SEND.PAGE.UNPROTECTED

TO terminfo$<95>

EQU SEND.MESSAGE.ALL

TO terminfo$<96>

EQU SEND.MESSAGE.UNPROTECTED

TO terminfo$<97>

EQU TERMINATE.FIELD

TO terminfo$<98>

EQU TERMINATE.LINE

TO terminfo$<99>

EQU TERMINATE.PAGE

TO terminfo$<100>

EQU STORE.START.OF.MESSAGE

TO terminfo$<101>

EQU STORE.END.OF.MESSAGE

TO terminfo$<102>

EQU LINEDRAW.BEGIN

TO terminfo$<103>

EQU LINEDRAW.END

TO terminfo$<104>

EQU MOVE.LINEDRAW.MODE

TO terminfo$<105>

EQU LINEDRAW.CHARACTER

TO terminfo$<106>

EQU LINEDRAW.UPPER.LEFT.CORNER

TO terminfo$<107>

EQU LINEDRAW.UPPER.RIGHT.CORNER

TO terminfo$<108>

EQU LINEDRAW.LOWER.LEFT.CORNER

TO terminfo$<109>

EQU LINEDRAW.LOWER.RIGHT.CORNER

TO terminfo$<110>

EQU LINEDRAW.LEFT.VERTICAL

TO terminfo$<111>

EQU LINEDRAW.CENTER.VERTICAL

TO terminfo$<112>

EQU LINEDRAW.RIGHT.VERTICAL

TO terminfo$<113>

EQU LINEDRAW.UPPER.HORIZONTAL

TO terminfo$<114>

EQU LINEDRAW.CENTER.HORIZONTAL

TO terminfo$<115>

EQU LINEDRAW.LOWER.HORIZONTAL

TO terminfo$<116>

EQU LINEDRAW.UPPER.TEE

TO terminfo$<117>

EQU LINEDRAW.LOWER.TEE

TO terminfo$<118>

EQU LINEDRAW.LEFT.TEE

TO terminfo$<119>

EQU LINEDRAW.RIGHT.TEE

TO terminfo$<120>

EQU LINEDRAW.CROSS

TO terminfo$<121>

EQU CURSOR.NORMAL

TO terminfo$<122>

EQU CURSOR.VISIBLE

TO terminfo$<123>

EQU CURSOR.INVISIBLE

TO terminfo$<124>

EQU SCREEN.VIDEO.ON

TO terminfo$<125>

EQU SCREEN.VIDEO.OFF

TO terminfo$<126>

EQU KEYCLICK.ON

TO terminfo$<127>

EQU KEYCLICK.OFF

TO terminfo$<128>

EQU KEYBOARD.LOCK.ON

TO terminfo$<129>

411

Chapter 1: Statements and functions

412

terminfo contents

EQU KEYBOARD.LOCK.OFF

TO terminfo$<130>

EQU MONITOR.MODE.ON

TO terminfo$<131>

EQU MONITOR.MODE.OFF

TO terminfo$<132>

EQU PRINT.SCREEN

TO terminfo$<133>

EQU PRINT.MODE.BEGIN

TO terminfo$<134>

EQU PRINT.MODE.END

TO terminfo$<135>

EQU HAS.STATUS.LINE

TO terminfo$<136>

EQU STATUS.LINE.WIDTH

TO terminfo$<137>

EQU STATUS.LINE.BEGIN

TO terminfo$<138>

EQU STATUS.LINE.END

TO terminfo$<139>

EQU STATUS.LINE.DISABLE

TO terminfo$<140>

EQU HAS.FUNCTION.LINE

TO terminfo$<141>

EQU FUNCTION.LINE.BEGIN

TO terminfo$<142>

EQU FUNCTION.LINE.END

TO terminfo$<143>

EQU KEY.BACKSPACE

TO terminfo$<144>

EQU KEY.MOVE.CURSOR.RIGHT

TO terminfo$<145>

EQU KEY.MOVE.CURSOR.LEFT

TO terminfo$<146>

EQU KEY.MOVE.CURSOR.DOWN

TO terminfo$<147>

EQU KEY.MOVE.CURSOR.UP

TO terminfo$<148>

EQU KEY.MOVE.CURSOR.TO.HOME

TO terminfo$<149>

EQU KEY.MOVE.CURSOR.TO.LAST.LINE

TO terminfo$<150>

EQU KEY.INSERT.CHARACTER

TO terminfo$<151>

EQU KEY.INSERT.MODE.ON

TO terminfo$<152>

EQU KEY.INSERT.MODE.END

TO terminfo$<153>

EQU KEY.INSERT.MODE.TOGGLE

TO terminfo$<154>

EQU KEY.DELETE.CHARACTER

TO terminfo$<155>

EQU KEY.INSERT.LINE

TO terminfo$<156>

EQU KEY.DELETE.LINE

TO terminfo$<157>

EQU KEY.ERASE.SCREEN

TO terminfo$<158>

EQU KEY.ERASE.END.OF.LINE

TO terminfo$<159>

EQU KEY.ERASE.END.OF.SCREEN

TO terminfo$<160>

EQU KEY.BACK.TAB

TO terminfo$<161>

EQU KEY.TAB.STOP.SET

TO terminfo$<162>

EQU KEY.TAB.STOP.CLEAR

TO terminfo$<163>

EQU KEY.TAB.STOP.CLEAR.ALL

TO terminfo$<164>

EQU KEY.NEXT.PAGE

TO terminfo$<165>

EQU KEY.PREVIOUS.PAGE

TO terminfo$<166>

EQU KEY.SCROLL.UP

TO terminfo$<167>

EQU KEY.SCROLL.DOWN

TO terminfo$<168>

EQU KEY.SEND.DATA

TO terminfo$<169>

EQU KEY.PRINT

TO terminfo$<170>

EQU KEY.FUNCTION.O

TO terminfo$<171>

EQU KEY.FUNCTION.1

TO terminfo$<172>

TERMINFO function

terminfo contents

EQU KEY.FUNCTION.2

TO terminfo$<173>

EQU KEY.FUNCTION.3

TO terminfo$<174>

EQU KEY.FUNCTION.4

TO terminfo$<175>

EQU KEY.FUNCTION.5

TO terminfo$<176>

EQU KEY.FUNCTION.6

TO terminfoS$<177>

EQU KEY.FUNCTION.7

TO terminfo$<178>

EQU KEY.FUNCTION.8

TO terminfo$<179>

EQU KEY.FUNCTION.9

TO terminfo$<180>

EQU KEY.FUNCTION.10

TO terminfo$<181>

EQU KEY.FUNCTION.11

TO terminfo$<182>

EQU KEY.FUNCTION.12

TO terminfo$<183>

EQU KEY.FUNCTION.13

TO terminfo$<184>

EQU KEY.FUNCTION.14

TO terminfo$<185>

EQU KEY.FUNCTION.15

TO terminfo$<186>

EQU KEY.FUNCTION.16

TO terminfo$<187>

EQU LABEL.KEY.FUNCTION.O

TO terminfo$<188>

EQU LABEL.KEY.FUNCTION.1

TO terminfo$<189>

EQU LABEL.KEY.FUNCTION.2

TO terminfo$<190>

EQU LABEL.KEY.FUNCTION.3

TO terminfo$<191>

EQU LABEL.KEY.FUNCTION.4

TO terminfo$<192>

EQU LABEL.KEY.FUNCTION.5

TO terminfo$<193>

EQU LABEL.KEY.FUNCTION.6

TO terminfo$<194>

EQU LABEL.KEY.FUNCTION.7

TO terminfo$<195>

EQU LABEL.KEY.FUNCTION.8

TO terminfo$<196>

EQU LABEL.KEY.FUNCTION.9

TO terminfo$<197>

EQU LABEL.KEY.FUNCTION.10

TO terminfo$<198>

EQU LABEL.KEY.FUNCTION.11

TO terminfo$<199>

EQU LABEL.KEY.FUNCTION.12

TO terminfo$<200>

EQU LABEL.KEY.FUNCTION.13

TO terminfo$<201>

EQU LABEL.KEY.FUNCTION.14

TO terminfo$<202>

EQU LABEL.KEY.FUNCTION.15

TO terminfo$<203>

EQU LABEL.KEY.FUNCTION.16

TO terminfo$<204>

EQU KEYEDIT.FUNCTION

TO terminfo$<205>

EQU KEYEDIT.ESCAPE

TO terminfo$<206>

EQU KEYEDIT.EXIT

TO terminfo$<207>

EQU KEYEDIT.BACKSPACE

TO terminfo$<208>

EQU KEYEDIT.MOVE.BACKWARD

TO terminfo$<209>

EQU KEYEDIT.MOVE.FORWARD

TO terminfo$<210>

EQU KEYEDIT.INSERT.CHARACTER

TO terminfo$<211>

EQU KEYEDIT.INSERT.MODE.BEGIN

TO terminfo$<212>

EQU KEYEDIT.INSERT.MODE.END

TO terminfo$<213>

EQU KEYEDIT.INSERT.MODE.TOGGLE

TO terminfo$<214>

EQU KEYEDIT.DELETE.CHARACTER

TO terminfo$<215>

413

Chapter 1: Statements and functions

414

terminfo contents

EQU KEYEDIT.ERASE.END.OF.FIELD

TO terminfo$<216>

EQU KEYEDIT.ERASE.FIELD

TO terminfo$<217>

EQU AT.NEGATIVE.1

TO terminfo$<218>

EQU AT.NEGATIVE.2

TO terminfo$<219>

EQU AT.NEGATIVE.3

TO terminfo$<220>

EQU AT.NEGATIVE.4

TO terminfo$<221>

EQU AT.NEGATIVE.5

TO terminfo$<222>

EQU AT.NEGATIVE.6

TO terminfo$<223>

EQU AT.NEGATIVE.7

TO terminfo$<224>

EQU AT.NEGATIVE.8

TO terminfo$<225>

EQU AT.NEGATIVE.9

TO terminfo$<226>

EQU AT.NEGATIVE.10

TO terminfo$<227>

EQU AT.NEGATIVE.11

TO terminfo$<228>

EQU AT.NEGATIVE.12

TO terminfo$<229>

EQU AT.NEGATIVE.13

TO terminfo$<230>

EQU AT.NEGATIVE.14

TO terminfo$<231>

EQU AT.NEGATIVE.15

TO terminfo$<232>

EQU AT.NEGATIVE.16

TO terminfo$<233>

EQU AT.NEGATIVE.17

TO terminfo$<234>

EQU AT.NEGATIVE.18

TO terminfo$<235>

EQU AT.NEGATIVE.19

TO terminfo$<236>

EQU AT.NEGATIVE.20

TO terminfo$<237>

EQU AT.NEGATIVE.21

TO terminfo$<238>

EQU AT.NEGATIVE.22

TO terminfo$<239>

EQU AT.NEGATIVE.23

TO terminfo$<240>

EQU AT.NEGATIVE.24

TO terminfo$<241>

EQU AT.NEGATIVE.25

TO terminfo$<242>

EQU AT.NEGATIVE.26

TO terminfo$<243>

EQU AT.NEGATIVE.27

TO terminfo$<244>

EQU AT.NEGATIVE.28

TO terminfo$<245>

EQU AT.NEGATIVE.29

TO terminfo$<246>

EQU AT.NEGATIVE.30

TO terminfo$<247>

EQU AT.NEGATIVE.31

TO terminfo$<248>

EQU AT.NEGATIVE.32

TO terminfo$<249>

EQU AT.NEGATIVE.33

TO terminfo$<250>

EQU AT.NEGATIVE.34

TO terminfo$<251>

EQU AT.NEGATIVE.35

TO terminfo$<252>

EQU AT.NEGATIVE.36

TO terminfo$<253>

EQU AT.NEGATIVE.37

TO terminfo$<254>

EQU AT.NEGATIVE.38

TO terminfo$<255>

EQU AT.NEGATIVE.39

TO terminfo$<256>

EQU AT.NEGATIVE.40

TO terminfo$<257>

EQU AT.NEGATIVE.41

TO terminfo$<258>

TERMINFO function

terminfo contents

EQU AT.NEGATIVE.42

TO terminfo$<259>

EQU AT.NEGATIVE.43

TO terminfo$<260>

EQU AT.NEGATIVE.44

TO terminfo$<261>

EQU AT.NEGATIVE.45

TO terminfo$<262>

EQU AT.NEGATIVE.46

TO terminfo$<263>

EQU AT.NEGATIVE.47

TO terminfo$<264>

EQU AT.NEGATIVE.48

TO terminfo$<265>

EQU AT.NEGATIVE.49

TO terminfo$<266>

EQU AT.NEGATIVE.50

TO terminfo$<267>

EQU AT.NEGATIVE.51

TO terminfo$<268>

EQU AT.NEGATIVE.52

TO terminfo$<269>

EQU AT.NEGATIVE.53

TO terminfo$<270>

EQU AT.NEGATIVE.54

TO terminfo$<271>

EQU AT.NEGATIVE.55

TO terminfo$<272>

EQU AT.NEGATIVE.56

TO terminfo$<273>

EQU AT.NEGATIVE.57

TO terminfo$<274>

EQU AT.NEGATIVE.58

TO terminfo$<275>

EQU AT.NEGATIVE.59

TO terminfo$<276>

EQU AT.NEGATIVE.60

TO terminfo$<277>

EQU AT.NEGATIVE.61

TO terminfo$<278>

EQU AT.NEGATIVE.62

TO terminfo$<279>

EQU AT.NEGATIVE.63

TO terminfo$<280>

EQU AT.NEGATIVE.64

TO terminfo$<281>

EQU AT.NEGATIVE.65

TO terminfo$<282>

EQU AT.NEGATIVE.66

TO terminfo$<283>

EQUAT.NEGATIVE.67

TO terminfo$<284>

EQUAT.NEGATIVE.68

TO terminfo$<285>

EQU AT.NEGATIVE.69

TO terminfo$<286>

EQU AT.NEGATIVE.70

TO terminfo$<287>

EQU AT.NEGATIVE.71

TO terminfo$<288>

EQU AT.NEGATIVE.72

TO terminfo$<289>

EQU AT.NEGATIVE.73

TO terminfo$<290>

EQU AT.NEGATIVE.74

TO terminfo$<291>

EQU AT.NEGATIVE.75

TO terminfo$<292>

EQU AT.NEGATIVE.76

TO terminfo$<293>

EQU AT.NEGATIVE.77

TO terminfo$<294>

EQUAT.NEGATIVE.78

TO terminfo$<295>

EQU AT.NEGATIVE.79

TO terminfo$<296>

EQU AT.NEGATIVE.80

TO terminfo$<297>

EQU AT.NEGATIVE.81

TO terminfo$<298>

EQU AT.NEGATIVE.82

TO terminfo$<299>

EQU AT.NEGATIVE.83

TO terminfo$<300>

EQU AT.NEGATIVE.84

TO terminfo$<301>

415

Chapter 1: Statements and functions

416

terminfo contents

EQU AT.NEGATIVE.85

TO terminfo$<302>

EQU AT.NEGATIVE.86

TO terminfo$<303>

EQU AT.NEGATIVE.87

TO terminfo$<304>

EQU AT.NEGATIVE.88

TO terminfo$<305>

EQU AT.NEGATIVE.89

TO terminfo$<306>

EQU AT.NEGATIVE.90

TO terminfo$<307>

EQU AT.NEGATIVE.91

TO terminfo$<308>

EQU AT.NEGATIVE.92

TO terminfo$<309>

EQU AT.NEGATIVE.93

TO terminfo$<310>

EQU AT.NEGATIVE.94

TO terminfo$<311>

EQU AT.NEGATIVE.95

TO terminfo$<312>

EQU AT.NEGATIVE.96

TO terminfo$<313>

EQU AT.NEGATIVE.O7

TO terminfo$<314>

EQU AT.NEGATIVE.98

TO terminfo$<315>

EQU AT.NEGATIVE.99

TO terminfo$<316>

EQU AT.NEGATIVE.100

TO terminfo$<317>

EQU AT.NEGATIVE.101

TO terminfo$<318>

EQU AT.NEGATIVE.102

TO terminfo$<319>

EQU AT.NEGATIVE.103

TO terminfo$<320>

EQU AT.NEGATIVE.104

TO terminfo$<321>

EQU AT.NEGATIVE.105

TO terminfo$<322>

EQU AT.NEGATIVE.106

TO terminfo$<323>

EQU AT.NEGATIVE.107

TO terminfo$<324>

EQU AT.NEGATIVE.108

TO terminfo$<325>

EQU AT.NEGATIVE.109

TO terminfo$<326>

EQU AT.NEGATIVE.110

TO terminfo$<327>

EQU AT.NEGATIVE.111

TO terminfo$<328>

EQU AT.NEGATIVE.112

TO terminfo$<329>

EQU AT.NEGATIVE.113

TO terminfo$<330>

EQU AT.NEGATIVE.114

TO terminfo$<331>

EQU AT.NEGATIVE.115

TO terminfo$<332>

EQU AT.NEGATIVE.116

TO terminfo$<333>

EQU AT.NEGATIVE.117

TO terminfo$<334>

EQU AT.NEGATIVE.118

TO terminfo$<335>

EQU AT.NEGATIVE.119

TO terminfo$<336>

EQU AT.NEGATIVE.120

TO terminfo$<337>

EQU AT.NEGATIVE.121

TO terminfo$<338>

EQU AT.NEGATIVE.122

TO terminfo$<339>

EQU AT.NEGATIVE.123

TO terminfo$<340>

EQU AT.NEGATIVE.124

TO terminfo$<341>

EQU AT.NEGATIVE.125

TO terminfo$<342>

EQU AT.NEGATIVE.126

TO terminfo$<343>

EQU AT.NEGATIVE.127

TO terminfo$<344>

TERMINFO function

terminfo contents

EQU AT.NEGATIVE.128

TO terminfo$<345>

EQU DBLE.LDRAW.UP.LEFT.CORNER

TO terminfo$<379>

EQU DBLE.LDRAW.UP.RIGHT.CORNER

TO terminfo$<380>

EQU DBLE.LDRAW.LO.LEFT.CORNER

TO terminfo$<381>

EQU DBLE.LDRAW.LO.RIGHT.CORNER

TO terminfo$<382>

EQU DBLE.LDRAW.HORIZ

TO terminfo$<383>

EQU DBLE.LDRAW.VERT

TO terminfo$<384>

EQU DBLE.LDRAW.UP.TEE

TO terminfo$<385>

EQU DBLE.LDRAW.LO.TEE

TO terminfo$<386>

EQU DBLE.LDRAW.LEFT.TEE

TO terminfo$<387>

EQU DBLE.LDRAW.RIGHT.TEE

TO terminfo$<388>

EQU DBLE.LDRAW.CROSS

TO terminfo$<389>

EQU LDRAW.LEFT.TEE.DBLE.HORIZ

TO terminfo$<390>

EQU LDRAW.LEFT.TEE.DBLE.VERT

TO terminfo$<391>

EQU LDRAW.RIGHT.TEE.DBLE.HORIZ

TO terminfo$<392>

EQU LDRAW.RIGHT.TEE.DBLE.VERT

TO terminfo$<393>

EQU LDRAW.LOWER.TEE.DBLE.HORIZ

TO terminfo$<394>

EQU LDRAW.LOWER.TEE.DBLE.VERT

TO terminfo$<395>

EQU LDRAW.UP.TEE.DBLE.HORIZ

TO terminfo$<396>

EQU LDRAW.UP.TEE.DBLE.VERT

TO terminfo$<397>

EQU LDRAW.UP.LEFT.CORNER.DBLE.HORIZ

TO terminfo$<398>

EQU LDRAW.UP.LEFT.CORNER.DBLE.VERT

TO terminfo$<399>

EQU LDRAW.UP.RIGHT.CORNER.DBLE.HORIZ

TO terminfo$<400>

EQU LDRAW.UP.RIGHT.CORNER.DBLE.VERT

TO terminfo$<401>

EQU LDRAW.LO.LEFT.CORNER.DBLE.HORIZ

TO terminfo$<402>

EQU LDRAW.LO.LEFT.CORNER.DBLE.VERT

TO terminfo$<403>

EQU LDRAW.LO.RIGHT.CORNER.DBLE.HORIZ

TO terminfo$<404>

EQU LDRAW.LO.RIGHT.CORNER.DBLE.VERT

TO terminfo$<405>

EQU LDRAW.CROSS.DBLE.HORIZ

TO terminfo$<406>

EQU LDRAW.CROSS.DBLE.VERT

TO terminfo$<407>

EQU NO.ESC.CTLC

TO terminfo$<408>

EQU CEOL.STANDOUT.GLITCH

TO terminfo$<409>

EQU GENERIC.TYPE

TO terminfo$<410>

EQU HAS.META.KEY

TO terminfo$<411>

EQU MEMORY.ABOVE

TO terminfo$<412>

EQU MEMORY.BELOW

TO terminfo$<413>

EQU STATUS.LINE.ESC.OK

TO terminfo$<414>

EQU DEST.TABS.MAGIC.SMSO

TO terminfo$<415>

EQU TRANSPARENT.UNDERLINE

TO terminfo$<416>

EQU XON.XOFF

TO terminfo$<417>

EQU NEEDS.XON.XOFF

TO terminfo$<418>

EQU PRTR.SILENT

TO terminfo$<419>

EQU HARD.CURSOR

TO terminfo$<420>

417

Chapter 1: Statements and functions

418

terminfo contents

EQU NON.REV.RMCUP

TO terminfo$<421>

EQU NO.PAD.CHAR

TO terminfo$<422>

EQU LINES.OF.MEMORY

TO terminfo$<423>

EQU VIRTUAL.TERMINAL

TO terminfo$<424>

EQU NUM.LABELS

TO terminfo$<425>

EQU LABEL.HEIGHT

TO terminfo$<426>

EQU LABEL.WIDTH

TO terminfo$<427>

EQU LINE.ATTRIBUTE

TO terminfo$<428>

EQU COMMAND.CHARACTER

TO terminfo$<429>

EQU CURSOR.MEM.ADDRESS

TO terminfo$<430>

EQU DOWN.HALF.LINE

TO terminfo$<431>

EQU ENTER.CA.MODE

TO terminfo$<432>

EQU ENTER.DELETE.MODE

TO terminfo$<433>

EQU ENTER.PROTECTED.MODE

TO terminfo$<434>

EQU EXIT.ATTRIBUTE.MODE

TO terminfo$<435>

EQU EXIT.CA.MODE

TO terminfo$<436>

EQU EXIT.DELETE.MODE

TO terminfo$<437>

EQU EXIT.STANDOUT.MODE

TO terminfo$<438>

EQU EXIT.UNDERLINE.MODE

TO terminfo$<439>

EQU FORM.FEED

TO terminfo$<440>

EQU INIT.1STRING

TO terminfo$<441>

EQU INIT.2STRING

TO terminfo$<442>

EQU INIT.3STRING

TO terminfo$<443>

EQU INIT.FILE TO terminfo$<444>
EQU INS.PREFIX TO terminfo$<445>
EQU KEY.IC TO terminfo$<446>

EQU KEYPAD.LOCAL

TO terminfo$<447>

EQU KEYPAD.XMIT

TO terminfo$<448>

EQU META.OFF

TO terminfo$<449>

EQU META.ON

TO terminfo$<450>

EQU PKEY.KEY

TO terminfo$<451>

EQU PKEY.LOCAL

TO terminfo$<452>

EQU PKEY.XMIT

TO terminfo$<453>

EQU REPEAT.CHAR

TO terminfo$<454>

EQU RESET.1STRING

TO terminfo$<455>

EQU RESET.2STRING

TO terminfo$<456>

EQU RESET.3STRING

TO terminfo$<457>

EQU RESET.FILE

TO terminfo$<458>

EQU SET.ATTRIBUTES

TO terminfo$<459>

EQU SET.WINDOW

TO terminfo$<460>

EQU UNDERLINE.CHAR

TO terminfo$<461>

EQU UP.HALF.LINE

TO terminfo$<462>

EQU INIT.PROG

TO terminfo$<463>

TERMINFO function

terminfo contents

EQU KEY.A1 TO terminfo$<464>
EQU KEY.A3 TO terminfo$<465>
EQU KEY.B2 TO terminfo$<466>
EQU KEY.C1 TO terminfo$<467>
EQU KEY.C3 TO terminfo$<468>

EQU PRTR.NON

TO terminfo$<469>

EQU CHAR.PADDING

TO terminfo$<470>

EQU LINEDRAW.CHARS

TO terminfo$<471>

EQU PLAB.NORM

TO terminfo$<472>

EQU ENTER.XON.MODE

TO terminfo$<473>

EQU EXIT.XON.MODE

TO terminfo$<474>

EQU ENTER.AM.MODE

TO terminfo$<475>

EQU EXIT.AM.MODE

TO terminfo$<476>

EQU XON.CHARACTER

TO terminfo$<477>

EQU XOFF.CHARACTER

TO terminfo$<478>

EQU ENABLE.LINEDRAW

TO terminfo$<479>

EQU LABEL.ON

TO terminfo$<480>

EQU LABEL.OFF

TO terminfo$<481>

EQU KEY.BEG

TO terminfo$<482>

EQU KEY.CANCEL

TO terminfo$<483>

EQU KEY.CLOSE

TO terminfo$<484>

EQU KEY.COMMAND

TO terminfo$<485>

EQU KEY.COPY

TO terminfo$<486>

EQU KEY.CREATE

TO terminfo$<487>

EQU KEY.END TO terminfo$<488>
EQU KEY.ENTER TO terminfo$<489>
EQU KEY.EXIT TO terminfo$<490>
EQU KEY.FIND TO terminfo$<491>

EQU KEY.HELP

TO terminfo$<492>

EQU KEY.MARK

TO terminfo$<493>

EQU KEY.MESSAGE

TO terminfo$<494>

EQU KEY.MOVE

TO terminfo$<495>

EQU KEY.NEXT

TO terminfo$<496>

EQU KEY.OPEN

TO terminfo$<497>

EQU KEY.OPTIONS

TO terminfo$<498>

EQU KEY.PREVIOUS

TO terminfo$<499>

EQU KEY.REDO

TO terminfo$<500>

EQU KEY.REFERENCE

TO terminfo$<501>

EQU KEY.REFRESH

TO terminfo$<502>

EQU KEY.REPLACE

TO terminfo$<503>

EQU KEY.RESTART

TO terminfo$<504>

EQU KEY.RESUME

TO terminfo$<505>

EQU KEY.SAVE

TO terminfo$<506>

419

Chapter 1: Statements and functions

420

terminfo contents

EQU KEY.SUSPEND

TO terminfo$<507>

EQU KEY.UNDO

TO terminfo$<508>

EQU KEY.SBEG

TO terminfo$<509>

EQU KEY.SCANCEL

TO terminfo$<510>

EQU KEY.SCOMMAND

TO terminfo$<511>

EQU KEY.SCOPY

TO terminfo$<512>

EQU KEY.SCREATE

TO terminfo$<513>

EQU KEY.SDC

TO terminfo$<514>

EQU KEY.SDL

TO terminfo$<515>

EQU KEY.SELECT

TO terminfo$<516>

EQU KEY.SEND

TO terminfo$<517>

EQU KEY.SEOL

TO terminfo$<518>

EQU KEY.SEXIT

TO terminfo$<519>

EQU KEY.SFIND

TO terminfo$<520>

EQU KEY.SHELP

TO terminfo$<521>

EQU KEY.SHOME

TO terminfo$<522>

EQU KEY.SIC

TO terminfo$<523>

EQU KEY.SLEFT

TO terminfo$<524>

EQU KEY.SMESSAGE

TO terminfo$<525>

EQU KEY.SMOVE

TO terminfo$<526>

EQU KEY.SNEXT

TO terminfo$<527>

EQU KEY.SOPTIONS

TO terminfo$<528>

EQU KEY.SPREVIOUS

TO terminfo$<529>

EQU KEY.SPRINT

TO terminfo$<530>

EQU KEY.SREDO

TO terminfo$<531>

EQU KEY.SREPLACE

TO terminfo$<532>

EQU KEY.SRIGHT

TO terminfo$<533>

EQU KEY.SRESUM

TO terminfo$<534>

EQU KEY.SSAVE

TO terminfo$<535>

EQU KEY.SSUSPEND

TO terminfo$<536>

EQU KEY.SUNDO

TO terminfo$<537>

EQU REQ.FOR.INPUT

TO terminfo$<538>

EQU KEY.F17 TO terminfo$<539>
EQU KEY.F18 TO terminfo$<540>
EQU KEY.F19 TO terminfo$<541>
EQU KEY.F20 TO terminfo$<542>
EQU KEY.F21 TO terminfo$<543>
EQU KEY.F22 TO terminfo$<544>
EQU KEY.F23 TO terminfo$<545>
EQU KEY.F24 TO terminfo$<546>
EQU KEY.F25 TO terminfo$<547>
EQU KEY.F26 TO terminfo$<548>

EQU KEY.F27

TO terminfo$<549>

TERMINFO function

terminfo contents

EQU KEY.F28 TO terminfo$<550>
EQU KEY.F29 TO terminfo$<551>
EQU KEY.F30 TO terminfo$<552>
EQU KEY.F31 TO terminfo$<553>
EQU KEY.F32 TO terminfo$<554>
EQU KEY.F33 TO terminfo$<555>
EQU KEY.F34 TO terminfo$<556>
EQU KEY.F35 TO terminfo$<557>
EQU KEY.F36 TO terminfo$<558>
EQU KEY.F37 TO terminfo$<559>
EQU KEY.F38 TO terminfo$<560>
EQU KEY.F39 TO terminfo$<561>
EQU KEY.F40 TO terminfo$<562>
EQU KEY.F41 TO terminfo$<563>
EQU KEY.F42 TO terminfo$<564>
EQU KEY.F43 TO terminfo$<565>
EQU KEY.F44 TO terminfo$<566>
EQU KEY.F45 TO terminfo$<567>
EQU KEY.F46 TO terminfo$<568>
EQU KEY.F47 TO terminfo$<569>
EQU KEY.F48 TO terminfo$<570>
EQU KEY.F49 TO terminfo$<571>
EQU KEY.F50 TO terminfo$<572>
EQU KEY.F51 TO terminfo$<573>
EQU KEY.F52 TO terminfo$<574>
EQU KEY.F53 TO terminfo$<575>
EQU KEY.F54 TO terminfo$<576>
EQU KEY.F55 TO terminfo$<577>
EQU KEY.F56 TO terminfo$<578>
EQU KEY.F57 TO terminfo$<579>
EQU KEY.F58 TO terminfo$<580>
EQU KEY.F59 TO terminfo$<581>
EQU KEY.F60 TO terminfo$<582>
EQU KEY.F61 TO terminfo$<583>
EQU KEY.F62 TO terminfo$<584>
EQU KEY.F63 TO terminfo$<585>

EQU CLEAR.MARGINS

TO terminfo$<586>

EQU SET.LEFT.MARGIN

TO terminfo$<587>

EQU SET.RIGHT.MARGIN

TO terminfo$<588>

EQU LABEL.KEY.FUNCTION.17

TO terminfo$<589>

EQU LABEL.KEY.FUNCTION.18

TO terminfo$<590>

EQU LABEL.KEY.FUNCTION.19

TO terminfo$<591>

EQU LABEL.KEY.FUNCTION.20

TO terminfo$<592>

421

Chapter 1: Statements and functions

422

terminfo contents

EQU LABEL.KEY.FUNCTION.2

TO terminfo$<593>

EQU LABEL.KEY.FUNCTION.22

TO terminfo$<594>

EQU LABEL.KEY.FUNCTION.2

TO terminfo$<595>

EQU LABEL.KEY.FUNCTION.24

TO terminfo$<596>

EQU LABEL.KEY.FUNCTION.25

TO terminfo$<597>

EQU LABEL.KEY.FUNCTION.26

TO terminfo$<598>

EQU LABEL.KEY.FUNCTION.27

TO terminfo$<599>

EQU LABEL.KEY.FUNCTION.28

TO terminfo$<600>

EQU LABEL.KEY.FUNCTION.2

TO terminfo$<601>

EQU LABEL.KEY.FUNCTION.30

TO terminfo$<602>

EQU LABEL.KEY.FUNCTION.31

TO terminfo$<603>

EQU LABEL.KEY.FUNCTION.32

TO terminfo$<604>

EQU LABEL.KEY.FUNCTION.33

TO terminfo$<605>

EQU LABEL.KEY.FUNCTION.34

TO terminfo$<606>

EQU LABEL.KEY.FUNCTION.35

TO terminfo$<607>

EQU LABEL.KEY.FUNCTION.36

TO terminfo$<608>

EQU LABEL.KEY.FUNCTION.37

TO terminfo$<609>

EQU LABEL.KEY.FUNCTION.38

TO terminfo$<610>

EQU LABEL.KEY.FUNCTION.39

TO terminfo$<611>

EQU LABEL.KEY.FUNCTION.40

TO terminfo$<612>

EQU LABEL.KEY.FUNCTION.41

TO terminfo$<613>

EQU LABEL.KEY.FUNCTION.42

TO terminfo$<614>

EQU LABEL.KEY.FUNCTION.43

TO terminfo$<615>

EQU LABEL.KEY.FUNCTION.44

TO terminfo$<616>

EQU LABEL.KEY.FUNCTION.45

TO terminfo$<617>

EQU LABEL.KEY.FUNCTION.46

TO terminfo$<618>

EQU LABEL.KEY.FUNCTION.4

TO terminfo$<619>

EQU LABEL.KEY.FUNCTION.48

TO terminfo$<620>

EQU LABEL.KEY.FUNCTION.49

TO terminfo$<621>

EQU LABEL.KEY.FUNCTION.50S

TO terminfo$<622>

EQU LABEL.KEY.FUNCTION.51

TO terminfo$<623>

EQU LABEL.KEY.FUNCTION.52

TO terminfo$<624>

EQU LABEL.KEY.FUNCTION.53

TO terminfo$<625>

EQU LABEL.KEY.FUNCTION.54

TO terminfo$<626>

EQU LABEL.KEY.FUNCTION.55

TO terminfo$<627>

EQU LABEL.KEY.FUNCTION.56

TO terminfo$<628>

EQU LABEL.KEY.FUNCTION.57

TO terminfo$<629>

EQU LABEL.KEY.FUNCTION.58

TO terminfo$<630>

EQU LABEL.KEY.FUNCTION.59

TO terminfo$<631>

EQU LABEL.KEY.FUNCTION.60

TO terminfo$<632>

EQU LABEL.KEY.FUNCTION.61

TO terminfo$<633>

EQU LABEL.KEY.FUNCTION.62

TO terminfo$<634>

TIME function

terminfo contents

EQU LABEL.KEY.FUNCTION.63 TO terminfo$<635>

Example

SINCLUDE UNIVERSE.INCLUDE TERMINFO
PRINT AT.NEGATIVE.1
PRINT "Your terminal type is":TAB:TERMINAL.NAME

The program output on the cleared screen is:

Your terminal type is 1cl6404|ICL 6404CG Color Video Display

TIME function

Use the TIME function to return a string value expressing the internal time of day. The internal time is
the number of seconds that have passed since midnight to the nearest thousandth of a second (local
time).

The parentheses must be used with the TIME function to distinguish it from a user-named variable
called TIME. However, no arguments are required with the TTIME function.
Syntax

TIME ()

UNIX System V
The time is returned only to the nearest whole second.

If the TIME.MILLISECOND option of the SOPTIONS statement is set, the TIME function returns the
system time in whole seconds.

Example

PRINT TIME ()
This is the program output:
40663.842

TIMEDATE function

Syntax

TIMEDATE ()

Use the TIMEDATE function to return the current system time and date in the following format:

hh:mm:ssddmmmyyyy

Parameter Description

hh Hours (based on a 24-hour clock)
mm Minutes

ss Seconds

423

Chapter 1: Statements and functions

Parameter Description
dd Day

mmm Month
yyyy Year

No arguments are required with the TIMEDATE function.

If you want to increase the number of spaces between the time and the date, edit the line beginning
with TMDO0001 in the msg.txt file in the UV account directory. This line can contain up to four hash signs
(#). Each # prints a space between the time and the date.

If NLS mode is enabled, the TIMEDATE function uses the convention defined in the TIMEDATE field in
the NLS.LC.TIME file for combined time and date format. Otherwise, it returns the time and date. For
more information about convention records in the Time category, see the UniVerse NLS Guide.

Examples

PRINT TIMEDATE ()

This is the program output:

11:19:07 18 JUN 1996

If the TMD0001 message contains four #s, the program output is:

11:19:07 18 JUN 1996

TIMEOUT statement

Use the TIMEOUT statement to terminate a READSEQ statement or READBLK statement if no data
is read in the specified time. You can also use the TIMEOUT statement to set a time limit for a
UVNet link. Use the TTYGET and TTYSET statements to set a timeout value for a file open on a serial
communications port.

The TIMEOUT statement is not supported on Windows NT.

Syntax

TIMEOUT {file.variable | link.number}, time

file.variable specifies a file opened for sequential access.

time is an expression that evaluates to the number of seconds the program should wait before
terminating the READSEQ or READBLK statement or the UVNet connections. If you specify the time
value followed by “UM” or “um” UniVerse uses microseconds for the timeout value. For example,
“50UM” specifies 50 microseconds.

link.number is the UVNet link. It is a positive number from 1 through 255 (or the number set in the
NET_MAXCONNECT VALUE for UVNet connections).

TIMEOUT causes subsequent READSEQ and READBLK statement to terminate and execute their ELSE
statements if the number of seconds specified by time elapses while waiting for data. Use the STATUS
function, on page 388 to determine if time has elapsed. In the event of a timeout, neither READBLK
nor READSEQ returns any bytes from the buffer, and the entire I/O operation must be retried.

If either file.variable or time evaluates to the null value, the TIMEOUT statement fails and the program
terminates with a run-time error message.

424

TODATE function

Examples

TIMEOUT SUN.MEMBER, 10
READBLK VAR1 FROM SUN.MEMBER, 15 THEN PRINT VARl ELSE

IF STATUS() = 2 THEN

PRINT "TIMEOUT OCCURRED"

END ELSE

PRINT "CANNOT OPEN FILE"

END

GOTO EXIT.PROG

END

This is the program output:
TIMEOUT OCCURRED

The following example sets a 30-second timeout for the UVNet connection to the system ORION:

TIMEOUT SYSTEM (1200, "ORION"), 30
OPEN "ORION!/ul/user/file" TO FU.ORIONFILE
READ X,Y FROM FU.ORIONFILE

ELSE
IF SYSTEM (1203)= 81015
THEN PRINT "TIMEOUT ON READ"

END

ELSE
PRINT "READ ERROR"

END

END

TODATE function

Use the DATE function to convert the internal datetime value to the internal local date value.

Note: This function is supported on Linux and Solaris platforms only.

If the specified value of datetime is invalid, the function will return empty and STATUS will be set to 1.
Note that @TZ will be used to derive the local date from the UTC datetime value.

See the NOW function for the datetime.
See the DATE function for the local date.

Syntax

TODATE (datetime)

Example
PRINT TODATE (NOW ())
This is the program output:

18952

425

Chapter 1: Statements and functions

TODATETIME function

Use the TODATETIME function to convert the internal values of the local date and time (as returned
by the DATE () and TIME () functions) to the internal datetime value. Note that @TZ will be used to
convert the specified date and time values to UTC.

Note: This function is supported on Linux and Solaris platforms only.

If the specified values of date and/or time are invalid, STATUS will be set to 1.
See the NOW function for the datetime.
See the DATE and TIME functions for the local date and time.

Syntax

TODATETIME (date, time)

Example
PRINT TODATETIME (DATE (), TIME())
This is the program output:

1574240110666

TOTIME function

Use the TOTIME function to convert the internal datetime value to the internal local time value.

Note: This function is supported on Linux and Solaris platforms only.

If the specified value of datetime is invalid, the function will return empty and STATUS will be set to 1.
Note that @TZ will be used to derive the local time value from the UTC datetime value

See the NOW function for the datetime.

See the TIME function for the local time.

Syntax

TOTIME (datetime)

Example
PRINT TOTIME (NOW())

This is the program output:

6910.666

426

TPARM function

TPARM function

Use the TPARM function to evaluate a parameterized terminfo string.

Syntax

TPARM (terminfo.string, largll, larg2]l, l[arg3], larg4]l, largb5]l, largél]l,
larg7], [arg8])

terminfo.string represents a string of characters to be compiled by the terminfo compiler, tic. These
terminal descriptions define the sequences of characters to send to the terminal to perform special
functions. terminfo.string evaluates to one of four types of capability: numeric, Boolean, string, or
parameterized string. If terminfo.string or any of the eight arguments evaluates to the null value, the
TPARM function fails and the program terminates with a run-time error message.

Numeric capabilities are limited to a length of five characters that must form a valid number. Only
nonnegative numbers 0 through 32,767 are allowed. If a value for a particular capability does not
apply, the field should be left blank.

Boolean capabilities are limited to a length of one character. The letter Y (in either uppercase or
lowercase) indicates that the specified capability is present. Any value other than Y indicates that the
specified capability is not present.

String capabilities are limited to a length of 44 characters. You can enter special characters as follows:

Character Description

\Eor\e The ESC character (ASCII 27).

\nor\l The LINEFEED character (ASCII 10).

\r The RETURN character (ASCII 13).

\t The TAB character (ASCII 9).

\b The BACKSPACE character (ASCII 8).

\f The formfeed character (ASCII 12).

\s A space (ASCII 32).

Ax The representation for a control character (ASCII 0 through 31). The character can
be either uppercase or lowercase. A list of some control character representations
follows:

Representation| Control character

AA Na

ASCII 1 (Ctrl- |ASCII 1 (Ctrl-A)
A)

N ASCII 0

Al ASCII 27 (Esc)
A\ ASCII 28

Al ASCII 29

AN ASCII 30

A ASCII 31

A? ASCII 127 (Del)

427

Chapter 1: Statements and functions

Character Description

\nnn Represents the ASCII character with a value of nnn in octal—for example \033 is the
Esc character (ASCII 27).

\\ Represents the "\" character.

\, Represents the "," character.

\A Represents the """ character.

Parameterized string capabilities, such as cursor addressing, use special encoding to include values in
the appropriate format. The parameter mechanism is a stack with several commands to manipulate it:

Value Description

%pn Push parameter number n onto the stack. Parameters number 1
through 8 are allowed and are represented by argl through arg8 of the
TPARM function.

%'c' The ASClI value of character c is pushed onto the stack.

%[nnn] Decimal number nnn is pushed onto the top of the stack.

%d Pop the top parameter off the stack, and output it as a decimal number.

%nd Pop the top parameter off the stack, and output it as a decimal number
in a field n characters wide.

%0nd Like %nd, except that Os are used to fill out the field.

%cC The top of the stack is taken as a single ASCII character and output.

%s The top of the stack is taken as a string and output.

%+ %- %" %/

The top two elements are popped off the stack and added, subtracted,
multiplied, or divided. The result is pushed back on the stack. The
fractional portion of a quotient is discarded.

%m

The second element on the stack is taken modulo of the first element,
and the result is pushed onto the stack.

%& % | %"

The top two elements are popped off the stack and a bitwise AND, OR,
or XOR operation is performed. The result is pushed onto the stack.

%= %< %>

The second element on the stack is tested for being equal to, less then,
or greater than the first element. If the comparison is true, a 1 is pushed
onto the stack, otherwise a 0 is pushed.

%! %~ The stack is popped, and either the logical or the bitwise NOT of the first
element is pushed onto the stack.

%i One (1) is added to the first two parameters. This is useful for terminals
that use a one-based cursor address, rather than a zero-based.

%Px Pop the stack, and put the result into variable x, where x is a lowercase
letter (a - z).

%gx Push the value of variable x on the top of the stack.

%? exp %t exp [%e exp] %; |Form an if-then-else expression, with "%?" representing "IF", "%t"

representing "THEN", "%e" representing "ELSE", and "%;" terminating
the expression. The else expression is optional. Else-If expressions are
possible. For example:

%? C1 %t B1 %e C2 %t B2 %e C3 %t B3 %e C4 %t B4 %e %

Cn are conditions, and Bn are bodies.

%%

Output a percent sign (%).

Adelay in milliseconds can appear anywhere in a string capability. A delay is specified by $<nnn>,
where nnn is a decimal number indicating the number of milliseconds (one thousandth of a second)

TPRINT statement

of delay desired. A proper number of delay characters will be output, depending on the current baud
rate.

TPRINT statement

Use the TPRINT statement to send data to the screen, a line printer, or another print file. TPRINT is
similar to the PRINT statement, except that TPRINT lets you specify time delay expressions in the print
list.

Syntax

TPRINT [ON print.channel] [print.list]

The ON clause specifies the logical print channel to use for output. print.channel is an expression that
evaluates to a number from -1 through 255. If you do not use the ON clause, logical print channel

0 is used, which prints to the user’s terminal if PRINTER OFF is set (see the PRINTER statement). If
print.channel evaluates to the null value, the TPRINT statement fails and the program terminates with
a run-time error message. Logical print channel -1 prints the data on the screen, regardless of whether
a PRINTER ON statement has been executed.

You can specify HEADING statement, FOOTING statement, SPAGE statement, and PRINTER CLOSE
statements for each logical print channel. The contents of the print files are printed in order by logical
print channel number.

print.list can contain any BASIC expression. The elements of the list can be numeric or character
strings, variables, constants, or literal strings. The list can consist of a single expression or a series of
expressions separated by commas (,) or colons (:) for output formatting. If no print.list is designated, a
blank line is printed. The null value cannot be printed.

print.list can also contain time delays of the form $<time>. time is specified in milliseconds to the tenth
of a millisecond. As the print list is processed, each time delay is executed as it is encountered.

Expressions separated by commas are printed at preset tab positions. The default tabstop setting is
10 characters. See the TABSTOP statement, on page 407 for information about changing the default
setting. Use multiple commas together for multiple tabulations between expressions.

Expressions separated by colons are concatenated. That is, the expression following the colon is
printed immediately after the expression preceding the colon. To print a list without a LINEFEED and
RETURN, end print.list with a colon (:).

If NLS is enabled, the TPRINT statement maps data in the same way as the PRINT statement. For more
information about maps, see the UniVerse NLS Guide.

Example

The following example prints the string ALPHA followed by a delay of 1 second, then the letters in the
variable X. The printing of each letter is followed by a delay of one tenth of a second.

X="A$<100>B$<100>C$<100>DS<100>E"
TPRINT "ALPHAS<1000.1> ":X

This is the program output:

ALPHA ABCDE

429

Chapter 1: Statements and functions

TRANS function

430

Use the TRANS function to return the contents of a field or a record in a UniVerse file. TRANS opens
the file, reads the record, and extracts the specified data.

Syntax

TRANS ([DICT] filename, record.ID, field#, control.code)

filename is an expression that evaluates to the name of the remote file. If TRANS cannot open the file,
a run-time error occurs, and TRANS returns an empty string.

record.ID is an expression that evaluates to the ID of the record to be accessed. If record.ID is
multivalued, the translation occurs for each record ID and the result is multivalued (system delimiters
separate data translated from each record).

field# is an expression that evaluates to the number of the field from which the data is to be extracted.
If field# is -1, the entire record is returned, except for the record ID.

control.code is an expression that evaluates to a code specifying what action to take if data is not
found or is the null value. The possible control codes are:

Code Description

X (Default) Returns an empty string if the record does not exist or data cannot be
found.

v Returns an empty string and produces an error message if the record does not
exist or data cannot be found.

C Returns the value of record.ID if the record does not exist or data cannot be
found.

N Returns the value of record.ID if the null value is found.

The returned value is lowered. For example, value marks in the original field become subvalue marks
in the returned value. For more information, see the LOWER function, on page 255.

If filename, record.ID, or field# evaluates to the null value, the TRANS function fails and the program
terminates with a run-time error message. If control.code evaluates to the null value, null is ignored
and Xis used.

The TRANS function is the same as the XLATE function.

PI_TRANSMARKS uvconfig parameter

When the PI_TRANSMARKS uvconfig parameter is applied, the TRANS function will respect the PIOPEN
flavor rules and not change characters 251 and below.

= If PI_TRANSMARKS is set to 0 (Default), there is no change in the TRANS function behavior.
= If PI_TRANSMARKS is set to 1, the TRANS function will not lower characters 251 thru 248.

Example

X=TRANS ("VOC", "EX.BASIC",1,"X")
PRINT "X= ":X

*

FIRST=TRANS ("SUN.MEMBER","6100",2, "X")

LAST=TRANS ("SUN.MEMBER","6100",1, "X")

transaction statements

PRINT "NAME IS ":FIRST:" ":LAST

This is the program output:

X= F BASIC examples file
NAME IS BOB MASTERS

transaction statements

Syntax

BEGIN TRANSACTION
[statements] { COMMIT [WORK] | ROLLBACK [WORK] }
[statements] [{ COMMIT [WORK] | ROLLBACK [WORK] '}
[statements] . . .
END TRANSACTION

Syntax (PIOPEN)

TRANSACTION START
{THEN statements [ELSE statements] | ELSE statements}
TRANSACTION COMMIT
{THEN statements [ELSE statements] | ELSE statements}
TRANSACTION ABORT

Use transaction statements to treat a sequence of file I/O operations as one logical operation with
respect to recovery and visibility to other users. These operations can include file /0O operations or
subtransactions.

Note: BASIC accepts Pl/open syntax in addition to UniVerse syntax. You cannot mix both types of
syntax within a program.

For more information about transaction statements, refer to UniVerse BASIC.

TRANSACTION ABORT statement

Use the TRANSACTION ABORT statement to cancel all file I/O changes made during a transaction.

You can use the TRANSACTION ABORT statement in a transaction without a TRANSACTION COMMIT
statement to review the results of a possible change. Doing so does not affect the parent transaction
or the database.

After the transaction ends, execution continues with the statement following the TRANSACTION
ABORT statement.

Syntax

TRANSACTION ABORT

431

Chapter 1: Statements and functions

Example

The following example shows the use of the TRANSACTION ABORT statement to terminate a
transaction if both the ACCOUNTS RECEIVABLE file and the INVENTORY file cannot be successfully

updated:

PROMPT '
OPEN 'ACC.RECV' TO ACC.RECV ELSE STOP 'NO OPEN ACC.RECV'
OPEN 'INVENTORY' TO INVENTORY ELSE STOP 'NO OPEN INVENTORY'

PRINT 'Customer Id : ':
INPUT CUST.ID

PRINT 'Item No. HEA
INPUT ITEM

PRINT 'Amount HEA
INPUT AMOUNT

* Start a transaction to ensure both or neither records
* updated
TRANSACTION START ELSE STOP 'Transaction start failed.'
* Read customer record from accounts receivable
READU ACT.REC FROM ACC.RECV, CUST.ID
ON ERROR
STOP 'Error reading ':CUST.ID:' from ACC.RECV file.'
END LOCKED
* Could not lock record so ABORT transaction
TRANSACTION ABORT
STOP 'Record ':CUST.ID:' on file ACC.RECV locked by user ':STATUS()
END THEN
* Build new record
ACT.REC<1,-1> = ITEM:@SM:AMOUNT
ACT.REC<2> = ACT.REC<2> + AMOUNT
END ELSE
* Create new record
ACT.REC = ITEM:@SM:AMOUNT:@FM:AMOUNT
END
* Read item record from inventory
READU INV.REC FROM INVENTORY, ITEM
ON ERROR
STOP 'Error reading ':ITEM:' from INVENTORY file.'
END LOCKED
* Could not lock record so ABORT transaction
TRANSACTION ABORT
STOP 'Record ':ITEM:' on file INVENTORY locked by user ':STATUS()
END THEN
* Build new record
INV.REC<1> = INV.REC<1> - 1
INV.REC<2> = INV.REC<2> - AMOUNT
END ELSE
STOP 'Record ':ITEM:' is not on file INVENTORY.'
END
* Write updated records to accounts receivable and inventory
WRITEU ACT.REC TO ACC.RECV, CUST.ID
WRITEU INV.REC TO INVENTORY, ITEM

TRANSACTION COMMIT ELSE STOP 'Transaction commit failed.'

END

432

TRANSACTION COMMIT statement

TRANSACTION COMMIT statement

Use the TRANSACTION COMMIT statement to commit all file I/O changes made during a transaction.

The TRANSACTION COMMIT statement can either succeed or fail. If the TRANSACTION COMMIT
statement succeeds, the THEN statements are executed; any ELSE statements are ignored. If the
TRANSACTION COMMIT statement fails, the ELSE statements, if present, are executed, and control is
transferred to the statement following the TRANSACTION COMMIT statement.

Syntax

TRANSACTION COMMIT
{THEN statements [ELSE statements] | ELSE statements}

TRANSACTION START statement

Use the TRANSACTION START statement to begin a new transaction.

Syntax

TRANSACTION START
{THEN statements [ELSE statements] | ELSE statements}

THEN and ELSE clauses
You must have a THEN clause or an ELSE clause, or both, in a TRANSACTION START statement.

If the TRANSACTION START statement successfully begins a transaction, the statements in the THEN
clause are executed. If for some reason UniVerse is unable to start the transaction, a fatal error occurs,
and you are returned to the UniVerse prompt.

TRIM function

Use the TRIM function to remove unwanted characters in expression.

Syntax

TRIM (expression [,character [,option]])

If only expression is specified, multiple occurrences of spaces and tabs are reduced to a single tab or
space, and all leading and trailing spaces and tabs are removed. If expression evaluates to one or more
space characters, TRIM returns an empty string.

character specifies a character other than a space or a tab. If only expression and character are
specified, multiple occurrences of character are replaced with a single occurrence, and leading and
trailing occurrences of character are removed.

option specifies the type of trim operation to be performed:

Option Description
A Remove all occurrences of character
B Remove both leading and trailing occurrences of character

433

Chapter 1: Statements and functions

Option Description

Remove leading, trailing, and redundant white space characters

Remove trailing white space characters

Remove leading white space characters

Remove all leading occurrences of character

Remove leading, trailing, and redundant occurrences of character

—A |- MmO

Remove all trailing occurrences of character

If expression evaluates to the null value, nullis returned. If option evaluates to the null value, null is
ignored and option R is assumed. If character evaluates to the null value, the TRIM function fails and
the program terminates with a run-time error message.

If NLS is enabled, you can use TRIM to remove other white space characters such as Unicode values
0x2000 through 0x200B, 0x00A0, and 0x3000, marked as TRIMMABLE in the NLS.LC.CTYPE file entry for
the specified locale. For more information about Unicode values, see the UniVerse NLS Guide.

Example
A=" Now is the time for all good men to"

PRINT A
PRINT TRIM(A)

This is the program output:

Now is the time for all good men to
Now is the time for all good men to

TRIMB function

434

Use the TRIMB function to remove all trailing spaces and tabs from expression. All other spaces or tabs
in expression are left intact. If expression evaluates to the null value, null is returned.

If NLS is enabled, you can use TRIMB to remove white space characters such as Unicode values
0x2000 through 0x200B, 0x00A0, and 0x3000, marked as TRIMMABLE in the NLS.LC.CTYPE file entry for
the specified locale. For more information about Unicode values, see the UniVerse NLS Guide.

Syntax

TRIMB (expression)

Example

A=" THIS IS A SAMPLE STRING "
PRINT "'":A:"'": " IS THE STRING"
PRINT "'":TRIMB(A):"'":" IS WHAT TRIMB DOES"
END

This is the program output:

! THIS IS A SAMPLE STRING ' IS THE STRING
' THIS IS A SAMPLE STRING' IS WHAT TRIMB DOES

TRIMBS function

TRIMBS function

Use the TRIMBS function to remove all trailing spaces and tabs from each element of dynamic.array.

TRIMBS removes all trailing spaces and tabs from each element and reduces multiple occurrences of
spaces and tabs to a single space or tab.

If dynamic.array evaluates to the null value, null is returned. If any element of dynamic.array is null,
nullis returned for that value.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

If NLS is enabled, you can use TRIMBS to remove white space characters such as Unicode values
0x2000 through 0x200B, 0x00A0, and 0x3000, marked as TRIMMABLE in the NLS.LC.CTYPE file entry for
the specified locale. For more information about Unicode values, see the UniVerse NLS Guide.

Syntax

TRIMBS (dynamic.array)

CALL -TRIMBS (return.array, dynamic.array)

TRIMF function

Use the TRIMF function to remove all leading spaces and tabs from expression. All other spaces or
tabs in expression are left intact. If expression evaluates to the null value, null is returned.

If NLS is enabled, you can use TRIMF to remove white space characters such as Unicode values
0x2000 through 0x200B, 0x00A0, and 0x3000, marked as TRIMMABLE in the NLS.LC.CTYPE file entry for
the specified locale. For more information about Unicode values, see the UniVerse NLS Guide.

Syntax

TRIMF (expression)

Example

A=" THIS IS A SAMPLE STRING "
PRINT "'":A:"'":" IS THE STRING"
PRINT "'":TRIMF (A):"'":" IS WHAT TRIMF DOES"
END

This is the program output:

! THIS IS A SAMPLE STRING ' IS THE STRING
'THIS IS A SAMPLE STRING ' IS WHAT TRIMF DOES

TRIMFS function

Use the TRIME'S function to remove all leading spaces and tabs from each element of dynamic.array.

TRIMFS removes all leading spaces and tabs from each element and reduces multiple occurrences of
spaces and tabs to a single space or tab.

If dynamic.array evaluates to the null value, null is returned. If any element of dynamic.array is null,
null is returned for that value.

435

Chapter 1: Statements and functions

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

If NLS is enabled, you can use TRIMF'S to remove white space characters such as Unicode values
0x2000 through 0x200B, 0x00A0, and 0x3000, marked as TRIMMABLE in the NLS.LC.CTYPE file entry for
the specified locale. For more information about Unicode values, see the UniVerse NLS Guide.

Syntax

TRIMFS (dynamic.array)
CALL -TRIMFS (return.array, dynamic.array)

TRIMS function

Use the TRIMS function to remove unwanted spaces and tabs from each element of dynamic.array.

TRIMS removes all leading and trailing spaces and tabs from each element and reduces multiple
occurrences of spaces and tabs to a single space or tab.

If dynamic.array evaluates to the null value, null is returned. If any element of dynamic.array is null,
nullis returned for that value.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

If NLS is enabled, you can use TRIMS to remove white space characters such as Unicode values 0x2000
through 0x200B, 0x00A0, and 0x3000, marked as TRIMMABLE in the NLS.LC.CTYPE file entry for the
specified locale. For more information about Unicode values, see the UniVerse NLS Guide.

Syntax

TRIMS (dynamic.array)

CALL -TRIMS (return.array, dynamic.array)

TTYCTL statement

436

Use the TTYCTL statement to set terminal device characteristics on Berkeley terminal drivers. code#
specifies the action to take.

This statement is not supported on UNIX System V or Windows NT.

Syntax

TTYCTL file.variable, code#
{THEN statements [ELSE statements] | ELSE statements}

The following table lists the available actions:

Argument Action

No operation, determines if a deviceis a TTY.

Sets HUP (hang up data line) on close of file.

Clears HUP on close of file.

Sets exclusive use flag for TTY.

Resets exclusive use flag.

albh|wWIN| =] O

Sets the BREAK.

TTYGET statement

Argument Action

6 Clears the BREAK.

7 Turns on DTR (Data Terminal Ready).
8 Turns off DTR.

9 Flushes input and output buffers.

10 Waits for the output buffer to drain.

file.variable specifies a file previously opened for sequential access to a terminal device. If file.variable
evaluates to the null value, the TTYCTL statement fails and the program terminates with a run-time
error message.

If the action is taken, the THEN statements are executed. If no THEN statements are present, program
execution continues with the next statement.

If an error is encountered during the execution of the TTYCTL operation, or if the file variable is not
open to a terminal device, the ELSE statements are executed; any THEN statements are ignored.

Example

OPENSEQ 'FILE.E', 'RECORD4' TO FILE ELSE ABORT

*

TTYCTL FILE, 0
THEN PRINT 'THE FILE IS A TTY'
ELSE PRINT 'THE FILE IS NOT A TTY'
This is the program output:

THE FILE IS NOT A TTY

TTYGET statement

Use the TTYGET statement to assign the characteristics of a terminal, line printer channel, or tape
unit as a dynamic array to variable. If the FROM clause is omitted, a dynamic array of the terminal
characteristics for your terminal is assigned to variable.

Syntax

TTYGET variable [FROM {file.variable | LPTR [n] | MTU [n] }]
{THEN statements [ELSE statements] | ELSE statements}

file.variable is a terminal opened for sequential processing with the OPENDEV statement or OPENSEQ
statement. If file.variable is specified, the terminal characteristics for the specified terminal are
retrieved.

n specifies a logical print channel with LPTR or a tape unit with MTU. (You cannot specify a tape unit
on Windows NT.) If n is specified, the characteristics for the print channel or tape unit are retrieved. For
logical print channels nis in the range of 0 through 225; the default is 0. For tape units n is in the range
of 0 through 7; the default is 0.

If the terminal characteristics are retrieved, the THEN statements are executed.

If the device does not exist or cannot be opened, or if no dynamic array is returned, the ELSE
statements are executed; any THEN statements are ignored.

If either file.variable or nevaluates to the null value, the TTYGET statement fails and the program
terminates with a run-time error message.

437

Chapter 1: Statements and functions

The best way to access the information in the dynamic array is to include the BASIC code
UNIVERSE.INCLUDE TTY. The syntax for including this file is:

SINCLUDE UNIVERSE.INCLUDE TTY

This file equates each value of the dynamic array to a name, so that each value can be easily accessed
in your program. To take advantage of this code you must call variable ttyS. Once this code has been
included in your program, you can use the names to access the values of the dynamic array. To set
values for a terminal line, use the TTYSET statement.

The following table lists the equate names to the values of the dynamic array, and describes each
value. The final columns indicate which values are available on different operating systems: SV
indicates System V, B indicates Berkeley UNIX, and NT indicates Windows NT.

Value | Name Description Availability
sV B |NT

Field 1

1 mode.type One of these modes: 3 3 3
MODESLINE or 0 = line 3 3 3
MODESRAW or 1 =raw 3 3
MODESCHAR or 2 = character 3 3
MODESEMULATE or 3 = emulated

2 mode.min Minimum number of characters before |3 3 3
input.

3 mode.time Minimum time in milliseconds before |3 3 3
input.

Field 2

1 cc.intr Interrupt character. -1 undefined. 3 3 3

2 cc.quit Quit character. -1 undefined. 3

3 cc.susp Suspend character. -1 undefined. 3 3

4 cc.dsusp dsusp character. -1 undefined. 3

5 cc.switch Switch character. -1 undefined.

6 cc.erase erase character. -1 undefined. 3 3

7 cc.werase werase character. -1 undefined. 3

8 cc.kill Kill character. -1 undefined. 3 3 3

9 cc.lnext [next character. -1 undefined. 3

10 cc.rprint rprint character. -1 undefined. 3 3

11 cc.eof eof character. -1 undefined. 3

12 cc.eol eol character. -1 undefined. 3

13 cc.eol2 eol2 character. -1 undefined.

14 cc.flush Flush character. -1 undefined. 3

15 cc.start Start character. -1 undefined. 3 3 3
On System V, AQ only.

16 cc.stop Stop character. -1 undefined. 3 3 3
On System V, AS only.

17 cc.lcont lcont character. -1 undefined. 3 3 3
Emulated only.

438

TTYGET statement

Value | Name Description Availability

18 cc.fmc fmc character. -1 undefined. Emulated |3 3 3
only.

19 cc.vmc vmc character. -1 undefined. Emulated |3 3 3
only.

20 cc.smc smc character. -1 undefined. Emulated |3 3 3
only.

21 ccdel Delete character. 3 3

Field 3

1 carrier.receive Terminal can receive data. 3

2 carrier.hangup Hang up upon close of terminal.

3 carrier.local Terminalis a local line. 3

Field 4

1 case.ucin Convert lowercase to uppercase on 3 3
input.

2 case.ucout Convert lowercase to uppercase on 3 3
output.

3 case.xcase Uppercase is preceded by a backslash |3 3
(\)to
distinguish it from lowercase.

4 case.invert Invert case on input. Emulated only. 3 3 3

Field 5

1 crmode.inlcr Convert LINEFEED to RETURN on 3 3
input.

crmode.igncr Ignore RETURN on input.
crmode.icrnl Convert RETURN to LINEFEED on

input.

4 crmode.onlcr Convert LINEFEED to LINEFEED, 3 3
RETURN on output.

5 crmode.ocrnl Convert RETURN to LINEFEED on 3 3
output.

6 crmode.onocr Prohibit output of RETURN when 3 3
cursor
isin column 0.

7 crmode.onlret LINEFEED performs RETURN function. |3 3

Field 6

1 delay.bs Set backspace delay. 3 3

2 delay.cr Set RETURN delay. 3 3

3 delay.ff Set formfeed delay. 3 3

4 delay.If Set LINEFEED delay. 3 3

5 delay.vt Set vertical tab delay. 3 3

6 delay.tab Set tab delay. 3 3

7 delaye fill 0 =time delay 3 3
1 =fill with empty strings
2 =fill with DELETEs

Field 7

439

Chapter 1: Statements and functions

Value | Name Description Availability
1 echo.on Set terminal echo on. 3 3
2 echo.erase ECHOESERASE or 0 = print echo 3 3
character
ECHOESBS or 1 = echo as backspace
ECHOESBSB or 2 = echo as backspace,
space, backspace
ECHOESPRINTER or3=echo as a
printer
3 echo.kill ECHOKSKILL or 0 = kill as kill character |3 3
ECHOKSLF or 1 =kill as RETURN,
LINEFEED
ECHOKSERASE or 2 = kill as series of
erases
echo.ctrl Set control to echo as * character 3
echo.lf When echo is off, echo RETURN as 3
RETURN, LINEFEED
Field 8
1 handshake.xon 1 =turns on X-ON/X-OFF protocol 3 3
0 = turns off X-ON/X-OFF protocol
2 handshake. startany 1=any characters acts as X-ON 3 3
0 =only X-ON character acts as X-ON
3 handshake. tandem 1=when input buffer is nearly full, X- |3 3
OFF is sent
0 = turns off automatic X-OFF, X-ON
mode
4 handshake.dtr 1=turnson DTR 3 3
0=turns off DTR
Field 9
1 output.post Output postprocessing occurs. 3 3
2 output.tilde Special output processing for tilde. 3 3
3 output.bg Stop background processes at output. |3 3
4 output.cs Output clearscreen before reports. 3 3
Emulated
only.
5 output.tab Set output tab expansion. 3 3
Field 10
1 protocol.line Line protocol ‘3 ‘3

440

TTYSET statement

Value | Name

Description

Availability

2 protocol.baud

1=509=1200
2=7510=1800
3=11011=2400
4=13412=4800
5=15013=9600

6 =200 14 or EXTA=19200
7=30015=EXTB

8=600

3

3

3 protocol.data

Character size:
5=5bits 7=7 bits
6 =6 bits 8 = 8 bits

protocol.stop

2 =2 stopbits 1 =1 stopbit

5 protocol.output

Output parity:
0=no parity 1 =even parity

2 = odd parity

6 protocol.input

Input parity:
0 =disable input parity checking
1=enable input parity checking

2 = mark parity errors 3 =mark parity
errors with a null 4 =ignore parity
errors

w w w w w

w W w w w

w W w wlw w wlw

7 protocol.strip

1 =strip to 7 bits 0 = 8 bits

Field 11

1 signals.enable

Enable signal keys: Interrupt,
Suspend, Quit.

signals.flush

Flush type-ahead buffer.

signals.brkkey

0 =break ignored
1 =break as interrupt

2 =break as null

TTYSET statement

Use the TTYSET statement to set the characteristics of a terminal, line printer channel, or tape unit.

If only dynamic.array is specified, the terminal characteristics for your terminal are set based on

the contents of dynamic.array. dynamic.array is a dynamic array of eleven fields, each of which has

multiple values.

A description of the expected contents of each value of dynamic.array is given in the TTYGET

statement, on page 437.

Syntax

TTYSET dynamic.array

[ON {file.variable |

LPTR [n]

MTU

[n]

1]

441

Chapter 1: Statements and functions

442

{THEN statements [ELSE statements] | ELSE statements}

file.variable is a terminal opened for sequential processing with the OPENDEV statement or OPENSEQ
statement. If file.variable is specified, the terminal characteristics for the specified terminal are set.

n specifies a logical print channel with LPTR or a tape unit with MTU. If n is specified, the
characteristics for the print channel or tape unit are set. n is in the range of 0 through 225 for logical
print channels; the default is 0. n is in the range of 0 through 7 for tape units; the defaultis 0. On
Windows NT you cannot specify a tape unit.

If the terminal characteristics are set, the THEN statements are executed.

If the device does not exist or cannot be opened, or if no dynamic array is returned, the ELSE
statements are executed; any THEN statements are ignored.

If dynamic.array, file.variable, or n evaluates to the null value, the TTYSET statement fails and the
program terminates with a run-time error message.

To build dynamic.array, get the current values of the terminal line using the TTYGET statement,
manipulate the values, and reset them with the TTYSET statement. The best way to access the
information in the dynamic array is to include the BASIC code UNIVERSE.INCLUDE TTY. The syntax for
including this file is:

SINCLUDE UNIVERSE.INCLUDE TTY

This file equates each value of variable from the TTYGET statement with a name, so that each value
can be easily accessed in your program. To take advantage of this code you must call variable ttys.
Once this code is included in your program, you can use the names to access the values of the dynamic
array. The TTYGET Statement Values table lists the names equated to the values of the dynamic array
and describes the values.

Timeout handling

You can set the MODE.MIN and MODE.TIME values to define timeouts for read operations over a
communications line. MODE.MIN specifies the minimum number of characters to be received.
MODE.TIME specifies time in tenths of a second. The two values interact to provide four cases that can
be used as follows.

Intercharacter timer

When you set the values of both MODE.MIN and MODE.TIME to greater than 0, MODE.TIME specifies the
maximum time interval allowed between successive characters received by the communication line in
tenths of a second. Timing begins only after the first character is received.

Blocking read

When you set the value of MODE.MIN to greater than 0 and MODE.TIME to 0, no time limit is set, so the
read operation waits until the specified number of characters have been received (or a newline in the
case of READSEQ statement).

Read timer

When you set the value of MODE.MIN to 0 and MODE.TIME to greater than 0, MODE.TIME specifies how
long the read operation waits for a character to arrive before timing out. If no characters are received
in the time specified, the READSEQ and READBLK statement use the ELSE clause if there is one. If you

use the NOBUF statement to turn off buffering, the timer is reset after each character is received.

Nonblocking read

When you set the values of both MODE.MIN and MODE.TIME to 0, data is read as it becomes available.
The read operation returns immediately.

UDOArrayAppendltem

= If any characters are received:

° READBLK returns as many characters as specified in the blocksize argument, or all the
characters received, whichever is fewer.

= READSEQ returns characters up to the first newline, or all the characters received if no newline
is received.

= If no characters are received, READSEQ and READBLK use the ELSE clause if there is one.

UDOArrayAppendltem

The UDOArrayAppendItem() function appends the item you specify to the UDO array.

Syntax

UDOArrayAppendItem (udoHandle, value)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
udoHandle Must be a UDO array.
value The value of the array item you are appending.

If the new array item is of UDO_OBJECT or UDO_ARRAY type, it must be a stand-alone object or array,
and it must not be the ancestor of the current UDO object.

UDOArrayDeleteltem

The UDOArrayDeleteItem() function deletes the array item you specify by its index.

Syntax

UDOArrayDeleteItem (udoHandle, index)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
udoHandle Must be a UDO array.
index The index of the item to be deleted. Must be a positive integer.

If the array item is of UDO_ARRAY or UDO_OBJECT type, UDO will make either the UDO object or a
UDO array as stand-alone and will remove it from memory if it is not referenced by any UniVerse BASIC
variable.

UDOArrayGetltem

The UDOArrayGetItem() function returns a UDO array item by its index.

443

Chapter 1: Statements and functions

Syntax

UDOArrayGetItem (udoHandle, index, valuelout], value typelout])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO array.

index The position of the UDO array index returned. Must be a positive integer.
value[out] The UDO value type of the array item. If the array item is of UDO_OBJECT or

UDO_ARRAY type, the output variable “item” holds only a reference to the
object or array. Further changes to the object or array through this reference,
such as updating a property value or removing an array item, affect the original
item as well.

If the array item is of UDO_STRING, UDO_NUMBER, UDO_TRUE, UDO_FALSE or
UDO_NULL type, the output variable “item” holds the actual value instead of a
reference. Further changes to this variable do not affect the original property
value.

value_type[out] The type of the value returned by value.

UDOArrayGetNextltem

The UDOArrayGetNextItem() function returns the next UDO array item relative to the current
position, which is the position of the array the last time it was accessed by this function. The initial
position is 1.

Syntax

UDOArrayGetNextItem (udoHandle, valuel[out], typelout])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO array.

value[out] The value of the item.

typelout] The type of the value returned by value.

After exhausting the entire array, the UDOArrayGetNextItem() function returns UDO_ERROR and
the current position is reset to 1.

We recommend that you not modify the array when calling the UDOArrayGetNextItem() function.
If you must modify the array, remember that UDOArrayGetNextItem() always returns the item at
the current position +1.

UDOArrayGetSize

The UDOArrayGetSize() function gets the size of a UDO array.

444

UDOArraylnsertltem

Syntax

UDOArrayGetSize (udoHandle, sizel[out])

Parameters

The following table describes each parameter of the syntax.

Parameter Description
udoHandle Must be a UDO array.
size The size of the UDO array.

UDOArraylnsertltem

The UDOArrayInsertItem() functioninserts a UDO array element at the position you specify by
index.

Syntax

UDOArrayInsertItem (udoHandle, index, value)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO array.

index The position what you want to insert the item. Must be a positive integer.
value The value of the array item you are inserting.

If the index is larger than the size of the array, UDO will pad the array with UDO_NULL values before it
inserts the array item into the array.

UDOArraySetltem

The UDOArraySetItem() function sets orinserts a UDO array element at the position you specify.

Syntax

UDOArraySetItem (udoHandle, index, value)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO array.

index The position what you want to set or insert the element. Must be a positive
integer.

value The value of the array item you are setting.

445

Chapter 1: Statements and functions

If the index is larger than the size of the array, UDO will pad the array with UDO_NULL values before it
inserts the array item into the array.

Otherwise, if the old array item is of UDO_OBJECT or UDO_ARRAY type, either an object or an array
will be marked as stand-alone and removed from memory if it is not referenced by any UniVerse BASIC
variable.

If the new array item is of UDO_OBJECT or UDO_ARRAY type, it must be a stand-alone object or array
and it must not be the ancestor of the current UDO object.

UDOClone

The UDOC1one function clones a UDO object or array so that changes to the new object or array will
not affect the original object.

Syntax

UDOClone (udoHandle, newUdoHandle[out])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO array.

newUdoHandle When the UDOC1one function returns successfully, newUDOHandle points to a
stand-alone object or array that is the exact replication of the original object.

UDOCreate

The UDOCreate function creates a UDO item of the type you specify.

Syntax

UDOCreate (udoType, udoHandle[out])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoType Must be one of UDO_OBJECT, UDO_ARRAY, UDO_TRUE, UDO_FALSE, or
UDO_NULL.

udoHandle If udoType is UDO_OBJECT, udoHandle holds an empty object.

If udoType is UDO_ARRAY, udoHandle holds an empty array.
If udoType is UDO_TRUE, UDO_FALSE, or UDO_NULL, udoHandle.

UDODeleteProperty

The UDODeleteProperty function deletes a property from the UDO object.

446

UDOFree

Syntax

UDODeleteProperty (udoHandle, name)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
udoHandle Must be a UDO object.
name The name of the property. If the property is of UDO_OBJECT or UDO_ARRAY

type, its value (either a UDO object or a UDO array) is marked as stand-alone
and will be removed from memory if it is not referenced by any UniVerse BASIC
variable.

UDOFree

The UDOF ree function forcefully removes a UDO object or array from memory.

Syntax

UDOFree (udoHandle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a stand-alone UDO object or array.

UDO will clear all UniVerse BASIC variables that reference the object or array and its descendants. Any
attempt to access these variables, other than assigning a new value, fails.

You should always call this function when a UDO object or array is no longer needed. This avoids a
potential memory leak.

UDOGetLastError

If the previous UDO call returned UDO_ERROR, use the UDOGetLastError() function to return the
error code and error message.

Syntax

UDOGetLastError (errorCode[out], errorMessagel[out])

Parameters

The following table describes each parameter of the syntax.

Parameter Description
errorCode The UDO error code.
errorMessage The UDO error message.

447

Chapter 1: Statements and functions

UDOGetNextProperty

The UDOGetNextProperty function provides a convenient way to walk through all the properties
in a UDO object, without needing to know the property names in advance.

When all properties on the UDO object are exhausted, the UDOGetNextProperty() function returns
UDO_ERROR, then goes back to the first property.

We recommend that you avoid modifying the properties on a UDO object when calling the
UDOGetNextProperty() to retrieve the properties.

Syntax

UDOGetNextProperty (udoHandle, namel[out], valuel[out], value typelout])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udohandle Must be a UDO type object.

name[out] The name of the array that holds the names of all the properties in the UDO
object.

value[out] If the property is a UDO_OBJECT or UDO_ARRAY type (it is either a UDO object

or an array), the output value holds only a reference to the object or array.
Further changes to the object or array through this reference, such as updating
a property value on the object or removing an array item, affects the original
object as well.

If the property isa UDO_STRING, UDO_NUMBER, UDO_TRUE, UDO_FALSE, or
UDO_NULL type, the output variable value holds the actual value instead of a
reference. Further changes to this variable do not affect the original property
value.

value_typelout] The type of the value returned by value.

UDOGetOption

The UDOGetOption function gets the value of a UDO option.

Syntax

UDOGetOption (option, valuelout])

Parameters

The following table describes each parameter of the syntax.

Parameter Description
option The UDOOPTION you want to use.
valuelout] A string type option value.

448

UDOGetProperty

UDOGetProperty

The UDOGetProperty function returns the value and type of property on the UDO object.

Syntax

UDOGetProperty (udoHandle, name, valuel[out], value typelout])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO object.

name The name of the property.

value[out] If the property is a UDO_OBJECT or UDO_ARRAY type (it is either a UDO object

or an array), the output value holds only a reference to the object or array.
Further changes to the object or array through this reference, such as updating
a property value on the object or removing an array item, affects the original
object as well.

If the property is a UDO_STRING, UDO_NUMBER, UDO_TRUE, UDO_FALSE, or
UDO_NULL type, the output variable value holds the actual value instead of a
reference. Further changes to this variable do not affect the original property
value.

value_typelout] The type of the value returned by value.

UDOGetPropertyNames

The UDOGetPropertyNames function returns a UDO array that holds the names of all the
properties in the UDO object.

Syntax

UDOGetPropertyNames (udoHandle, udoArrayl[out])

Parameters

The following table describes each parameter of the syntax.

Parameter Description
udoHandle Must be a UDO object.
udoArray[out] The UDO array to hold the names of all the properties in the UDO object.

UDOGetType

The UDOGetType() function gets the UDO value type of a UniVerse BASIC variable.

449

Chapter 1: Statements and functions

Syntax

UDOGetType (udoHandle, typel[out)

Parameters

The following table describes each parameter of the syntax.

Parameters Description
udoHandle Can be a UDO handle, or a UniVerse BASIC string or number.
typelout] The UDO value type.

UDOIsTypeOf

The UDOIsTypeO£f() function tests the UDO value type of a UniVerse BASIC variable.

Syntax

UDOIsTypeOf (udoHandle, type)

Parameters

The following table describes each parameter of the syntax.

Parameters Description
udoHandle Can be a UDO handle, or a UniVerse BASIC string or number.
typelin] The UDO value type.

UDORead

The UDORead function creates a UDO object from a JSON string or XMLstring.

Syntax

UDORead (inputString, inputType, udoHandlel[out])

Parameters

The following table describes each parameter of the syntax.

Parameter Description
inputString A JSON or XML string.
inputype UDOFORMAT_JSON or UDOFORMAT_XML.

udoHandle [out] The UniVerse BASIC variable that holds a reference to the UDO object upon
successful return of the function.

UDOSetOption

450

Sets the options for the UDO API.

UDOSetProperty

Syntax

UDOSetOption (option, value)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
option The UDOOPTION you want to use.
value A string type option value.

UDOSetProperty

The UDOSetProperty function creates or updates a property on a UDO object.

Syntax

UDOSetProperty (udoHandle, name, value)

Parameters

The following table describes each parameter of the syntax.

Parameter

Description

udoHandle

Must be a UDO object.

name

The name of the property. If the property does not exist, UDO creates a new
property for the object.

If the property exists, the new value replaces the old value.

If the old property is of UDO_OBJECT or UDO_ARRAY type, the old value, either
a UDO object or an array, is marked as stand-alone and will be removed from
memory if it is not referenced by any UniVerse BASIC variable.

If the new value is of UDO_OBJECT or UDO_ARRAY type, it must be a stand-
alone object or array, and it must not be the ancestor of the current UDO object.

value

The value of the property.

UDOWrite

Writes a UDO object in JSON or XML format.

Syntax

UDOWrite (udoHandle, outputType, outputStringlout])

Parameters

The following table describes each parameter of the syntax.

Parameter

Description

udoHandle

Must be a UDO type variable.

451

Chapter 1: Statements and functions

Parameter Description

outputType UDOFORMAT_JSON or UDOFORMAT_XML

outputString [out] | The string that holds the serialized output.

UNASSIGNED function

Use the UNASSTGNED function to determine if variable is unassigned. UNASSTIGNED returns 1 (true) if
variable is unassigned. It returns 0 (false) if variable is assigned a value, including the null value.

Syntax

UNASSIGNED (variable)

Example

A = "15 STATE STREET"
= 23

= UNASSIGNED (A)
UNASSIGNED (B)

= UNASSIGNED (C)
PRINT X,Y,Z

N K X Q
|

This is the program output:

010

UNICHAR function

Use the UNICHAR function to generate a single character from a Unicode value.

Syntax

UNICHAR (unicode)

unicode is a decimal number from 0 through 65535 that is the value of the character you want to
generate. If unicode is invalid, an empty string is returned. If unicode evaluates to the null value, null is
returned.

The UNICHAR function operates the same way whether NLS mode is enabled or not.

Note: Use BASIC @variables to generate UniVerse system delimiters. Do not use the UNICHAR
function.

UNICHARS function

Use the UNICHARS function to generate a dynamic array of characters from a dynamic array of
Unicode values.

Syntax

UNICHARS (dynamic.array)

452

UNISEQ function

dynamic.array is an array of decimal Unicode values separated by system delimiters. If any element of
dynamic.array is invalid, an empty string is returned for that element. If dynamic.array evaluates to the
null value, nullis returned. If any element of dynamic.array is null, null is returned for that element.

The UNICHARS function operates the same way whether NLS mode is enabled or not.

Note: Use BASIC @variables to generate UniVerse system delimiters. Do not use the UNICHARS
function.

UNISEQ function

Use the UNISEQ function to generate a Unicode value from expression.

Syntax
UNISEQ (expression)
The first character of expression is converted to its Unicode value, that is, a hexadecimal value in the

range 0x0000 through Ox1FFFF. If expression is invalid, for example, an incomplete internal string, an
empty string is returned. If expression evaluates to the null value, null is returned.

The UNISEQ function operates the same way whether NLS mode is enabled or not.

Warning: UNISEQ does not map system delimiters. For example, UNISEQ("(") returns 251
(0x00FB), and UNISEQ(@TM) returns 63739 (0xF8FB). The Unicode value returned is the internal
representation of the text mark character that is mapped to a unique area so that it is not confused
with any other character. Note that this behaves differently from SEQ(@TM), which returns 251.

For more information about Unicode values and tokens defined for system delimiters, see the UniVerse
NLS Guide.

UNISEQS function

Use the UNISEQS function to generate an array of Unicode values from a dynamic array of characters.

Syntax

UNISEQS (dynamic.array)

dynamic.array specifies an array of characters with the elements separated by system delimiters. The
first character of each element of dynamic.array is converted to its Unicode value, a hexadecimal value
in the range 0x0000 through Ox1FFFF. If any element of dynamic.array is invalid, an empty string is
returned for that element. If dynamic.array evaluates to the null value, null is returned. If any element
of dynamic.array is the null value, null is returned for that element.

The UNISEQS function operates the same way whether NLS mode is enabled or not.

Warning: UNISEQS does not map system delimiters. For example, UNISEQS("(") returns 251
(0x00FB), and UNISEQS(@TM) returns 63739 (0xF8FB). The Unicode value returned is the internal
representation of the text mark character that is mapped to a unique area so that it is not confused
with any other character. Note that this behaves differently from SEQ(@TM), which returns 251.

453

Chapter 1: Statements and functions

For more information about Unicode values and tokens defined for system delimiters, see the UniVerse
NLS Guide.

UNLOCK statement

Use the UNLOCK statement to release a process lock set by the LOCK statement.

Syntax
UNLOCK [expression]
expression specifies an integer from 0 through 63. If expression is not specified, all locks are released

(see the LOCK statement).

If expression evaluates to an integer outside the range of 0 through 63, an error message appears and
no action is taken.

If expression evaluates to the null value, the UNLOCK statement fails and the program terminates with
a run-time error message.

Examples

The following example unlocks execution lock 60:

UNLOCK 60

The next example unlocks all locks set during the current login session:
UNLOCK

The next example unlocks lock 50:

X=10
UNLOCK 60-X

UPCASE function

Use the UPCASE function to change all lowercase letters in expression to uppercase. If expression
evaluates to the null value, null is returned.

UPCASE is equivalent to OCONV ("MCU").

If NLS is enabled, the UPCASE function uses the conventions specified by the Ctype category for the
NLS.LC.CTYPE file to determine what constitutes uppercase and lowercase. For more information
about the NLS.LC.CTYPE file, see the UniVerse NLS Guide.

Syntax

UPCASE (expression)

Example

A="This is an example of the UPCASE function: "
PRINT A
PRINT UPCASE (A)

454

UPRINT statement

This is the program output:

This is an example of the UPCASE function:
THIS IS AN EXAMPLE OF THE UPCASE FUNCTION:

UPRINT statement

In NLS mode, use the UPRINT statement to print data that was mapped to an external format using
OCONV mapname. The UPRINT statement subsequently sends the mapped data to the screen, a line
printer, or another print file with no further mapping.

Syntax

UPRINT [ON print.channel]l [print.list]

The ON clause specifies the logical print channel to use for output. print.channel is an expression that
evaluates to a number from -1 through 255. If you do not use the ON clause, logical print channel

0 is used, which prints to the user’s terminal if PRINTER OFF is set (see the PRINTER statement). If
print.channel evaluates to the null value, the PRINT statement fails and the program terminates with a
run-time error message. Logical print channel -1 prints the data on the screen, regardless of whether a
PRINTER ON statement has been executed.

You can specify HEADING statement, FOOTING statement, SPAGE statement, and PRINTER CLOSE
statements for each logical print channel. The contents of the print files are printed in order by logical
print channel number.

print.list can contain any BASIC expression. The elements of the list can be numeric or character
strings, variables, constants, or literal strings; the null value, however, cannot be printed. The list
can consist of a single expression or a series of expressions separated by commas (,) or colons (:) for
output formatting. If no print.list is designated, a blank line is printed.

Expressions separated by commas are printed at preset tab positions. The default tabstop setting is 10
characters. For information about changing the default setting, see the TABSTOP statement, on page
407. Use multiple commas together for multiple tabulations between expressions.

Expressions separated by colons are concatenated. That is, the expression following the colon is
printed immediately after the expression preceding the colon. To print a list without a LINEFEED and
RETURN, end print.list with a colon (:).

If NLS is disabled, the UPRINT statement behaves like the PRINT statement.

For more information about maps, see the UniVerse NLS Guide.

USERINFO function

Use the USERINFO function to get the pid, user number, and more for the pid or user number
specified.

Utilize the USERINFO. H include file to reference the return values, described in USERINFO.H, on page
456.

Syntax

USERINFO (code, value, userinfo)

455

Chapter 1: Statements and functions

456

Parameters

The following table describes each parameter of the syntax.

Parameter Description
code lis used when the value is a pid. 2 is used when the value is a @USERNO. [IN]
value If code is 1, value is a pid. If code is 2, the value is a @USERNO. [IN]
userinfo A dynamic array with the UniVerse session's user information stored in
attribute 1. The subvalue fields returned are:
1 @USERNO for user
2 Login ID
3 Pid
4 userType (phantom or terminal)
5 User ID (not the same as @USERNO)
6 TTY/Telnet
7 The IP address to be returned. If the process is started from a device-
licensing-aware client even though device licensing is not enabled
in the license configuration, the IP address can be returned. With
telnet sessions on UNIX and Linux platforms, the uvdls process
needs to be called. If the IP address cannot be determined then "N/
A" is returned.
Working directory
Logon time
10 Internal Pick date in local time
11 Number of seconds since midnight (local time)
12 Internal Pick date in UTC time
13 Number of seconds since midnight (UTC time)

Return codes

The following table describes the status of each return code.

Return code Status

0 No results or invalid user number or pid
1 Success

-1 Invalid code value

USERINFO.H

You can use the USERINFO function to extract information from the USERINFO. H include file about
a particular session's details.

The following tokens can be used when calling the USERINFO function.

Value Token Description

1 UISUSER_NO @USERNO for user

2 UISUSER_NAME Login ID

3 UISPID Pid

4 UISUSER_TYPE userType (phantom or terminal)

5 UISUSER_ID User ID (not the same as @USERNO)

WEOF statement

Value Token Description
6 UISTTY TTY/Telnet
7 UISIP_ADDR The IP address to be returned. If the process is started from a device-

licensing-aware client even though device licensing is not enabled in
the license configuration, the IP address can be returned. With telnet
sessions on UNIX and Linux platforms, the uvdls process needs
to be called. If the IP address cannot be determined then "N/A" is

returned.
UISWORK_DIR Working directory
UISLOGON_TIME Logon time
10 UISLOCAL_DATE Internal Pick date in local time
11 UISLOCAL_TIME Number of seconds since midnight (local time)
12 UISUTC_DATE Internal Pick date in UTC time
13 UISUTC_TIME Number of seconds since midnight (UTC time)

The following example examines the current USERINFO settings:

$INCLUDE UNIVERSE.INCLUDE USERINFO.H

CRT "SYS(51): ":SYSTEM(51)

RETCODE = USERINFO (2, QRUSERNO, RETDATA)

CRT "USER_NO: ":RETDATA<1,UISUSER NO>

CRT "USER _NAME: ":RETDATA<1,UISUSER NAME>
CRT "PID: ":RETDATA<1,UIS$PID>

CRT "USER_TYPE: ":RETDATA<1,UISUSER TYPE>
CRT "USER_ID: ":RETDATA<1,UISUSER ID>

CRT "TTY: ":RETDATA<1,UISTTY>

CRT "IP ADDR: ":RETDATA<1,UISIP ADDR>

CRT "WORK_DIR: ":RETDATA<1,UISWORK DIR>

CRT "LOGON TIME: ":RETDATA<1l,UISLOGON_ TIME>
CRT "LOCAL DATE: ":RETDATA<1l,UISLOCAL DATE>

WEOQOF statement

Use the WEOF statement to write an end-of-file (EOF) mark to tape.

Syntax

WEOF [UNIT (mtu)] {THEN statements [ELSE statements] | ELSE statements}

The UNIT clause specifies the number of the tape drive unit. Tape unit 0 is used if no unit is specified.

mtu is an expression that evaluates to a three-digit code (decimal). Although the mtu expression is a
function of the UNIT clause, the WEOF statement uses only the third digit (the u). Its value must be in
the range of 0 through 7 (see the READT statement, on page 319 for details on the mtu expression). If
mtu evaluates to the null value, the WEOF statement fails and the program terminates with a run-time
error message.

Before a WEOF statement is executed, a tape drive unit must be attached (assigned) to the user.
Use the ASSTGN command to assign a tape unit to a user. If no tape unit is attached or if the unit
specification is incorrect, the ELSE statements are executed.

The STATUS function returns 1 if WEOF takes the ELSE clause, otherwise it returns 0.

457

Chapter 1: Statements and functions

Example

WEOF UNIT (007) ELSE PRINT "OPERATION NOT COMPLETED."

WEOFSEQ statement

458

Use the WEOFSEQ statement to write an end-of-file (EOF) mark in a file opened for sequential access.
The end-of-file mark is written at the current position and has the effect of truncating the file at this
point. Any subsequent READSEQ statement has its ELSE statements executed.

Syntax

WEOFSEQfile.variable [ON ERROR statements]

file.variable specifies a file opened for sequential access. If file.variable evaluates to the null value, the
WEOFSEQ statement fails and the program terminates with a run-time error message.

Note: On Windows NT systems, you cannot use the WEOFSEQ statement with a diskette drive that
you opened with the OPENDEV statement. For 1/4- inch cartridge tape drives (60 MB or 150 MB) you
can use WEOFSEQ to write an end-of-file (EOF) mark at the beginning of the data or after a write.

The ON ERROR clause

The ON ERROR clause is optional in the WEOFSEQ statement. The ON ERROR clause lets you specify
an alternative for program termination when a fatal error is encountered during processing of the
WEOFSEQ statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

= Anerror message appears.
= Any uncommitted transactions begun within the current execution environment roll back.
= The current program terminates.

= Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

= Afileis not open.

= file.variable is the null value.

= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

See the OPENSEQ statement, on page 289, READSEQ statement, on page 317, and WRITESEQ
statement, on page 464 for more information about sequential file processing.

Note: Some systems do not support the truncation of disk files. WEOFSEQ is ignored on these
systems, except that WEOFSEQ always works at the beginning of a file.

Example

The following example writes an end-of-file mark on the record RECORD in the file TYPEL:

OPENSEQ 'TYPEl', 'RECORD' TO FILE ELSE STOP

WRITE statements

WEOFSEQ FILE

WRITE statements

Use WRITE statements to write new data to a record in a UniVerse file. The value of expression replaces
any data previously stored in the record.

Syntax

WRITE [U] expression {ON | TO} [file.variable,] record.ID
[ON ERROR statements] [LOCKED statements]
[THEN statements] [ELSE statements]

WRITEV[U] expression {ON | TO} [file.variable,] record.ID, field#
[ON ERROR statements] [LOCKED statements]
[THEN statements] [ELSE statements]

Use this To do this...

statement...

WRITE Write to a record.

WRITEU Write to a record, retaining an update record lock.
WRITEV Write to a field.

WRITEVU Write to a field, retaining an update record lock.

If expression evaluates to the null value, the WRITE statement fails and the program terminates with a
run-time error message.

file.variable specifies an open file. If file.variable is not specified, the default file is assumed (for more
information on default files, see the OPEN statement, on page 283. If the file is neither accessible nor
open, the program terminates with a run-time error message, unless ELSE statements are specified.

The system searches the file for the record specified by record.ID. If the record is not found, WRITE
creates a new record.

If file.variable, record.ID, or field# evaluates to the null value, all WRITE statements (WRITE, WRITEU,
WRITEV, WRITEVU) fail and the program terminates with a run-time error message.

The new value is written to the record, and the THEN statements are executed. If no THEN statements
are specified, execution continues with the statement following the WRITE statement. If WRITE fails,
the ELSE statements are executed; any THEN statements are ignored.

When updating a record, the WRITE statement releases the update record lock set with a READU
statement. To maintain the update record lock set by the READU statement, use a WRITEU statement
instead of a WRITE statement.

The WRITE statement does not strip trailing field marks enclosing empty strings from expression. Use
the MATWRITE statements if that operation is required.

Tables

If the file is a table, the effective user of the program must have SQL INSERT and UPDATE privileges to
read records in the file. For information about the effective user of a program, see the AUTHORIZATION
statement, on page 74.

459

Chapter 1: Statements and functions

460

If the OPENCHK configurable parameter is set to TRUE, or if the file is opened with the OPENCHECK
statement, all SQL integrity constraints are checked for every write to an SQL table. If an integrity
check fails, the WRITE statement uses the ELSE clause. Use the ICHECK function to determine what
specific integrity constraint caused the failure.

NLS mode

WRITE and other BASIC statements that perform 1/0 operations map internal data to the external
character set using the appropriate map for the output file.

UniVerse substitutes the file map’s unknown character for any unmappable character. The results of
the WRITE statements depend on the following:

= Theinclusion of the ON ERROR clause
= The setting of the NLSWRITEELSE parameter in the uvconfig file
* The location of the unmappable character

The values returned by the STATUS function and the results are as follows:

STATUS value and results ON ERROR and parameter Unmappable character location
setting

3 The WRITE fails, no records ON ERROR Record ID

written. Data

4 The WRITE fails, no records

written.

Program terminates with arun- | No ON ERROR, and Record ID or data

time error message. NLSWRITEELSE = 1

Program terminates with arun- [No ON ERROR, Record ID

time error message. NLSWRITEELSE =0
Data

Record is written with unknown
characters; lost data.

For more information about unmappable characters, see the UniVerse NLS Guide.

Use the STATUS function after a WRITE statement is executed, to determine the result of the
operation, as follows:

Value Description

0 The record was locked before the WRITE operation.

-2 The record was unlocked before the WRITE operation.

-3 The record failed an SQL integrity check.

-4 The record failed a trigger program.

-6 Failed to write to a published file while the subsystem was shut down.

The ON ERROR clause

The ON ERROR clause is optional in WRITE statements. Its syntax is the same as that of the ELSE
clause. The ON ERROR clause lets you specify an alternative for program termination when a fatal
error is encountered during processing of the WRITE statement.

If a fatal error occurs, and the ON ERROR clause was not specified or was ignored (as in the case of an
active transaction), the following occurs:

* An error message appears.

WRITE statements

= Any uncommitted transactions begun within the current execution environment roll back.
= Thecurrent program terminates.

= Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

= Afileis not open.

= file.variable is the null value.

= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

The LOCKED clause

The LOCKED clause is optional, but recommended. Its format is the same as that of the ELSE clause.

The LOCKED clause handles a condition caused by a conflicting lock (set by another user) that
prevents the WRITE statement from processing. The LOCKED clause is executed if one of the following
conflicting locks exists:

= Exclusive file lock

* Intent file lock

= Shared file lock

= Update record lock
= Shared record lock

If the WRITE statement does not include a LOCKED clause, and a conflicting lock exists, the program
pauses until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the terminal number of the
user who owns the conflicting lock.

The WRITEU statement

Use the WRITEU statement to update a record without releasing the update record lock set by a
previous READU statement (see the READ statements, on page 309). To release the update record
lock set by a READU statement and maintained by a WRITEU statement, you must use a RELEASE
statement, WRITE statements, MATWRITE statements, or WRITEV statement. If you do not explicitly
release the lock, the record remains locked until the program executes the STOP statement. When
more than one program or user could modify the same record, use a READU statement to lock the
record before doing the WRITE or WRITEU.

If expression evaluates to the null value, the WRITEU statement fails and the program terminates with
arun-time error message.

The WRITEV statement

Use the WRITEV statement to write a new value to a specified field in a record. The WRITEV statement
requires that field# be specified. field# is the number of the field to which expression is written. It must
be greater than 0. If either the record or the field does not exist, WRITEV creates them.

If expression evaluates to the null value, null is written to field#, provided that the field allows nulls. If
the file is an SQL table, existing SQL security and integrity constraints must allow the write.

461

Chapter 1: Statements and functions

462

The WRITEVU statement

Use the WRITEVU statement to update a specified field in a record without releasing the update record
lock set by a previous READU statement (see the READ statement). The WRITEVU syntax is like that of
the WRITEV and WRITEU statements.

If expression evaluates to the null value, null is written to field#, provided that the field allows nulls. If
the file is an SQL table, existing SQL security and integrity constraints must allow the write.

Remote files

If in a transaction you try to write to a remote file over UVNet, the write statement fails, the transaction
is rolled back, and the program terminates with a run-time error message.

Example

CLEAR

DATA "ELLEN", "KRANZER","3 AMES STREET", "CAMBRIDGE"
DATA "MA","02139","SAILING"

OPEN

'','SUN.MEMBER' TO FILE ELSE

PRINT "COULD NOT OPEN FILE"
STOP

END

PRINT
INPUT
PRINT
INPUT
PRINT
PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT
INPUT

"ENTER YOUR FIRST NAME"
FNAME

"ENTER YOUR LAST NAME"
LNAME

"ENTER YOUR ADDRESS (PLEASE WAIT FOR PROMPTS)"
"STREET ADDRESS"

STREET

"ENTER CITY"

CITY

"ENTER STATE"

STATE

"ENTER ZIP CODE"

ZIP

"ENTER YOUR INTERESTS"
INTERESTS

RECORD<1>=LNAME
RECORD<2>=FNAME
RECORD<3>=STREET
RECORD<4>=CITY
RECORD<5>=STATE
RECORD<6>=ZIP
RECORD<7>=1989
RECORD<8>=INTERESTS

WRITE
PRINT

RECORD TO FILE, 1111

EXECUTE 'LIST SUN.MEMBER LNAME WITH FNAME EQ ELLEN'

This is the program output:

ENTER YOUR FIRST NAME
?ELLENENTER YOUR LAST NAME
?KRANZERENTER YOUR ADDRESS (PLEASE WAIT FOR PROMPTS)
STREET ADDRESS
?3 AMES STREETENTER CITY
?CAMBRIDGEENTER STATE
?MAENTER ZIP CODE
?02139ENTER YOUR INTEREST
?SAILING

WRITEBLK statement

SUN.MEMBER LAST NAME.
1111 KRANZER

1 records listed.

WRITEBLK statement

Use the WRITEBLK statement to write a block of data to a file opened for sequential processing. Each
WRITEBLK statement writes the value of expression starting at the current position in the file. The
current position is incremented to beyond the last byte written. WRITEBLK does not add a newline at
the end of the data.

Syntax

WRITEBLK expression ON file.variable
{THEN statements [ELSE statements] | ELSE statements}

file.variable specifies a file opened for sequential processing.

Note: On Windows NT systemes, if you use the WRITEBLK statement to write to a 1/4-inch cartridge
tape (60 MB or 150 MB) that you opened with the OPENDEV statement, on page 286, you must
specify the block size as 512 bytes or a multiple of 512 bytes.

The value of expression is written to the file, and the THEN statements are executed. If no THEN
statements are specified, program execution continues with the next statement.

If the file cannot be accessed or does not exist, the ELSE statements are executed; any THEN
statements are ignored. If the device runs out of disk space, WRITEBLK takes the ELSE clause and
returns -4 to the STATUS function.

If either expression or file.variable evaluates to the null value, the WRITEBLK statement fails and the
program terminates with a run-time error message.

If NLS is enabled, the data written is mapped using the appropriate output file map. For more
information about maps, see the UniVerse NLS Guide.

Example

OPENSEQ 'FILE.E', 'RECORD4' TO FILE ELSE ABORT

WEOFSEQ FILE

DATA1l="ONE'

DATA2="TWO'

*

WRITEBLK DATAl ON FILE ELSE ABORT

WRITEBLK DATA2 ON FILE ELSE ABORT

* These two lines write two items to RECORD4 in FILE.E without
* inserting a newline between them.

WEOFSEQ FILE

SEEK FILE,0,0 ELSE STOP

READSEQ A FROM FILE THEN PRINT A

* This reads and prints the line just written to the file.

This is the program output:
ONETWO

463

Chapter 1: Statements and functions

WRITELIST statement

Use the WRITELIST statement to save a list as a record in the &SAVEDLISTS& file.

Syntax

WRITELIST dynamic.array ON listname

dynamic.array is an expression that evaluates to a string made up of elements separated by field
marks. It is the list to be saved.

listname is an expression that evaluates to record.ID or record.ID account.name

record.ID is the record ID of the select list created in the &SAVEDLISTS& file. If listname includes
account.name, the &SAVEDLISTS& file of the specified account is used instead of the one in the local
account. If record.ID exists, WRITELIST overwrites the contents of the record.

If either dynamic.array or listname evaluates to the null value, the WRITELIST statement fails and the
program terminates with a run-time error message.

WRITESEQ statement

Use the WRITESEQ statement to write new lines to a file opened for sequential processing. UniVerse
keeps a pointer to the current position in the file while it is open for sequential processing. The
OPENSEQ statement sets this pointer to the first byte of the file, and it is advanced by the READSEQ
statement, READBLK statement, WRITESEQ, and WRITEBLK statement.

WRITESEQ writes the value of expression followed by a newline to the file. The data is written at the
current position in the file. The pointer is set to the position following the newline. If the pointer is
not at the end of the file, WRITESEQ overwrites any existing data byte by byte (including the newline),
starting from the current position.

file.variable specifies a file opened for sequential access.

The value of expression is written to the file as the next line, and the THEN statements are executed.
If THEN statements are not specified, program execution continues with the next statement. If the
specified file cannot be accessed or does not exist, the ELSE statements are executed; any THEN
statements are ignored.

If expression or file.variable evaluates to the null value, the WRITESEQ statement fails and the program
terminates with a run-time error message.

After executing a WRITESEQ statement, you can use the STATUS function to determine the result of
the operation:

Value Description

0 The record was locked before the WRITESEQ operation.

-2 The record was unlocked before the WRITESEQ operation.

-4 The write operation failed because the device ran out of disk space.

File buffering

Normally UniVerse uses buffering for sequential input and output operations. If you use the NOBUF
statement after an OPENSEQ statement, buffering is turned off and writes resulting from the
WRITESEQ statement are performed right away.

464

WRITESEQ statement

You can also use the FLUSH statement after a WRITESEQ statement to cause all buffers to be written
right away.

For more information about buffering, see the FLUSH statement, on page 172 and NOBUF statement,
on page 275.

Syntax

WRITESEQ expression {ON | TO} file.variable [ON ERROR statements]
{THEN statements [ELSE statements] | ELSE statements}

The ON ERROR clause

The ON ERROR clause is optional in the WRITESEQ statement. The ON ERROR clause lets you specify
an alternative for program termination when a fatal error is encountered while the WRITESEQ
statement is being processed.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

= Anerror message appears.
= Any uncommitted transactions begun within the current execution environment roll back.
= Thecurrent program terminates.

= Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

= Afileis not open.

= file.variable is the null value.

= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

If NLS is enabled, WRITESEQ and other BASIC statements that perform 1/0 operations always map
internal data to the external character set using the appropriate map for the output file. For more
information about maps, see the UniVerse NLS Guide.

Example

DATA 'NEW ITEM 1', 'NEW ITEM 2'
OPENSEQ 'FILE.E', 'RECORD1' TO FILE ELSE ABORT
READSEQ A FROM FILE ELSE STOP
*
FOR I=1 TO 2
INPUT B
WRITESEQ B TO FILE THEN PRINT B ELSE STOP
NEXT
*
CLOSESEQ FILE
END

This is the program output:
?NEW ITEM 1

NEW ITEM 1
?NEW ITEM 2

465

Chapter 1: Statements and functions

NEW ITEM 2

WRITESEQF statement

466

Use the WRITESEQF statement to write new lines to a file opened for sequential processing, and to
ensure that data is physically written to disk (that is, not buffered) before the next statement in the
program is executed. The sequential file must be open, and the end-of-file marker must be reached
before you can write to the file. You can use the FILEINFO function to determine the number of the
line about to be written.

Syntax

WRITESEQF expression {ON | TO} file.variable [ON ERROR statements]
{THEN statements [ELSE statements] | ELSE statements}

Normally, when you write a record using the WRITESEQ statement, the record is moved to a buffer that
is periodically written to disk. If a system failure occurs, you could lose all the updated records in the
buffer. The WRITESEQF statement forces the buffer contents to be written to disk; the program does
not execute the statement following the WRITESEQF statement until the buffer is successfully written
to disk. AWRITESEQF statement following several WRITESEQ statements ensures that all buffered
records are written to disk.

WRITESEQF is intended for logging applications and should not be used for general programming. It
increases the disk /O of your program and therefore degrades performance.

file.variable specifies a file opened for sequential access.

The value of expression is written to the file as the next line, and the THEN statements are executed. If
THEN statements are not specified, program execution continues with the next statement.

If the specified file cannot be accessed or does not exist, the ELSE statements are executed; any THEN
statements are ignored. If the device runs out of disk space, WRITESEQF takes the ELSE clause and
returns -4 to the STATUS function.

If expression or file.variable evaluates to the null value, the WRITESEQF statement fails and the
program terminates with a run-time error message.

If NLS is enabled, WRITESEQF and other BASIC statements that perform 1/0 operations always map
internal data to the external character set using the appropriate map for the output file. For more
information about maps, see the UniVerse NLS Guide.

The ON ERROR clause

The ON ERROR clause is optional in the WRITESEQF statement. Its syntax is the same as that of the
ELSE clause. The ON ERROR clause lets you specify an alternative for program termination when a
fatal error is encountered while the WRITESEQF statement is being processed.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

= Anerror message appears.
* Any uncommitted transactions begun within the current execution environment roll back.
= The current program terminates.

= Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

Afatal error can occur if any of the following occur:

writeSocket function

= Afileis not open.
= file.variable is the null value.
= Adistributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

Values returned by the FILEINFO function

Key 14 (FINFOSCURRENTLINE) of the FILEINFO function can be used to determine the number of the
line about to be written to the file.

Example

In the following example, the print statement following the WRITESEQF statement is not executed
until the record is physically written to disk:

WRITESEQF ACCOUNT.REC TO ACCOUNTS.FILE
THEN WRITTEN = TRUE

ELSE STOP "ACCOUNTS.FILE FORCE WRITE ERROR"
PRINT "Record written to disk."

writeSocket function

Use the writeSocket() function to write data to a socket connection.

Syntax

writeSocket (socket handle, socket data, time out, mode,
actual write size)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

socket_handle A handle to the open socket.

socket_data The data to be written to the socket.

time_out The allowable time (in milliseconds) for blocking. This is ignored for a

non-blocking write.

mode 0: using current mode
1: blocking mode (default)

2: non-blocking mode

actual_write_size The number of characters actually written.

Return status

The following table describes the return status of each mode.

Mode Return status

Blocking The function will return only after all characters in socket_data are
written to the socket.

467

Chapter 1: Statements and functions

Mode Return status

Non-blocking The function may return with fewer character written than the actual
length (in the case that the socket is full).

Return codes

The following table describes the status of each return code.

Return code Description

0 Success.

1-41 See Socket function error return codes, on page 599.
107 Encryption error.

108 Decryption error.

WRITET statement

468

Use the WRITET statement to write a tape record to tape. The value of variable becomes the next tape
record. variable is an expression that evaluates to the text to be written to tape.

Syntax

WRITET [UNIT (mtu)] variable
{THEN statements [ELSE statements] | ELSE statements}

The UNIT clause specifies the number of the tape drive unit. Tape unit 0 is used if no unit is specified. If
the UNIT clause is used, mtu is an expression that evaluates to a code made up of three decimal digits,
as shown in the following table:

Code Available Options

m (mode) 0=No conversion

1=EBCDIC conversion

2 = Invert high bit

3 =Invert high bit and EBCDIC conversion

t (tracks) 0 =9 tracks. Only 9-track tapes are supported.

u (unit number) 0 through 7

The mtu expression is read from right to left. If mtu evaluates to a one-digit code, it represents the tape
unit number. If mtu evaluates to a two-digit code, the rightmost digit represents the unit number and
the digit to its left is the track number.

If either mtu or variable evaluates to the null value, the WRITET statement fails and the program
terminates with a run-time error message.

Each tape record is written completely before the next record is written. The program waits for the
completion of data transfer to the tape before continuing.

Before a WRITET statement is executed, a tape drive unit must be attached (assigned) to the user. Use
the ASSIGN command to assign a tape unit to a user. If no tape drive unit is attached or if the unit
specification is incorrect, the ELSE statements are executed.

The largest record that the WRITET statement can write is system-dependent. If the actual record is
larger, bytes beyond the system byte limit are not written.

WRITEU statement

Note: UniVerse BASIC does not generate tape labels for the tape file produced with the WRITET
statement.

The STATUS function returns 1 if READT takes the ELSE clause, otherwise it returns 0.

If NLS is enabled, WRITET and other BASIC statements that perform 1/O operations always map
external data to the UniVerse internal character set using the appropriate map for the file. The map
defines the external character set for the file that is used to input data on a keyboard, display data on
a screen, and so on. For more information about maps, see the UniVerse NLS Guide.

PIOPEN flavor

If you have a program that specifies the syntax UNIT ndmtu, the nd elements are ignored by the
compiler and no errors are reported.

Examples

The following example writes a record to tape drive 0:

RECORD=15253S4
WRITET RECORD ELSE PRINT "COULD NOT WRITE TO TAPE"

The next example writes the numeric constant 50 to tape drive 2, a 9-track tape with no conversion:

WRITET UNIT (002) "50" ELSE PRINT "COULD NOT WRITE"

WRITEU statement

Use the WRITEU statement to maintain an update record lock while performing the WRITE statement.

For details, see the WRITE statements, on page 459.

WRITEV statement

Use the WRITEV statement to write on the contents of a specified field of a record of a UniVerse file.

For details, see the WRITE statements, on page 459.

WRITEVU statement

Use the WRITEVU statement to maintain an update record lock while writing on the contents of a
specified field of a record of a UniVerse file.

For details, see the WRITE statements, on page 459.

XDOMAddChild function

Finds the xpathString in the context xmlHandle in the DOM structure, and inserts a node as the last
child of the found node. If the inserted node type is XDOM.ATTR.NODE, this node is inserted as an
attribute.

469

Chapter 1: Statements and functions

470

Syntax

XDOMAddChild (xmlHandle, xpathString, nsMap, nodeHandle,
dupFlag,nodeType)

Note: This function is case-sensitive. If you want it to be case-insensitive, you must compile your
programs using the BASTC command with the -i option.

Parameters

The following table describes each parameter of the syntax.

Parameter Description
xmlHandle The handle to the context. [IN]
xpathString Relative or absolute XPath string. [IN]

The xpathString parameter uses the in-encoding parameter
set in the system-level or account-level xm1configfile, the
XMLSETOPTIONS command, or the XMLSetOptions() APL.

nsMap The map of namespaces that resolves the prefixes in the
xpathString.

Formatis xmlns=default url
xmlns:prefixl=prefixl url
xmlns:prefix2=prefix2 url

For example:

xmlns=http://myproject.mycompany.com
xmlns:a prefix=a.mycompany.com

[IN]

The nsMap parameter uses the in-encoding parameter set
in the system-level or account-level xm1lconfigfile, the
XMLSETOPTIONS command, or the XMLSetOptions() AP

nodeHandle Handle to a DOM subtree. If nodeHandle points to a DOM
document, all of its children are inserted, in the same order. [IN]

dupFlag XDOM.DUP: Clones nodeHandle, and replaces it with the duplicate
node.

XDOM.NODUP: Replaces with the original node. The subtree is also

removed from its original location. [IN]

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code Description

XML.SUCCESS Function completed successfully.

XML.ERROR An error occurred.

XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMAppend function

XDOMAppend function

Finds the xpathString in the context xmlHandle in the DOM structure, and inserts nodeHandle into the
DOM structure as the next sibling of the found node. If the inserted node type is XDOM.ATTR.NODE,
this node is inserted as an attribute.

Syntax

XDOMAppend (xmlIHandle, xpathString, nsMap, nodeHandle, dupFlag)

Note: This function is case-sensitive. If you want it to be case-insensitive, you must compile your
programs using the BASIC command with the -i option.

Parameters

The following table describes each parameter of the syntax.

Parameter Description
xmlHandle The handle to the context. [IN]
xpathString Relative or absolute XPath string. [IN]

The xpathString parameter uses the in-encoding parameter
set in the system-level or account-level xmlconfigfile, the
XMLSETOPTIONS command, or the XMLSetOptions() APL

nsMap The map of namespaces that resolves the prefixes in the
xpathString.

Formatis xmlns=default url
xmlns:prefixl=prefixl url
xmlns:prefix2=prefix2 url

For example:

xmlns=http://myproject.mycompany.com
xmlns:a prefix=a.mycompany.com

[IN]

The nsMap parameter uses the in-encoding parameter set
in the system-level or account-level xm1lconfigfile, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

nodeHandle Handle to a DOM subtree. If nodeHandle points to a DOM
document, all of its children are inserted, in the same order. [IN]

dupFlag XDOM.DUP: Clones nodeHandle, and replaces it with the duplicate
node.

XDOM.NODUP: Replaces with the original node. The subtree is also
removed from its original location. [IN]

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code Description
XML.SUCCESS Function completed successfully.
XML.ERROR An error occurred.

471

Chapter 1: Statements and functions

Return code Description

XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMClone function

The XDOMC1one function duplicates the DOM subtree specified by xmlHandle to a new subtree
newXmlHandle. The duplicate node has no parent (parentNode returns null.).

Cloning an element copies all attributes and their values, including those generated by the XML
processor, to represent defaulted attributes, but this method does not copy any text it contains unless
itis a deep clone, since the text is contained in a child text node. Cloning any other type of node simply
returns a copy of this node.

Syntax

XDOMClone (xmlHandle, newXmlHandle, depth)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
xmlHandle Handle to the DOM subtree. [IN]
newXmlHandle Handle to the new DOM subtree. [IN]
depth XDOM.FALSE: Clone only the node itself.
XDOM.TRUE: Recursively clone the subtree under the specified node. [IN]

Return codes

The following table describes the status of each return code.

Return code Description

XML.SUCCESS The function completed successfully.

XML.ERROR An error occurred.

XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMClose function

472

The XDOMClose function frees the DOM structure.

Syntax

XDOMClose (domHandle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

domHandle Handle to the DOM structure. [IN]

XDOMCreateNode function

Return codes

The following table describes the status of each return code.

Return code Description

XML.SUCCESS The function completed successfully.

XML.ERROR An error occurred.

XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMCreateNode function

XDOMCreateNode creates a new node in the DOM structure.

Syntax

XDOMCreateNode (xmlHandle, nodeName, nodeValue, nodeType, nodeHandle)

Note: This function is case-sensitive. If you want it to be case-insensitive, you must compile your
programs using the BASIC command with the -i option.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xmlHandle A handle to the DOM structure. This handle acts as the context
when resolving the namespace_uri from the prefix or resolving the
prefix from the namespace_uri.

[IN]

nodeName The name of the node to be created. [IN]

The name can be in any of the following formats:
* Local_name

= prefix: local_name:namespace_uri

= prefix:local_name

= :local_name:namespace_uri

The nodeName parameter uses the in-encoding parameter
set in the system-level or account-level xm1configfile, the
XMLSETOPTIONS command, or the XMLSetOptions() AP

nodeValue The string to hold the node value. [IN]

The nodeValue parameter uses the in-encoding parameter
set in the system-level or account-level xmlconfigfile, the
XMLSETOPTIONS command, or the XMLSetOptions() APL

473

Chapter 1: Statements and functions

Parameter Description

nodeType The type of the node to be created. Valid values are:
XDOM.ELEMENT.NODE
XDOM.ATTR.NODE
XDOM.TEXT.NODE
XDOM.CDATA.NODE
XDOM.ENTITY.REF.NODE
XDOM.ENTITY.NODE
XDOM.PROC.INST.NODE
XDOM.COMMENT.NODE
XDOM.DOC.NODE
XDOM.DOC.TYPE.NODE
XDOM.DOC.FRAG.NODE
XDOM.NOTATION.NODE
XDOM.XML.DECL.NODE
[IN]

nodeHandle A handle to the node to be created in the DOM structure.
[IN]

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code Description
XML.SUCCESS Function completed successfully.
XML.ERROR An error occurred.

XDOMCreateRoot function

The XDOMCreateRoot function creates a new DOM structure with root only. You can use the result
handle in other functions where a DOM handle or node handle is needed.

Syntax

XDOMCreateRoot (domHandle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

domHandle Handle to the opened DOM structure. [OUT]

Return codes

The following table describes the status of each return code.

474

XDOMEvaluate function

Return code Description
XML.SUCCESS The function completed successfully.
XML.ERROR An error occurred.

XDOMEvaluate function

XDOMEvaluate returns the value of xpathString in the context xm/Handle in the DOM structure.

Syntax

XDOMEvaluate (xmlIHandle, xpathString, nsMap, aValue)

Note: This function is case-sensitive. If you want it to be case-insensitive, you must compile your
programs using the BASIC command with the -i option.

Parameters

The following table describes each parameter of the syntax.

Parameter Description
xmlHandle The handle to the context. [IN]
xpathString Relative or absolute XPath string. [IN]

The xpathString parameter uses the in-encoding parameter
set in the system-level or account-level xm1config file, the
XMLSETOPTIONS command, or the XMLSetOptions() APL.

nsMap The map of namespaces that resolves the prefixes in the
xpathString.

Formatis xmlns=default url
xmlns:prefixl=prefixl url
xmlns:prefix2=prefix2 url

For example:

xmlns=http://myproject.mycompany.com
xmlns:a prefix=a.mycompany.com

[IN]

The nsMap parameter uses the in-encoding parameter set
in the system-level or account-level xm1config file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

aValue The value of xpathString. [OUT]

The aValue parameter uses the out-encoding parameter
set in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() APL.

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code Description

XML.SUCCESS Function completed successfully.

475

Chapter 1: Statements and functions

Return code

Description

XML.ERROR

An error occurred.

XML.INVALID.HANDLE

An invalid DOM handle was returned to the function.

XDOMGetAttribute function

XDOMGetAttribute gets the node's attribute node, whose attribute name is attrName.

Syntax

XDOMGetAttribute (nodeHandle, attrName, nodeHandle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
nodeHandle Handle to the DOM node. [IN]
attrName Attribute name. [IN]
The attrName parameter uses the in-encoding parameter
set in the system-level or account-level xm1configfile, the
XMLSETOPTIONS command, or the XMLSetOptions() APL.
nodeHandle Handle to the found attribute node. [OUT]

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code

Description

XML.SUCCESS

Function completed successfully.

XML.ERROR

An error occurred.

XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMGetChildNodes function

The XDOMGetChildNodes function returns all child nodes of xmlHandle.

Syntax

XDOMGetChildNodes (xmlHandle, nodeListHandle)

This function behaves in the same way as:

XDOMLocate (xmlHandle, “*”, “”, XML.MULTI)

Parameters

The following table describes each parameter of the syntax.

Parameter

Description

xmlHandle

Handle to the DOM structure.

476

XDOMGetElementByld function

Parameter Description

nodelistHandle The handle to the node list.

Example

Consider the following XML document:

<?xml version="1.0" encoding="utf-8"?>

<ADDRBOOK cmt="my address book">

<ENTRY id="idl" name="bookentry”>
<NAME>Name One</NAME>
<ADDRESS>101 Some Way</ADDRESS>
<PHONENUM DESC="Work">303-111-1111</PHONENUM>
<PHONENUM DESC="Fax">303-111-2222</PHONENUM>
<PHONENUM DESC="Pager">303-111-3333</PHONENUM>
<EMAIL>name.one@some.com</EMAIL>

</ENTRY>

<ENTRY ID="id2" NAME="bookentry”>

<NAME>Name Two</NAME>

<ADDRESS>202 Some Way</ADDRESS>
<PHONENUM DESC="Work">303-222-1111</PHONENUM>
<PHONENUM DESC="Fax">303-222-2222</PHONENUM>
<PHONENUM DESC="Home">303-222-3333</PHONENUM>
<EMAIL>name.two@some.com</EMAIL>

</ENTRY>

</ADDRBOOK>

In this example, suppose xmlHandle points to <ENTRY id="id1” name="bookentry”>.After
the call to XDOMGetChildNodes (xmlHandle, nodehandle), nodeHandle should pointto all
child nodes, that is, <NAME>, <ADDRESS>, three <PHONENUM>’s, and <EMAIL>.

XDOMGetElementByld function

The XDOMGetElementByld function finds the first element with the ID you specify.

Syntax
XDOMGetElementByld (xmlHandle, idstr, nodeHandle)
This behaves in the same way as:

XDOMLocate (xmlHandle, .”//* [@ID='idstr’ or @id=’idstr’]”,””,XML SINGLE)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
xmlHandle Handle to the DOM structure.
idstr The ID of the element you want to return.
nodeHandle Handle to the DOM node.
Example

<?xml version="1.0" encoding="utf-8"?>
<ADDRBOOK cmt="my address book">

477

Chapter 1: Statements and functions

<ENTRY id="idl" name="bookentry”>
<NAME>Name One</NAME>
<ADDRESS>101 Some Way</ADDRESS>
<PHONENUM DESC="Work">303-111-1111</PHONENUM>
<PHONENUM DESC="Fax">303-111-2222</PHONENUM>
<PHONENUM DESC="Pager">303-111-3333</PHONENUM>
<EMAIL>name.one@some.com</EMAIL>

</ENTRY>

<ENTRY ID="id2" NAME="bookentry”>
<NAME>Name Two</NAME>
<ADDRESS>202 Some Way</ADDRESS>
<PHONENUM DESC="Work">303-222-1111</PHONENUM>
<PHONENUM DESC="Fax">303-222-2222</PHONENUM>
<PHONENUM DESC="Home">303-222-3333</PHONENUM>
<EMAIL>name.two@some.com</EMAIL>

</ENTRY>

</ADDRBOOK>

In the example, suppose xmlHandle points to the document root. After the call to
XDOMGetElementById (xmlHandle, “id2”, nodeHandle),nodeHandle should pointto
element <ENTRY ID="id2” NAME="bookentry>.

XDOMGetElementsByName function

The XDOMGetElementsByName function tries to find all elements with the name you specify.

Syntax
XDOMGetElementsByName (xmlHandle, namestr, nodeListHandle)
This function behaves in the same way as:

A\74

XDOMLocate (xmlHandle, “//* [@NAME='namestr’ or @name=’'namestr’]”,
XML .MULTTI)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xmlHandle Handle to the DOM structure.

namestr The name of the element you want to return.
nodelistHandle The handle to the node list.

Example

Consider the following XML document:

<?xml version="1.0" encoding="utf-8"?>

<ADDRBOOK cmt="my address book">

<ENTRY id="idl" name="bookentry”>
<NAME>Name One</NAME>
<ADDRESS>101 Some Way</ADDRESS>
<PHONENUM DESC="Work">303-111-1111</PHONENUM>
<PHONENUM DESC="Fax">303-111-2222</PHONENUM>
<PHONENUM DESC="Pager">303-111-3333</PHONENUM>
<EMAIL>name.one@some.com</EMAIL>

</ENTRY>

478

XDOMGetElementsByTag function

<ENTRY ID="id2" NAME="bookentry”>
<NAME>Name Two</NAME>
<ADDRESS>202 Some Way</ADDRESS>
<PHONENUM DESC="Work">303-222-1111</PHONENUM>
<PHONENUM DESC="Fax">303-222-2222</PHONENUM>
<PHONENUM DESC="Home">303-222-3333</PHONENUM>
<EMAIL>name.two@some.com</EMAIL>

</ENTRY>

</ADDRBOOK>

In the example, suppose xmlHandle points to the document root. After the call to
XDOMGetElementsByName (xmIHandle, "bookentry”, nodeHandle),nodeHandle should
point to elements <ENTRY id="id1” name="bookentry”>and <ENTRY ID="id2” NAME="bookentry”>.

XDOMGetElementsByTag function

The XDOMGetElementsByTag function tries to find all elements with the tag name you specify.

Syntax
XDOMGetElementsByTag (xmlHandle, tagname, nodeListHandle)
This function behaves in the same way as:

XDOMLocate (xmlHandle, “//tagname”, “”, XML.MULTI)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xmlHandle The input handle, xmlHandle, acts as the context when resolving
the namespace uri from the prefix, or resolving the prefix from the
namespace uri.

tagname Tagname can be one of the following formats:
* Local_name

= Prefix:local_name

nodeListHandle The handle to the node list.

Example

Consider the following XML document:

<?xml version="1.0" encoding="utf-8"?>

<ADDRBOOK cmt="my address book">

<ENTRY id="idl" name="bookentry”>
<NAME>Name One</NAME>
<ADDRESS>101 Some Way</ADDRESS>
<PHONENUM DESC="Work">303-111-1111</PHONENUM>
<PHONENUM DESC="Fax">303-111-2222</PHONENUM>
<PHONENUM DESC="Pager">303-111-3333</PHONENUM>
<EMAIL>name.one@some.com</EMAIL>

</ENTRY>

<ENTRY ID="id2" NAME="bookentry”>
<NAME>Name Two</NAME>
<ADDRESS>202 Some Way</ADDRESS>

479

Chapter 1: Statements and functions

<PHONENUM DESC="Work">303-222-1111</PHONENUM>
<PHONENUM DESC="Fax">303-222-2222</PHONENUM>
<PHONENUM DESC="Home">303-222-3333</PHONENUM>
<EMAIL>name.two@some.com</EMAIL>

</ENTRY>

</ADDRBOOK>

In this XML document, suppose xmlHandle points to the document root. After the call to

XDOMGetElementsByTag (xmlHandle, “PHONENUM”, nodeHandle),nodeHandle should
point to all PHONENUM elements.

XMLGetError function

The XMLGetError function returns the error code and error message after the previous XML API
failed.

Syntax

XMLGetError (errorCode, errorMessage)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
errorCode The error code. [OUT]
errorMessage The error message. [OUT]

Return codes

The following table describes the status of each return code.

Return code Description
XML.SUCCESS The function completed successfully.
XML.ERROR An error occurred.

XDOMGetNodeName function

XDOMGetNodeName returns the node name.

Syntax

XDOMGetNodeName (nodeHandle, nodeName)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

nodeHandle Handle to the DOM node. [IN]

480

XDOMGetNodeType function

Parameter

Description

nodeName

String to store the node name. [OUT]

The nodeName parameter uses the out-encoding parameter
set in the system-level or account-level xm1config file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code

Description

XML.SUCCESS

Function completed successfully.

XML.ERROR

An error occurred.

XML.INVALID.HANDLE

An invalid DOM handle was returned to the function.

XDOMGetNodeType function

The XDOMGetNodeType function returns the node type.

Syntax
XDOMGetNodeType

Parameters

(nodeHandle, nodeType)

The following table describes each parameter of the syntax.

Parameter Description
nodeHandle The handle to the DOM node. [IN]
nodeType An integer to store the node type. [OUT]

Return codes

The following table describes the status of each return code.

Return code

Description

XML.SUCCESS

The function completed successfully.

XML.ERROR

An error occurred.

XML.INVALID.HANDLE

An invalid DOM handle was returned to the function.

XDOMGetNodeValue function

XDOMGetNodeValue gets the node value.

Syntax

XDOMGetNodeValue (nodeHandle, nodeValue)

481

Chapter 1: Statements and functions

Parameters

The following table describes each parameter of the syntax.

Description

Parameter
nodeHandle Handle to the DOM node. [IN]
nodeValue The string to hold the node value. [OUT]

The nodeValue parameter uses the out-encoding parameter
set in the system-level or account-level xm1lconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() AP

Return codes
The return code indicates success or failure. The following table describes each return code.

Return code Description

XML.SUCCESS Function completed successfully.

XML.ERROR An error occurred.

XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMGetOwnerDocument function

The XDOMGetOwnerDocument function returns the DOM handle to which nodeHandle belongs.

Syntax

XDOMGetOwnerDocument (nodeHandle, domHandle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

nodeHandle Handle to the DOM node. [IN]

domHandle Handle to the opened DOM structure. [OUT]

Return codes

The following table describes the status of each return code.

Return code Description

XML.SUCCESS The function completed successfully.

XML.ERROR An error occurred.

XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMGetUserData function

The XDOMGetUserData function returns the user data associated with the node.

482

XDOMItem function

Syntax

XDOMGetUserData (nodeHandle, userData)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
nodeHandle The handle to the DOM node. [IN]
userData String to hold the user data. [OUT]

Return codes

The following table describes the status of each return code.

Return code Description

XML.SUCCESS The function completed successfully.

XML.ERROR An error occurred.

XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMItem function

The XDOMItem function returns the index-th item in the list.

Syntax
XDOMItem (nodelListHandle, index, dataHandle, dataType)

If the index is less than 1 or greater than the number of items in the list, use
Error (errorCode, errorMessage) to return the error message “index out of bounds.

»

Parameters

The following table describes each parameter syntax.

Parameter Description

nodeListHandle The handle to the node list.

index The index item to return.

dataHandle UniVerse stores the returned value, either a DOM handle or a string, in
dataHandle.

dataType The data type that is stored in dataHandle.

If nodeListHandle was generated from an API other than XDOMQuery(), the dataType must be
XQ.ITEM.NODE (1). If nodeListHandle was generated by XDOMQuer y(), the dataType could be
XQ.ITEM.NODE(1), or a simple value type such as XQ.ITEM.ANY_SIMPLE_TYPE(2), XQ.ITEM.STRING(21).

The following list shows the data types available.
= XQ.ITEM.NODE (1)

= XQ.ITEM.ANY_SIMPLE_TYPE (2)

* XQ.ITEM.ANY_URI (3)

= XQ.ITEM.BASE_64_BINARY (4)

483

Chapter 1: Statements and functions

* XQ.ITEM.BOOLEAN (5)

* XQ.ITEM.DATA (6)

* XQ.ITEM.DATE_TIME (7)

* XQ.ITEM.DAY_TIME_DURATION (8)
* XQ.ITEM.DECIMAL (9)

* XQ.ITEM.DOUBLE (10)

* XQ.ITEM.DURATION (11)

* XQ.ITEM.FLOAT (12)

* XQ.ITEM.G_DAY (13)

* XQ.ITEM.G_MONTH (14)

* XQ.ITEM.G_MONTH_DAY (15)

* XQ.ITEM.G_YEAR (16)

* XQ.ITEM.G_YEAR_MONTH (17)

* XQ.ITEM.HEX_BINARY (18)

* XQ.ITEM.NOTATION (19)

* XQ.ITEM.QNAME (20)

* XQ.ITEM.STRING (21)

* XQ.ITEM.TIME (22)

* XQ.ITEM.UNTYPED_ATOMIC (23)
* XQ.ITEM.YEAR_MONTH_DURATION (24)

XDOMLength function

The XDOMLength function determines the number of nodes in the list. The range of the valid child
node index is to 1 to length, inclusive.

Syntax

XDOMLength (nodelListHandle, length)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

nodelistHandle The handle to the node list.

length The length of the node list.
XDOMLocate function

XDOMLocate finds a starting point for relative XPath searching in context xm/Handle in the DOM
structure. The xpathString should specify only one node; otherwise, this function will return an error.

484

XDOMLocateNode function

Syntax

XDOMLocate (xmlHandle,

Parameters

xpathString, nsMap, nodeHandle

The following table describes each parameter of the syntax.

Parameter

Description

xmlHandle

A handle to the DOM structure. [IN]

xpathString

Relative or absolute XPath string. [IN]

The xpathString parameter uses the in-encoding parameter
set in the system-level or account-level xm1config file, the
XMLSETOPTIONS command, or the XMLSetOptions() APL

nsMap

The map of namespaces that resolves the prefixes in the
xpathString.

Formatis xmlns=default url
xmlns:prefixl=prefixl url
xmlns:prefix2=prefix2 url

For example:

xmlns=http://myproject.mycompany.com
xmlns:a prefix=a.mycompany.com

[IN]

The nsMap parameter uses the in-encoding parameter set
in the system-level or account-level xmlconfigfile, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

nodeHandle

Handle to the found node. [OUT]

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code

Description

XML.SUCCESS

Function completed successfully.

XML.ERROR

An error occurred.

XML.INVALID.HANDLE

An invalid DOM handle was returned to the
function.

Note: In this document, xmlHandle is a generic type, it can be domHandle or nodeHandle.
DomHandle stands for a whole document, while nodeHandle stands for a subtree. DomHandle is

also a nodeHandle.

XDOMLocateNode function

The XDOMLocateNode function traverses from nodeHandle and gets the next node according to

direction and childIndex.

485

Chapter 1: Statements and functions

Syntax

XDOMLocateNode (nodeHandle, direction, childIndex, nodeType,
newNodeHandle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
nodeHandle The handle to the starting node. [IN]
direction Direction to traverse. Valid values are:

= XDOM.PREV.SIBLING

= XDOM.NEXT.SIBLING

= XDOM.NEXT.SIBLING.WITH.SAME.NAME
* XDOM.PREV.SIBLING.WITH.SAME.NAME
= XDOM.PARENT

* XDOM.CHILD

[IN]

childindex The index in the child array. Valid values are:
= XDOM.FIRST.CHILD

*= XDOM.LAST.CHILD

= Positive Integer

[IN]

486

XDOMOpen function

Parameter Description
nodeType The type of node to be located. Valid values are:
= XDOM.NONE

= XDOM.ELEMENT.NODE

= XDOM.ATTR.NODE

= XDOM.TEXT.NODE

= XDOM.CDATA.NODE

= XDOM.ENTITY.REF.NODE
= XDOM.ENTITY.NODE

* XDOM.PROC.INST.NODE
= XDOM.COMMENT.NODE
= XDOM.DOC.NODE

= XDOM.DOC.TYPE.NODE
= XDOM.DOC.FRAG.NODE
= XDOM.NOTATION.NODE
= XDOM.XML.DECL.NODE

If nodeType is not XDOM.NONE, UniVerse uses this argument, along with
direction and childindex, to get the right typed node. For example, if direction

is XDOM.PREV.SIBLING, and nodeType is XDOM.ELEMENT.NODE, UniVerse

finds the element node which is the first previous sibling of nodeHandle. If
direction is XDOM.CHILD, childIndex is XDOM.FIRST.CHILD, and nodeType is
XDOM.ELEMENT.NODE, UniVerse finds the element node which is the first
element child of nodeHandle. If the direction is XDOM.CHILD, childindex is 2, and
nodeType is XDOM.ELEMENT.NODE, UniVerse finds the element node which is
the second element child of nodeHandle.

When the direction is XDOM.NEXT.SIBLING.WITH.SAME.NAME,
XDOM.PREV.SIBLING.WITH.SAME.NAME, or XDOM.PARENT, this argument is not
used. [IN]

newNodeHandle Handle to the found node. [OUT]

Return codes

The following table describes the status of each return code.

Return code Description

XML.SUCCESS The function completed successfully.

XML.ERROR An error occurred.

XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMOpen function

The XDOMOpen function reads an xmIDocument and creates DOM structure. If the DTD is included in
the document, UniVerse validates the document. The xmIDocument can be from a string, or from a file,
depending on the docLocation flag.

487

Chapter 1: Statements and functions

488

Syntax

XDOMOpen (xmlDocument, docLocation, domHandle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description
xmlDocument The XML document. [IN]
doclLocation A flag to specify whether xmIDocument is a string holding the XML document, or

it is a file containing the XML document. Valid values are:
= XML.FROM.FILE

= XML.FROM.STRING

[IN]

domHandle Handle to the opened DOM structure. [OUT]

Return codes

The following table describes the status of each return code.

Return code Description

XML.SUCCESS The function completed successfully.

XML.ERROR An error occurred.

XML.INVALID.HANDLE An invalid DOM handle was returned to the function.
Option

When the XML does not have an encoding set in the declaration and the data in the document is not
UTF-8, as of UniVerse 10.2 the encoding is assumed to be UTF-8, as shown in the following example:

<?xml version="1.0" 2>
<ROOT>

<PRODUCTS ID = "M1000" PRODID = "M100O" LIST = "$1,990" DESCRIPTION = "Low cost

, entry le;el, light duty, monochrome copier"/>
</ROOT>

Since there is no encoding set in the declaration line, opening the file with the XDOMOpen function
fails if there is a character from another encoding set (for example an 1SO-8859-1 character) in the
data.

Reading a file from a browser that has the wrong encoding of the data will also produce an error
similar to the following example:

An invalid character was found in text content. Error processing
resource 'file:///C:/U2/UV/&XML&/example.xml'. Line 4, Po...

At UniVerse 11.1.14, new XML option, xdomopen-encoding, was added. This option specifies what
encoding to use when there is no encoding defined in the declaration. When ‘xdomopen-encoding’ is
not set, or is set to “”, UTF-8 is assumed.

XDOMQuery function

XDOMQuery function

The XDOMQuery function runs xquery on the current document or document node you specify with
xmlHandle.
Syntax

XDOMQuery (xmlHandle, xquery, xqueryLocation, itemListHandle)

Depending on xqueryLocation, xquery contains the query if xqueryLocation is XML.FROM.STRING.
xquery uses a file name which contains the query if xqueryLocation is XML.FROM.FILE. The output
itemListHandle is the resulting item lists.

XDOMRemove function

XDOMRemove finds the xpathString in the context xmlHandle in the DOM structure, and then removes
the found node or its attribute with name attrName.

Syntax

XDOMRemove (xmlIHandle, xpathString, nsMap, attrName, nodeHandle)

Note: This function is case-sensitive. If you want it to be case-insensitive, you must compile your
programs using the BASTC command with the -i option.

Parameters

The following table describes each parameter of the syntax.

Parameter Description
xmlHandle The handle to the context. [IN]
xpathString Relative or absolute XPath string. [IN]

The xpathString parameter uses the in-encoding parameter set in the
system-level or account-level xmlconfig file, the XMLSETOPTIONS
command, or the XMLSetOptions() APL

nsMap The map of namespaces that resolves the prefixes in the xpathString.

Formatis xmlns=default url xmlns:prefixl=prefixl url
xmlns:prefix2=prefix2 url

For example:

xmlns=http://myproject.mycompany.com
xmlns:a prefix=a.mycompany.com

[IN]

The nsMap parameter uses the in-encoding parameter set in the
system-level or account-level xm1config file, the XMLSETOPTIONS
command, or the XMLSetOptions() AP

attrName The attribute name. [IN]

The attrName parameter uses the in-enc