
Rocket UniVerse

UniVerse BASIC Commands Reference

Version 11.3.3

May 2021
UNV-1133-BASR-1

2

Notices
Edition

Publication date: May 2021
Book number: UNV-1133-BASR-1
Product version: Version 11.3.3

Copyright
© Rocket Software, Inc. or its affiliates 1985-2021. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the
use, import, or export of encryption technologies, and current use, import, and export regulations
should be followed when exporting this product.

http://www.rocketsoftware.com/about/legal

3

Corporate information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information
and technical support, use one of the following telephone numbers.

Country Toll-free telephone number

United States 1-855-577-4323
Australia 1-800-823-405
Belgium 0800-266-65
Canada 1-855-577-4323
China 400-120-9242
France 08-05-08-05-62
Germany 0800-180-0882
Italy 800-878-295
Japan 0800-170-5464
Netherlands 0-800-022-2961
New Zealand 0800-003210
South Africa 0-800-980-818
United Kingdom 0800-520-0439

Contacting Technical Support

The Rocket Community is the primary method of obtaining support. If you have current support and
maintenance agreements with Rocket Software, you can access the Rocket Community and report
a problem, download an update, or read answers to FAQs. To log in to the Rocket Community or to
request a Rocket Community account, go to www.rocketsoftware.com/support.

In addition to using the Rocket Community to obtain support, you can use one of the telephone
numbers that are listed above or send an email to support@rocketsoftware.com.

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

4

Contents

Notices... 2

Corporate information... 3

Chapter 1: Statements and functions... 15
! statement.. 15
#INCLUDE statement.. 15
$* statement..16
$CHAIN statement.. 17
$COPYRIGHT statement... 17
$DEFINE statement...18
$EJECT statement...20
$IFDEF statement..20
$IFNDEF statement... 22
$INCLUDE statement.. 24
$INSERT statement...25
$MAP statement..25
$OPTIONS statement..26
$PAGE statement.. 32
$UNDEFINE statement..33
* statement... 33
< > operator...34
@ function... 34
[] operator... 48
ABORT statement... 49
ABS function..50
ABSS function..51
acceptConnection function..51
ACOS function... 52
ACTIVATEKEY statement...52
addAuthenticationRule function... 53
addCertificate function...55
addRequestParameter function.. 57
ADDS function... 58
ALPHA function... 58
amInitialize function...59
amReceiveMsg function... 61
amReceiveRequest function.. 63
amSendMsg function..65
amSendRequest function...66
amSendResponse function.. 67
amTerminate function..68
analyzeCertificate function.. 69
ANDS function... 69
ASCII function..70
ASIN function.. 71
ASSIGNED function... 71
assignment statements.. 71
ATAN function... 72
AuditLog() function...73
AUTHORIZATION statement...74
AUXMAP statement... 75
BEGIN CASE statement...75

Contents

5

BEGIN TRANSACTION statement... 75
BITAND function..76
BITNOT function... 77
BITOR function..77
BITRESET function.. 78
BITSET function.. 78
BITTEST function.. 79
BITXOR function..79
BREAK statement..80
BSCAN statement..81
BYTE function..82
BYTELEN function... 83
BYTETYPE function... 83
BYTEVAL function..84
CALL statement...84
CASE statements...86
CATS function..87
CENTURY.PIVOT function... 88
CHAIN statement.. 89
CHANGE function.. 89
CHAR function... 90
CHARS function...91
CHECKSUM function... 91
CLEAR statement.. 92
CLEARCOMMON...92
CLEARDATA statement... 93
CLEARFILE statement... 93
CLEARPROMPTS statement..95
CLEARSELECT statement..95
CLOSE statement.. 96
CLOSESEQ statement... 97
closeSocket function.. 98
CloseXMLData function.. 98
COL1 function... 99
COL2 function... 99
COMMAND.EDITOR..100
COMMIT statement... 104
COMMON statement... 105
COMPARE function..106
CONVERT function.. 107
CONVERT statement... 108
COS function... 108
COSH function...109
COUNT function.. 109
COUNTS function.. 110
CREATE statement.. 111
createCertificate function.. 112
createCertRequest function... 113
createRequest function.. 115
createSecureRequest function...116
createSecurityContext function... 118
CRT statement.. 120
DATA statement.. 121
DATE function... 122
DATETIMEL function... 122
DATETIMEZ function... 123

Contents

6

DBTOXML function..123
DCOUNT function..124
DEACTIVATEKEY statement.. 125
DEBUG statement... 125
DEFFUN statement... 126
DEL statement...127
DELETE function... 128
DELETE statements...130
DELETELIST statement... 132
DESCRINFO function...132
DIGEST function.. 133
DIMENSION statement..134
DISABLEDEC statement.. 136
DISPLAY statement... 137
DIV function...138
DIVS function...138
DOWNCASE function...139
DQUOTE function..139
DTX function..139
EBCDIC function..140
ECHO statement..141
ENABLEDEC statement... 141
ENCODE function.. 142
ENCRYPT function...143
END statement.. 148
END CASE statement.. 149
END TRANSACTION statement...149
ENTER statement..149
EOF(ARG.) function... 150
EQS function... 150
EQUATE statement... 150
EREPLACE function... 152
ERRMSG statement...152
EXCHANGE function.. 153
EXECUTE statement..154
EXIT statement..156
EXP function.. 157
EXTRACT function... 157
FADD function... 159
FDIV function...159
FFIX function... 159
FFLT function.. 160
FIELD function...160
FIELDS function...161
FIELDSTORE function... 162
FILEINFO function... 163
FILELOCK statement...167
FILEUNLOCK statement..169
FIND statement... 170
FINDSTR statement.. 170
FIX function... 171
FLUSH statement.. 172
FMT function... 172
FMTDP function...175
FMTS function... 176
FMTSDP function.. 176

Contents

7

FMUL function... 177
FOLD function... 178
FOLDDP function...178
FOOTING statement..179
FOR statement.. 181
FORMLIST statement.. 184
FSUB function... 184
FUNCTION statement... 184
GCDISTANCE function...186
generateKey function... 186
generateKey function... 188
GES function..189
GET statements...189
getCipherSuite function... 192
getIpv... 193
GETX statement.. 193
GET(ARG.) statement.. 193
getHTTPDefault function..194
GETLIST statement... 195
GETLOCALE function...196
GETREM function.. 196
getSocketErrorMessage function...197
getSocketInformation function..197
getSocketMap function.. 198
getSocketOptions function.. 198
GOSUB statement... 200
GOTO statement... 201
GROUP function.. 201
GROUPSTORE statement... 202
GTS function..203
HEADING statement..204
HMAC function.. 207
HUSH statement... 208
ICHECK function..209
ICONV function..210
ICONVS function..212
IF statement.. 212
IFS function... 214
ILPROMPT function...214
INCLUDE statement.. 216
INDEX function.. 217
INDEXS function.. 218
INDICES function...218
initSecureServerSocket function... 221
initServerSocket function...221
INMAT function... 222
INPUT statement.. 223
INPUTCLEAR statement..226
INPUTDISP statement...226
INPUTDP statement..227
INPUTERR statement..227
INPUTIF statement... 227
INPUTNULL statement... 228
INPUTTRAP statement..228
INS statement... 228
INSERT function.. 230

Contents

8

INT function...232
ISNULL function.. 232
ISNULLS function.. 233
ITYPE function...233
KEYEDIT statement... 235
KEYEXIT statement... 239
KEYIN function.. 239
KEYTRAP statement..240
LEFT function.. 241
LEN function..241
LENDP function... 242
LENS function..242
LENSDP function...243
LES function.. 243
LET statement... 244
LN function..244
loadSecurityContext function.. 245
LOCALEINFO function... 245
LOCATE statement (IDEAL and REALITY syntax).. 246
LOCATE statement (INFORMATION syntax).. 248
LOCATE statement (PICK syntax).. 250
LOCK statement.. 253
LOOP statement..254
LOWER function.. 255
LTS function.. 256
MAT statement.. 257
MATBUILD statement..258
MATCH operator..259
MATCHFIELD function...260
MATPARSE statement...261
MATREAD statements... 262
MATREADL statement... 265
MATREADU statement.. 265
MATWRITE statements... 265
MATWRITEU statement...268
MAXIMUM function..268
MINIMUM function.. 268
MOD function.. 269
MODS function.. 270
MQCLOSE function..270
MQCONN function...271
MQDISC function...272
MULS function...273
NAP statement.. 273
NEG function... 274
NEGS function... 274
NES function..274
NEXT statement.. 275
NOBUF statement... 275
NOT function... 276
NOTS function...276
NOW function.. 277
NULL statement.. 277
NUM function.. 278
NUMS function.. 278
OCONV function.. 279

Contents

9

OCONVS function.. 280
ON statement.. 281
OPEN statement..283
OPENCHECK statement..285
OPENDEV statement...286
OPENPATH statement.. 288
OPENSEQ statement...289
openSecureSocket function...293
openSocket function.. 294
OpenXMLData function.. 295
ORS function... 295
PAGE statement.. 296
PERFORM statement...297
PRECISION statement...298
PrepareXML function.. 299
PRINT statement...299
PRINTER statement.. 301
PRINTERR statement.. 302
PROCREAD statement...303
PROCWRITE statement...303
PROGRAM statement.. 303
PROMPT statement...304
protocolLogging function...304
PWR function...305
PyCall function..305
PyCallFunction function... 306
PyCallMethod function... 306
PyGetAttr function.. 306
PyImport function...307
PySetAttr function.. 307
QUOTE function.. 308
RAISE function...308
RANDOMIZE statement...309
READ statements.. 309
READBLK statement... 313
READL statement.. 314
READLIST statement...315
READNEXT statement... 316
READSEQ statement... 317
readSocket function... 318
READT statement.. 319
READU statement..320
READV statement.. 321
READVL statement.. 321
READVU statement... 321
ReadXMLData function... 321
REAL function..322
RECORDLOCK statements.. 322
RECORDLOCKED function.. 324
RELEASE statement.. 326
ReleaseXML function.. 327
REM function... 327
REM statement..328
REMOVE function.. 328
REMOVE statement... 330
REPEAT statement.. 331

Contents

10

REPLACE function... 331
RETURN statement... 334
RETURN (value) statement.. 335
REUSE function... 335
REVREMOVE statement.. 336
REWIND statement... 337
RIGHT function..338
RND function... 338
ROLLBACK statement... 339
RPC.CALL function.. 339
RPC.CONNECT function..340
RPC.DISCONNECT function.. 341
saveSecurityContext function.. 342
SADD function... 343
SCMP function...343
SDIV function...344
SEEK statement.. 344
SEEK(ARG.) statement.. 346
SELECT statements...346
SELECTE statement.. 348
SELECTINDEX statement.. 348
SELECTINFO function... 350
SEND statement..350
SENTENCE function.. 351
SEQ function... 351
SEQS function... 352
setAuthenticationDepth function.. 353
setCipherSuite function..354
setClientAuthentication function...356
setIpv... 357
setPrivateKey function... 358
setRandomSeed function...359
SET TRANSACTION ISOLATION LEVEL statement...360
setHTTPDefault function.. 361
setRequestHeader function... 363
SETLOCALE function...363
SETREM statement... 365
setSocketMap function...366
setSocketOptions function...366
showSecurityContext function...367
SIGNATURE function...368
SIN function...370
SINH function.. 370
SLEEP statement...371
SMUL function...371
SOAPCreateRequest function.. 372
SOAPCreateSecureRequest function...373
SOAPGetDefault function... 374
SOAPGetFault function...375
SOAPGetResponseHeader function...376
SOAPSetRequestBody function... 376
SOAPSetRequestContent function.. 377
SOAPSetRequestHeader function..378
SOAPRequestWrite function...378
SOAPSetDefault function... 379
SOAPSetParameters function.. 380

Contents

11

SOAPSubmitRequest function... 381
SOUNDEX function..382
SPACE function... 383
SPACES function... 383
SPLICE function...384
SQRT function... 384
SQUOTE function.. 385
SSELECT statement.. 385
SSUB function... 387
STATUS function... 388
STATUS statement..392
STOP statement.. 395
STORAGE statement... 396
STR function..396
STRS function..397
submitRequest function... 397
SUBR function... 398
SUBROUTINE statement...400
SUBS function... 400
SUBSTRINGS function.. 401
SUM function...401
SUMMATION function... 402
SWAP statement... 403
SYSTEM function... 403
TABSTOP statement... 407
TAN function... 407
TANH function...408
TERMINFO function...408
TIME function.. 423
TIMEDATE function... 423
TIMEOUT statement..424
TODATE function...425
TODATETIME function.. 426
TOTIME function... 426
TPARM function...427
TPRINT statement...429
TRANS function... 430
transaction statements.. 431
TRANSACTION ABORT statement.. 431
TRANSACTION COMMIT statement..433
TRANSACTION START statement...433
TRIM function.. 433
TRIMB function..434
TRIMBS function... 435
TRIMF function.. 435
TRIMFS function..435
TRIMS function..436
TTYCTL statement...436
TTYGET statement.. 437
TTYSET statement...441
UDOArrayAppendItem.. 443
UDOArrayDeleteItem.. 443
UDOArrayGetItem... 443
UDOArrayGetNextItem..444
UDOArrayGetSize.. 444
UDOArrayInsertItem..445

Contents

12

UDOArraySetItem..445
UDOClone.. 446
UDOCreate...446
UDODeleteProperty.. 446
UDOFree...447
UDOGetLastError...447
UDOGetNextProperty..448
UDOGetOption...448
UDOGetProperty... 449
UDOGetPropertyNames..449
UDOGetType..449
UDOIsTypeOf... 450
UDORead... 450
UDOSetOption...450
UDOSetProperty..451
UDOWrite... 451
UNASSIGNED function.. 452
UNICHAR function...452
UNICHARS function...452
UNISEQ function... 453
UNISEQS function... 453
UNLOCK statement...454
UPCASE function...454
UPRINT statement.. 455
USERINFO function... 455
WEOF statement... 457
WEOFSEQ statement.. 458
WRITE statements...459
WRITEBLK statement..463
WRITELIST statement... 464
WRITESEQ statement... 464
WRITESEQF statement... 466
writeSocket function.. 467
WRITET statement.. 468
WRITEU statement..469
WRITEV statement.. 469
WRITEVU statement..469
XDOMAddChild function... 469
XDOMAppend function... 471
XDOMClone function...472
XDOMClose function... 472
XDOMCreateNode function.. 473
XDOMCreateRoot function... 474
XDOMEvaluate function..475
XDOMGetAttribute function... 476
XDOMGetChildNodes function... 476
XDOMGetElementByld function... 477
XDOMGetElementsByName function...478
XDOMGetElementsByTag function.. 479
XMLGetError function... 480
XDOMGetNodeName function..480
XDOMGetNodeType function... 481
XDOMGetNodeValue function.. 481
XDOMGetOwnerDocument function..482
XDOMGetUserData function... 482
XDOMItem function...483

Contents

13

XDOMLength function...484
XDOMLocate function... 484
XDOMLocateNode function.. 485
XDOMOpen function... 487
XDOMQuery function.. 489
XDOMRemove function...489
XDOMReplace function...490
XDOMSetNodeValue function...491
XDOMSetUserData function... 491
XDOMTransform function...492
XDOMValidate function...493
XDOMWrite function... 493
XLATE function.. 494
XMAPAppendRec... 495
XMAPClose function..496
XMAPCreate Function... 496
XMAPOpen function..497
XMAPReadNext function...498
XMAPToXMLDoc function... 499
XMLError function... 499
XMLExecute function.. 500
XMLTODB function..502
XTD function..503

Appendix A: Quick reference..504
Compiler directives...504
Declarations.. 505
Assignments.. 505
Program flow control... 506
File I/O... 507
Sequential file I/O... 508
Printer and terminal I/O...509
Tape I/O... 510
Select lists... 510
String handling..511
Data conversion and formatting... 513
NLS... 514
Mathematical functions..515
Relational functions..516
System... 517
Remote procedure calls... 518
Miscellaneous.. 518

Appendix B: ASCII and hex equivalents.. 519

Appendix C: Correlative and conversion codes.. 523
A code: algebraic functions..525
BB and BX codes: bit conversion...528
C code: concatenation... 528
D code: date conversion.. 529
DI code: international date conversion...533
DT code: datetime conversion...534
ECS code: extended character set conversion... 537
F code: mathematical functions..537
G code: group extraction... 539
L code: length function.. 540
MC Codes: masked character conversion... 540
MD code: masked decimal conversion..541

Contents

14

MM code: monetary conversion.. 543
ML and MR codes: formatting numbers..544
MP code: packed decimal conversion...546
MT code: time conversion..546
MX, MO, MB, and MU0C codes: radix conversion... 547
MY code: ASCII conversion... 548
NL code: Arabic numeral conversion.. 548
NLSmapname code: NLS map conversion..549
NR code: roman numeral conversion... 549
P code: pattern matching.. 550
Q code: exponential notation.. 550
R code: range function... 551
S (soundex) code.. 551
S (substitution) code.. 552
T code: text extraction... 552
Tfile code: file translation.. 553
TI code: international time conversion...554

Appendix D: BASIC reserved words... 555

Appendix E: @Variables..566

Appendix F: BASIC subroutines... 571
! ASYNC subroutine...572
!EDIT.INPUT subroutine..573
!ERRNO subroutine... 578
!FCMP subroutine... 578
!GET.KEY subroutine...578
!GET.PARTNUM subroutine.. 579
!GET.PATHNAME subroutine.. 581
!GETPU subroutine... 581
!GET.USER.COUNTS subroutine...584
!GET.USERS subroutine.. 584
!INLINE.PROMPTS subroutine..585
!INTS subroutine... 586
!MAKE.PATHNAME subroutine... 587
!MATCHES subroutine...588
!MESSAGE subroutine...588
!PACK.FNKEYS subroutine..589
!REPORT.ERROR subroutine.. 592
!SET.PTR subroutine...593
!SETPU subroutine..594
!TIMDAT subroutine.. 596
!USER.TYPE subroutine.. 597
!VOC.PATHNAME subroutine.. 598

Appendix G: Socket function error return codes..599

15

Chapter 1: Statements and functions
This chapter describes the UniVerse BASIC statements and functions.

! statement
Use the ! statement to insert a comment in a UniVerse BASIC program. Comments explain or
document various parts of a program. They are part of the source code only and are nonexecutable.
They do not affect the size of the object code.

A comment must be a separate BASIC statement and can appear anywhere in a program. A comment
must begin with one of the following comment designators:

▪ REM

▪ *

▪ !

▪ $*

Any text that appears between a comment designator and the end of a physical line is treated as part
of the comment, not as part of the executable program. If a comment does not fit on one physical line,
you can continue it on the next physical line only by starting the new line with a comment designator.
If a comment appears at the end of a physical line containing an executable statement, you must put a
semicolon (;) before the comment designator.

Syntax

! [comment.text]

Example

The PRINT statement at the end of the third line is not executed because it follows the exclamation
point on the same line and is treated as part of the comment. Lines 4, 5, and 6 show how to include a
comment in the same sequence of executable statements.

001: vi PRINT "HI THERE"; ! Anything after the ! is a comment.
 002: ! This line is also a comment and does not print.
 003: IF 5<6 THEN PRINT "YES"; ! A comment; PRINT "PRINT ME"
 004: IF 5<6 THEN
 005: PRINT "YES"; ! A comment
 006: PRINT "PRINT ME"
 007: END

This is the program output:

HI THERE
 YES
 YES
 PRINT ME

#INCLUDE statement
Use the #INCLUDE statement to direct the compiler to insert the source code in the record program
and compile it with the main program. The #INCLUDE statement differs from the $CHAIN statement in

Chapter 1: Statements and functions

16

that the compiler returns to the main program and continues compiling with the statement following
the #INCLUDE statement.

When program is specified without filename, program must be a record in the same file as the program
containing the #INCLUDE statement.

If program is a record in a different file, the file name must be specified in the #INCLUDE statement,
followed by the name of the program. The file name must specify a type 1 or type 19 file defined in the
VOC file.

You can nest #INCLUDE statements.

The #INCLUDE statement is a synonym for the $INCLUDE and INCLUDE statements.

Syntax

#INCLUDE [filename] program

#INCLUDE program FROM filename

Example

PRINT "START"
 #INCLUDE END
 PRINT "FINISH"

When this program is compiled, the #INCLUDE statement inserts code from the program END (see the
example on the END statement, on page 148). This is the program output:

START
 THESE TWO LINES WILL PRINT ONLY
 WHEN THE VALUE OF 'A' IS 'YES'.

 THIS IS THE END OF THE PROGRAM

$* statement
Use the $* statement to insert a comment in UniVerse BASIC object code. Comments explain or
document various parts of a program. They are nonexecutable.

A comment must be a separate UniVerse BASIC statement and can appear anywhere in a program.

Any text appearing between the $* and the end of a physical line is treated as part of the comment, not
as part of the executable program. If a comment does not fit on one physical line, you can continue
it on the next physical line only by starting the new line with another $*. If a comment appears at the
end of a physical line containing an executable statement, you must put a semicolon (;) before the $*.

Syntax

$*[comment.text]

Example

The PRINT statement at the end of the third line is not executed because it follows the exclamation
point on the same line and is treated as part of the comment. Lines 4, 5, and 6 show how to include a
comment in the same sequence of executable statements.

001: PRINT "HI THERE"; $* Anything after the $* is a comment.
 002: $* This line is also a comment and does not print.

$CHAIN statement

17

 003: IF 5<6 THEN PRINT "YES"; $* A comment; PRINT "PRINT ME"
 004: IF 5<6 THEN
 005: PRINT "YES"; $* A comment
 006: PRINT "PRINT ME"
 007: END

This is the program output:

HI THERE
 YES
 YES
 PRINT ME

$CHAIN statement
Use the $CHAIN statement to direct the compiler to read source code from program and compile it as
if it were part of the current program. The $CHAIN statement differs from the $INCLUDE statement,
#INCLUDE statement, and INCLUDE statement in that the compiler does not return to the main
program. Any statements appearing after the $CHAIN statement are not compiled or executed.

When the program name is specified without a file name, the source code to insert must be in the
same file as the current program.

If the source code to insert is in a different file, the $CHAIN statement must specify the name of the
remote file followed by the program name. filename must specify a type 1 or type 19 file defined in the
VOC file.

When statements in program generate error messages, the messages name the program containing
the $CHAIN statement.

Syntax

$CHAIN [filename] program

Example

PRINT "START"
 $CHAIN END
 PRINT "FINISH"

When this program is compiled, the $CHAIN statement inserts code from the program END (see the
example in END statement, on page 148). This is the program output:

START
THESE TWO LINES WILL PRINT ONLY
WHEN THE VALUE OF 'A' IS 'YES'.

THIS IS THE END OF THE PROGRAM

$COPYRIGHT statement
Use the $COPYRIGHT statement to specify copyright information in UniVerse BASIC object code.
copyright.notice is inserted in the copyright field at the end of the object code.

copyright.notice must be enclosed in single or double quotation marks.

Chapter 1: Statements and functions

18

The copyright field in the object code is set to the empty string at the beginning of compilation. It
remains empty until the program encounters a $COPYRIGHT statement.

If more than one $COPYRIGHT statement is included in the program, only the information included in
the last one encountered is inserted in the object code.

This statement is included for compatibility with existing software.

Syntax

$COPYRIGHT "copyright.notice"

$DEFINE statement
Use the $DEFINE statement to define identifiers that control program compilation. $DEFINE has two
functions:

▪ Defining an identifier

▪ Supplying replacement text for an identifier

Syntax

$DEFINE identifier [replacement.text]

Parameters

Parameter Description

identifier The symbol to be defined. It can be any valid identifier.
replacement.text A string of characters that the compiler uses to replace identifier everywhere

it appears in the program containing the $DEFINE statement.

Description

When used as a replacement text supplier, $DEFINE adds the specified identifier and its associated
replacement.text to the symbol table. Each time identifier is found in the program following the
$DEFINE statement in which its value was set, it is replaced by replacement.text. If replacement.text is
not specified, identifier is defined and has a null value.

Separate replacement.text from identifier with one or more blanks. Every character typed after this
blank is added to replacement.text up to, but not including, the Return character that terminates the
replacement.text.

Note: Do not use comments when supplying replacement.text because any comments after
replacement.text are included as part of the replacement text. Any comments added to
replacement.text can cause unexpected program behavior.

UniVerse does not supported nested $DEFINE/$UNDEFINE statements.

The $UNDEFINE statement removes the definition of an identifier.

Conditional compilation

You can use $DEFINE with the $IFDEF statement or $IFNDEF statement to define an identifier that
controls conditional compilation. The syntax is as follows:

$DEFINE identifier [replacement.text]

$DEFINE statement

19

 .
 .
 .
{ $IFDEF | $IFNDEF } identifier
[statements]
$ELSE
[statements]
$ENDIF

The $IFDEF or $IFNDEF statement that begins the conditional compilation block tests identifier to
determine whether it is defined by a $DEFINE statement. If you use $IFDEF and identifier is defined, the
statements between the $IFDEF and the $ELSE statements are compiled. If identifier is not defined, the
statements between the $ELSE and $ENDIF statements are compiled.

If you use $IFNDEF and identifier is defined, the statements between $ELSE and $ENDIF are compiled.
If identifier is not defined, the statements between the $IFDEF and $ELSE statements are compiled.

Conditional compiler directives

Conditional compiler directives allow the inclusion of code and features available in later releases
of UniVerse to be included in programs used in earlier releases. The newer, unavailable features are
ignored by the compiler on older UniVerse releases. This helps developers avoid maintaining multiple
code streams for the various releases of UniVerse.

The following compiler definitions are available in UniVerse BASIC.

This type of directive functionality was initially added at UniVerse 11.2.0 and typically includes double
underscores in the name.

Version-specific names

Note: Earlier version directives are included in later UniVerse versions.

▪ U2__UNIVERSE

▪ U2__UNIVERSEv11

▪ U2__UNIVERSEv11.2

▪ U2__UNIVERSEv11.3

Functionality-specific names

Note: Not all functionality included with UniVerse has matching compiler directives.

▪ Local Subroutine Calls (added at UniVerse 11.2)
▫ U2_LOCALCALL (single underscore, added at 11.2.3)

▫ U2__LOCALCALL (double underscore, added at 11.3.2)

▪ Support for GCDISTANCE function

U2__GEOSPATIAL and U2__GEOSPATIAL_1 (added at 11.3.2)

▪ Support for UTC Date Time functions (DATETIMEL, DATETIMEZ, NOW, TODATE, TODATETIME,
and TOTIME)

U2__UTCDATETIME and U2__UTCDATETIME_1 (added at 11.3.2)

For example, specifying $IFDEF U2__UNIVERSEv11.2, allows the use of 11.2 functionality within the
$IFDEF statement. The U2_LOCALCALL identifier can be used for local subroutines and variables
without being specific to 11.2. Using $IFDEF with the UniVerse supplied identifiers allows for compiling
a program on an earlier release where the code contained in the $IFDEF clause will be ignored.

Chapter 1: Statements and functions

20

Note: The $UNDEFINE statement cannot be used to remove the UniVerse supplied identifiers.

Example

In this example, the identifier NAME.SUFFIX is defined to have a value of PROGRAM.NAME[5]. When the
compiler processes the next line, it finds the symbol NAME.SUFFIX, substitutes PROGRAM.NAME[5] in
its place and continues processing with the first character of the replacement text.

$DEFINE NAME.SUFFIX PROGRAM.NAME[5]
 IF NAME.SUFFIX = '.B' THEN
 .
 .
 .
 END
 .
 .
 .

$EJECT statement
Use the $EJECT statement to begin a new page in the listing record.

Syntax

$EJECT

This statement is a synonym for the $PAGE statement.

$IFDEF statement
Use the $IFDEF statement to test for the definition of a compile-time symbol. $IFDEF tests to see
if identifier is currently defined (that is, has appeared in a $DEFINE statement and has not been
undefined).

Syntax

$IFDEF identifier
[statements]
[[$ELSE]
[statements]]
$ENDIF

Description

If identifier is currently defined and the $ELSE clause is omitted, the statements between the $IFDEF
and $ENDIF statements are compiled. If the $ELSE clause is included, only the statements between
$IFDEF and $ELSE are compiled.

If identifier is not defined and the $ELSE clause is omitted, all the lines between the $IFDEF and $ENDIF
statements are ignored. If the $ELSE clause is included, only the statements between $ELSE and
$ENDIF are compiled.

$IFDEF statement

21

Both the IFDEF statement and $IFNDEF statement can be nested up to 10 deep.

Conditional compilation

You can use $DEFINE with the $IFDEF statement or $IFNDEF statement to define an identifier that
controls conditional compilation. The syntax is as follows:

$DEFINE identifier [replacement.text]
 .
 .
 .
{ $IFDEF | $IFNDEF } identifier
[statements]
$ELSE
[statements]
$ENDIF

The $IFDEF or $IFNDEF statement that begins the conditional compilation block tests identifier to
determine whether it is defined by a $DEFINE statement. If you use $IFDEF and identifier is defined, the
statements between the $IFDEF and the $ELSE statements are compiled. If identifier is not defined, the
statements between the $ELSE and $ENDIF statements are compiled.

If you use $IFNDEF and identifier is defined, the statements between $ELSE and $ENDIF are compiled.
If identifier is not defined, the statements between the $IFDEF and $ELSE statements are compiled.

Conditional compiler directives

Conditional compiler directives allow the inclusion of code and features available in later releases
of UniVerse to be included in programs used in earlier releases. The newer, unavailable features are
ignored by the compiler on older UniVerse releases. This helps developers avoid maintaining multiple
code streams for the various releases of UniVerse.

The following compiler definitions are available in UniVerse BASIC.

This type of directive functionality was initially added at UniVerse 11.2.0 and typically includes double
underscores in the name.

Version-specific names

Note: Earlier version directives are included in later UniVerse versions.

▪ U2__UNIVERSE

▪ U2__UNIVERSEv11

▪ U2__UNIVERSEv11.2

▪ U2__UNIVERSEv11.3

Functionality-specific names

Note: Not all functionality included with UniVerse has matching compiler directives.

▪ Local Subroutine Calls (added at UniVerse 11.2)
▫ U2_LOCALCALL (single underscore, added at 11.2.3)

▫ U2__LOCALCALL (double underscore, added at 11.3.2)

▪ Support for GCDISTANCE function

Chapter 1: Statements and functions

22

U2__GEOSPATIAL and U2__GEOSPATIAL_1 (added at 11.3.2)

▪ Support for UTC Date Time functions (DATETIMEL, DATETIMEZ, NOW, TODATE, TODATETIME,
and TOTIME)

U2__UTCDATETIME and U2__UTCDATETIME_1 (added at 11.3.2)

For example, specifying $IFDEF U2__UNIVERSEv11.2, allows the use of 11.2 functionality within the
$IFDEF statement. The U2_LOCALCALL identifier can be used for local subroutines and variables
without being specific to 11.2. Using $IFDEF with the UniVerse supplied identifiers allows for compiling
a program on an earlier release where the code contained in the $IFDEF clause will be ignored.

Note: The $UNDEFINE statement cannot be used to remove the UniVerse supplied identifiers.

Example

The following example determines if the identifier “modified” is defined:

$DEFINE modified 0
 $IFDEF modified
 PRINT "modified is defined."
 $ELSE
 PRINT "modified is not defined."
 $ENDIF

$IFNDEF statement
Use the $IFNDEF statement to test for the definition of a compile-time symbol. The $IFNDEF statement
complements the $IFDEF statement.

Syntax

$IFNDEF identifier
[statements]
[[$ELSE]
[statements]]
$ENDIF

Description

If identifier is currently not defined and the $ELSE clause is omitted, the statements between the
$IFNDEF and $ENDIF statements are compiled. If the $ELSE clause is included, only the statements
between $IFNDEF and $ELSE are compiled.

If identifier is defined and the $ELSE clause is omitted, all the lines between the $IFNDEF and $ENDIF
statements are ignored. If the $ELSE clause is included, only the statements between $ELSE and
$ENDIF are compiled.

$IFDEF and $IFNDEF statements can be nested up to 10 deep.

Conditional compilation

You can use $DEFINE with the $IFDEF statement or $IFNDEF statement to define an identifier that
controls conditional compilation. The syntax is as follows:

$DEFINE identifier [replacement.text]

$IFNDEF statement

23

 .
 .
 .
{ $IFDEF | $IFNDEF } identifier
[statements]
$ELSE
[statements]
$ENDIF

The $IFDEF or $IFNDEF statement that begins the conditional compilation block tests identifier to
determine whether it is defined by a $DEFINE statement. If you use $IFDEF and identifier is defined, the
statements between the $IFDEF and the $ELSE statements are compiled. If identifier is not defined, the
statements between the $ELSE and $ENDIF statements are compiled.

If you use $IFNDEF and identifier is defined, the statements between $ELSE and $ENDIF are compiled.
If identifier is not defined, the statements between the $IFDEF and $ELSE statements are compiled.

Conditional compiler directives

Conditional compiler directives allow the inclusion of code and features available in later releases
of UniVerse to be included in programs used in earlier releases. The newer, unavailable features are
ignored by the compiler on older UniVerse releases. This helps developers avoid maintaining multiple
code streams for the various releases of UniVerse.

The following compiler definitions are available in UniVerse BASIC.

This type of directive functionality was initially added at UniVerse 11.2.0 and typically includes double
underscores in the name.

Version-specific names

Note: Earlier version directives are included in later UniVerse versions.

▪ U2__UNIVERSE

▪ U2__UNIVERSEv11

▪ U2__UNIVERSEv11.2

▪ U2__UNIVERSEv11.3

Functionality-specific names

Note: Not all functionality included with UniVerse has matching compiler directives.

▪ Local Subroutine Calls (added at UniVerse 11.2)
▫ U2_LOCALCALL (single underscore, added at 11.2.3)

▫ U2__LOCALCALL (double underscore, added at 11.3.2)

▪ Support for GCDISTANCE function

U2__GEOSPATIAL and U2__GEOSPATIAL_1 (added at 11.3.2)

▪ Support for UTC Date Time functions (DATETIMEL, DATETIMEZ, NOW, TODATE, TODATETIME,
and TOTIME)

U2__UTCDATETIME and U2__UTCDATETIME_1 (added at 11.3.2)

For example, specifying $IFDEF U2__UNIVERSEv11.2, allows the use of 11.2 functionality within the
$IFDEF statement. The U2_LOCALCALL identifier can be used for local subroutines and variables
without being specific to 11.2. Using $IFDEF with the UniVerse supplied identifiers allows for compiling
a program on an earlier release where the code contained in the $IFDEF clause will be ignored.

Chapter 1: Statements and functions

24

Note: The $UNDEFINE statement cannot be used to remove the UniVerse supplied identifiers.

Example

The following example determines if the identifier “modified” is not defined:

$DEFINE modified 0
 $IFNDEF modified
 PRINT "modified is not defined."
 $ELSE
 PRINT "modified is defined."
 $ENDIF

$INCLUDE statement
Use the $INCLUDE statement to direct the compiler to insert the source code in the record program
and compile it with the main program. The $INCLUDE statement differs from the $CHAIN statement in
that the compiler returns to the main program and continues compiling with the statement following
the $INCLUDE statement.

When program is specified without filename, program must be a record in the same file as the program
currently containing the $INCLUDE statement.

If program is a record in a different file, the file name must be specified in the $INCLUDE statement,
followed by the name of the program. The file name must specify a type 1 or type 19 file defined in the
VOC file.

You can nest $INCLUDE statements.

The $INCLUDE statement is a synonym for the #INCLUDE and INCLUDE statements.

Syntax

$INCLUDE [filename] program

$INCLUDE program FROM filename

Example

PRINT "START"
 $INCLUDE END
 PRINT "FINISH"

When this program is compiled, the $INCLUDE statement inserts code from the program END (see the
example in END statement, on page 148). This is the program output:

START
THESE TWO LINES WILL PRINT ONLY
WHEN THE VALUE OF 'A' IS 'YES'.

THIS IS THE END OF THE PROGRAM

$INSERT statement

25

$INSERT statement
Use the $INSERT statement to direct the compiler to insert the source code contained in the file
specified by primos.pathname and compile it with the main program. The difference between the
$INSERT statement and $INCLUDE statement (and its synonyms #INCLUDE and INCLUDE) is that
$INSERT takes a PRIMOS path name as an argument, whereas $INCLUDE takes a UniVerse file name
and record ID. The PRIMOS path is converted to a path; any leading *> is ignored.

$INSERT is included for compatibility with Prime INFORMATION programs; the $INCLUDE statement is
recommended for general use.

Syntax

$INSERT primos.pathname

If primos.pathname is the name of the program only, it is interpreted as a relative path. In this case, the
program must be a file in the same directory as the program containing the $INSERT statement.

You can nest $INSERT statements.

primos.pathname is converted to a valid path using the following conversion rules:

Conversion rules

/ is converted to ?\
? is converted to ??
ASCII CHAR 0 (NUL) is converted to ?0
. (period) is converted to ?.

If you specify a full path name, the > between directory names changes to a / to yield:

[pathname/] program

$INSERT uses the transformed argument directly as a path of the file containing the source to be
inserted. It does not use the file definition in the VOC file.

Example

PRINT "START"
 $INSERT END
 PRINT "FINISH"

When this program is compiled, the $INSERT statement inserts code from the program END (see the
example in END statement, on page 148). This is the program output:

START
 THESE TWO LINES WILL PRINT ONLY
 WHEN THE VALUE OF 'A' IS 'YES'.

 THIS IS THE END OF THE PROGRAM
 FINISH

$MAP statement
In NLS mode, use the $MAP statement to direct the compiler to specify the map for the source code.
Use the $MAP statement if you use embedded literal strings that contain non-ASCII characters.

Chapter 1: Statements and functions

26

Syntax

$MAP mapname

mapname must be the name of a map that has been built and installed.

You can use only one $MAP statement during compilation.

Note: You can execute programs that contain only ASCII characters whether NLS mode is on or off.
You cannot execute programs that contain non-ASCII characters that were compiled in NLS mode if
NLS mode is switched off.

For more information, see the NLS Guide.

Example

The following example assigns a string containing the three characters alpha, beta, and gamma to the
variable GREEKABG:

$MAP MNEMONICS
 .
.
.GREEKABG = "<A*><B*><G*>"

$OPTIONS statement
Use the $OPTIONS statement to set compile-time emulation of any UniVerse flavor. This does not
allow object code compiled in one flavor to execute in another flavor. You can select individual
options in a program to override the default setting.

Note: You must specify $OPTIONS for each internal subroutine.

Syntax

$OPTIONS [flavor] [options]

Flavor keywords

Use the following keywords to specify flavor:

Keyword Flavor

PICK Generic Pick emulation
INFORMATION Prime INFORMATION emulation
REALITY REALITY emulation
IN2 Intertechnique emulation
DEFAULT IDEAL UniVerse
PIOPEN PI/open emulation

For instance, the following statement instructs the compiler to treat all UniVerse BASIC syntax as if it
were running in a PICK flavor account:

$OPTIONS PICK

$OPTIONS statement

27

Another way to select compile-time emulation is to specify one of the following keywords in field 6 of
the VOC entry for the BASIC command:

INFORMATION.FORMAT
 PICK.FORMAT
 REALITY.FORMAT
 IN2.FORMAT
 PIOPEN.FORMAT

By default the VOC entry for the BASIC command corresponds with the account flavor specified when
your UniVerse account was set up.

Options keywords

options are specified by the keywords listed in following table. To turn off an option, prefix it with a
minus sign (-).

Option name Option letter Description

CASE none Differentiates between uppercase and lowercase
identifiers and keywords.

COMP.PRECISION none Rounds the number at the current precision value in
any comparison.

COUNT.OVLP O For the INDEX function and the COUNT function, the
count overlaps.

DIM,IN.SUM By default, arrays passed as arguments in a
subroutine call cannot be redimensioned in
the subroutine. An attempt to redimension the
array is simply ignored. If you set the DIM.IN.SUB
option through the $OPTIONS statement, you can
redimension the array in a subroutine. See the
following example:

>AE BP CALLER SUBTEST

CALLER
0001 DIM A(10)
0002 CALL SUBTEST(MAT A)
0003 CRT A(100)
0004 END

SUBTEST
0001 SUBROUTINE SUBTEST(MAT A)
0002 $OPTIONS DIM.IN.SUB
0003 DIM A(100)
0004 A(100) = 100
0005 RETURN
0006 END

>RUN BP CALLER
100

END.WARN R Prints a warning message if there is no final END
statement.

Chapter 1: Statements and functions

28

Option name Option letter Description

EXEC.EQ.PERF P Compiles the EXECUTE statement as the PERFORM
statement.

Note: If the syntax of the EXECUTE statement
is changed so it is no longer compatible with
the PERFORM statement, UniVerse ignores
EXEC.EQ.PERF. For example, UniVerse ignores
EXEC.EQ.PERF in the following program:

0001 “$OPTIONS EXEC.EQ.PERF
0002 EXECUTE 'DATE' CAPTURING RESULTS
0003 END

EXTRA.DELIM W For the INSERT function and the REPLACE function,
the compiler handles fields, values, and subvalues
that contain the empty string differently from
the way they are handled in the IDEAL flavor.
In particular, if you specify a negative one (-1)
parameter, INFORMATION and IN2 flavors add
another delimiter, except when starting with an
empty string.

FOR.INCR.BEF F Increments the index for FOR…NEXT loop before
instead of after the bound checking.

FORMAT.OCONV none Lets output conversion codes be used as format
masks (see the FMT function, on page 172).

FSELECT none Makes the SELECT statements return the total
number of records selected to the @SELECTED
variable. Using this option can result in slower
performance for the SELECT statement.

HEADER.BRK none Specifies the PIOPEN flavor for the I and P options
to the HEADING statement and FOOTING statement.
This is the default for the PIOPEN flavor.

HEADER.DATE D Displays times and dates in headings or footings in
fixed format (that is, they do not change from page to
page). Dates are displayed in 'D2-' format instead of
'D' format. Allows page number field specification by
multiple invocations of 'P' in a single set of quotation
marks.

HEADER.EJECT H HEADING statement causes initial page eject.
IN2.SUBSTR T Uses IN2 definitions for UniVerse BASIC substring

handling (string[n,m]). If a single parameter is
specified, a length of 1 is assumed. The size of the
string expands or contracts according to the length
of the replacement string.

INFO.ABORT J ABORT statement syntax follows Prime
INFORMATION instead of PICK.

INFO.CONVERT none Specifies that the FMT, ICONV, and OCONV functions
perform PI/open style conversions.

INFO.ENTER none Specifies the PIOPEN flavor of the ENTER statement.
INFO.INCLUDE none Processes any PRIMOS paths specified with the

$INSERT statement.

$OPTIONS statement

29

Option name Option letter Description

INFO.LOCATE L LOCATE syntax follows Prime INFORMATION instead
of REALITY. The Pick format of the LOCATE statement
is always supported in all flavors.

INFO.MARKS none Specifies that the LOWER, RAISE, and REMOVE
functions use a smaller range of delimiters for PI/
open compatibility.

INFO.MOD none Specifies the PIOPEN flavor for the MOD function.
This is the default for the PIOPEN flavor.

INPUTAT none Specifies the PIOPEN flavor for the INPUT @
statement. This is the default for the PIOPEN flavor.

INPUT.ELSE Y Accepts an optional THEN…ELSE clause on INPUT
statement.

INT.PRECISION none Rounds the integer at the current precision value in
an INT function.

LOCATE.R83 none A LOCATE statement returns an “AR” or “DR”
sequence value compatible with Pick, Prime
INFORMATION, and PI/open systems.

NO.CASE none Does not differentiate between uppercase and
lowercase in identifiers or keywords. This is the
default for the PIOPEN flavor.

NO.RESELECT U For the SELECT statements and SSELECT statement,
active select list 0 remains active; another selection
or sort is not performed. The next READNEXT
statement uses select list 0.

NO.RETURN.WARN none Suppresses display of warning messages from
ambiguous RETURN statements.

ONGO.RANGE G If the value used in an ON…GOTO or ON…GOSUB is
out of range, executes the next statement rather than
the first or last branch.

PCLOSE.ALL Z The PRINTER CLOSE statement closes all print
channels.

PERF.EQ.EXEC C The PERFORM statement compiles as the EXECUTE
statement.

PIOPEN.EXECUTE none EXECUTE behaves similarly to the way it does on PI/
open systems.

PIOPEN.INCLUDE none Processes any PRIMOS paths specified with the
$INSERT statement and the $INCLUDE statement.

PIOPEN.MATREAD none Sets the elements of the matrix to empty strings
when the record ID is not found. MATREAD,
MATREADL, and MATREADU will behave as they do on
PI/open systems.

PIOPEN.SELIDX none In the SELECTINDEX statement, removes multiple
occurrences of the same record ID in an index with a
multivalued field.

RADIANS none Calculates trigonometric operations using radians
instead of degrees.

RAW.OUTPUT none Suppresses automatic mapping of system delimiters
on output. When an application handles terminal
control directly, RAW.OUTPUT turns off this
automatic mapping.

Chapter 1: Statements and functions

30

Option name Option letter Description

READ.RETAIN Q If READ statements, READU statement, READV
statement, READVL statement, or a READVU
statement fail, the resulting variable retains its value.
The variable is not set to an empty string.

REAL.SUBSTR K Uses REALITY flavor definitions for substring handling
(string[n,m]). If m or n is less than 0, the starting
position for substring extraction is defined as the
right side (the end) of the string.

RNEXT.EXPL X A READNEXT statement returns an exploded select
list.

SEQ.255 N SEQ(" ") = 255 (instead of 0).
STATIC.DIM M Creates arrays at compile time, not at run time. The

arrays are not redimensioned, and they do not have a
zero element.

STOP.MSG E Causes a STOP statement and an ABORT statement
to use the ERRMSG file to produce error messages
instead of using the specified text.

STRING.MATH none Causes UniVerse BASIC to automatically use the
SADD, SSUB, SDIV, and SMUL functions rather than
+, -, /, and *. This option also applies to the INT, ABS,
NEG, and MOD functions.

SUPP.DATA.ECHO I Causes input statements to suppress echo from data.
TIME.MILLISECOND none Causes the SYSTEM (12) function to return the

current system time in milliseconds, and the TIME
function to return the current system time in
seconds.

ULT.FORMAT none Format operations are compatible with Ult/ix. For
example, FMT("","MR2") returns an empty string, not
0.00.

USE.ERRMSG B The PRINTERR statement prints error messages from
ERRMSG.

VAR.SELECT S SELECT TO variable creates a local select variable
instead of using numbered select lists, and the
READLIST statement reads a saved select list instead
of an active numbered select list.

VEC.MATH V Uses vector arithmetic instructions for operating on
multivalued data. For performance reasons the IDEAL
flavor uses singlevalued arithmetic.

WIDE.IF none Testing numeric values for true or false uses the
wide zero test. In Release 6 of UniVerse, the WIDE.IF
option is OFF by default. In Release 7, WIDE.IF is ON
by default.

You can also set individual options by using special versions of some statements to override the
current setting. These are listed as follows:

Statement Equal to...

ABORTE The ABORT statement with $OPTIONS STOP.MSG
ABORTM ABORT with $OPTIONS -STOP.MSG
HEADINGE The HEADING statement with $OPTIONS HEADER.EJECT

$OPTIONS statement

31

Statement Equal to...

HEADINGN HEADING with $OPTIONS -HEADER.EJECT
SELECTV The SELECT statements with $OPTIONS VAR.SELECT
SELECTN SELECT with $OPTIONS -VAR.SELECT
STOPE The STOP statement with $OPTIONS STOP.MSG
STOPM STOP with $OPTIONS -STOP.MSG

The default settings for each flavor are listed in the following table:

 IDEAL PICK INFO REALITY IN2 PIOPEN

CASE X
COMP.PRECISION
COUNT.OVLP X X X
END.WARN X X X
EXEC.EQ.PERF X X
EXTRA.DELIM X X X
FOR.INC.REF X X X X
FORMAT.OCONV X
FSELECT
HEADER.BRK X
HEADER.DATE X X
HEADER.EJECT X X
IN2.SUBSTR X X X
INFO.ABORT X
INFO.CONVERT
INFO.ENTER X
INFO.LOCATE X X
INFO.MARKS X
INFO.MOD X
INPUTAT X
INPUT.ELSE X X
INT.PRECISION
LOCATE.R83
NO.CASE X
NO.RESELECT X X X X
NO.SMA.COMMON
ONGO.RANGE X X
PCLOSE.ALL X X X
PERF.EO.EXEC X X
PIOPEN.EXECUTE
PIOPEN.INCLUDE X
PIOPEN.MATREAD
PIOPEN.SELIDX X
RADIANS X
RAW.OUTPUT

Chapter 1: Statements and functions

32

 IDEAL PICK INFO REALITY IN2 PIOPEN

READ.RETAIN X X X
REAL.SUBSTR X X X
RNEXT.EXPL X
SEQ.255 X X X
STATIC.DIM X X X
STOP.MSG X X X
SUPP.DATA.ECHO X X X
ULT.FORMAT
USE.ERRMSG X
VAR.SELECT X X X
VEC.MATH X X
WIDE.IF X X X X X

Example

>ED BP OPT
4 lines long.
 ----: P
 0001: $OPTIONS INFORMATION
 0002: A='12'
 0003: B='14'
 0004: PRINT A,B
 Bottom at line 4
 ----: Q
>BASIC BP OPT
Compiling: Source = 'BP/OPT', Object = 'BP.O/OPT'

 @EOF WARNING: Final 'END' statement not found.

 Compilation Complete.
 >ED BP OPT
4 lines long.
 ----: P
 0001: $OPTIONS PICK
 0002: A='12'
 0003: B='14'
 0004: PRINT A,B
 Bottom at line 4
 ----: Q
>BASIC BP OPT
Compiling: Source = 'BP/OPT', Object = 'BP.O/OPT'
 Compilation Complete.

$PAGE statement
The $PAGE statement is a synonym for the $EJECT statement, on page 20.

$UNDEFINE statement

33

$UNDEFINE statement
Use the $UNDEFINE statement to remove the definition of identifiers set with the $DEFINE statement.
The $UNDEFINE statement removes the definition of identifier from the symbol table if it appeared in a
previous $DEFINE statement. If the identifier was not previously defined, $UNDEFINE has no effect.

Syntax

$UNDEFINE identifier

identifier is the identifier whose definition is to be deleted from the symbol table.

You can use $UNDEFINE with the $IFDEF statement or $IFNDEF statement to undefine an identifier
that controls conditional compilation. The syntax is as follows:

$UNDEFINE identifier
 .
 .
 .
{ $IFDEF | $IFNDEF }identifier
[statements]
$ELSE
[statements]
$ENDIF

The $IFDEF statement that begins the conditional compilation block tests identifier to determine
whether it is currently defined. Using this syntax, the $UNDEFINE statement deletes the definition of
identifier from the symbol table, and the statements between the $ELSE and the $ENDIF statements
are compiled.

If you use the $IFNDEF statement, on the other hand, and identifier is undefined, the statements
between $IFDEF and $ENDIF are compiled. If identifier is not defined, the statements between $IFDEF
and $ELSE are compiled.

Note: UniVerse does not support nested $DEFINE/$UNDEFINE statements.

* statement
Use the * statement to insert a comment in a UniVerse BASIC program. Comments explain or
document various parts of a program. They are part of the source code only and are nonexecutable.
They do not affect the size of the object code.

A comment must be a separate UniVerse BASIC statement, and can appear anywhere in a program. A
comment must begin with one of the following comment designators:

▪ REM

▪ *

▪ !

▪ $*

Any text that appears between a comment designator and the end of a physical line is treated as part
of the comment, not as part of the executable program. If a comment does not fit on one physical line,
you can continue it on the next physical line only by starting the new line with a comment designator.

Chapter 1: Statements and functions

34

If a comment appears at the end of a physical line containing an executable statement, you must put a
semicolon (;) before the comment designator.

Syntax

* [comment.text]

Example

The PRINT statement at the end of the third line is not executed because it follows the asterisk on the
same line and is treated as part of the comment. Lines 4, 5, and 6 show how to include a comment in
the same sequence of executable statements.

PRINT "HI THERE"; * Anything after the * is a comment
* This line is also a comment and does not print.
IF 5<6 THEN PRINT "YES"; * A comment; PRINT "PRINT ME"
IF 5<6 THEN
PRINT "YES"; * A comment
PRINT "PRINT ME"
END

This is the program output:

HI THERE
YES
YES
PRINT ME

< > operator
Use the < > operator (angle brackets) to extract or replace elements of a dynamic array.

Syntax

variable < field# [,value# [,subvalue#]] >

Parameters

Parameter Description

variable Specifies the dynamic array containing the data to be changed.
field#, value#, subvalue # Delimiter expressions.

Angle brackets to the left of an assignment operator change the specified data in the dynamic array
according to the assignment operator. For examples, see the REPLACE function, on page 331. Angle
brackets to the right of an assignment operator indicate that an EXTRACT function is to be performed.
For examples, see the FADD function, on page 159.

@ function
Use the @ function with the PRINT statement to control display attributes, screen display, and cursor
positioning.

@ function

35

Note: You can save processing time by assigning the result of a commonly used @ function, such
as @ (–1), to a variable, rather than reevaluating the function each time it is used.

Syntax

@ (column [,row])

@(–code [,arg])

Parameters

Parameter Description

column Defines a screen column position.
row Defines a screen row position.
–code The terminal control code that specifies a particular screen or cursor

function.
arg Specifies further information for the screen or cursor function specified in –

code.

Cursor positioning

You position the cursor by specifying a screen column and row position using the syntax @ (column
[,row]). If you do not specify a row, the current row is the default. The top line is row 0, the leftmost
column is column 0. If you specify a column or row value that is out of range, the effect of the function
is undefined.

If you use the @ function to position the cursor, automatic screen pagination is disabled.

Screen and cursor controls

You can use the @ function with terminal control codes to specify various cursor and display
operations using the syntax @ (–code [,arg]).

If you want to use mnemonics rather than the code numbers, you can use an insert file of equate
names by specifying either of the following options when you compile your program:

$INCLUDE UNIVERSE.INCLUDE ATFUNCTIONS.H

$INCLUDE SYSCOM ATFUNCTIONS.INS.IBAS (PIOPEN flavor only)

Note: Not all terminal control codes are supported by all terminal types. If the current terminal
type does not support the code you specified, the function returns an empty string. You can use
this to test whether your program operates correctly on a particular terminal, and whether you
need to code any alternative actions.

If you issue multiple video attributes (such as blink and reverse video) at the same time, the result
is undefined. See the description of the @ function, on page 34 for details of additive attributes.

The following table summarizes the characteristics of the terminal control codes, and the sections
following the table give more information on each equate name:

Integer Equate name Function Argument

–1 IT$CS Screen clear and
home

–2 IT$CAH Cursor home

Chapter 1: Statements and functions

36

Integer Equate name Function Argument

–3 IT$CLEOS Clear to end of
screen

–4 IT$CLEOL Clear to end of
line

–5 IT$SBLINK Start blink
–6 IT$EBLINK Stop blink
–7 IT$SPA Start protect
–8 IT$EPA Stop protect
–9 IT$CUB Back space one

character
Number of characters to back space

–10 IT$CUU Move up one line Number of lines to move
–11 IT$SHALF Start half-

intensity

–12 IT$EHALF Stop half-
intensity

–13 IT$SREV Start reverse
video

–14 IT$EREV Stop reverse
video

–15 IT$SUL Start underlining
–16 IT$EUL Stop underlining
–17 IT$IL Insert line Number of lines to insert
–18 IT$DL Delete line Number of lines to delete
–19 IT$ICH Insert character Number of lines to insert
–20 IT$SIRM Set insert/replace

mode

–21 IT$RIRM Reset insert/
replace mode

–22 IT$DCH Delete character Number of characters to delete
–23 IT$AUXON Auxiliary port on
–24 IT$AUXOFF Auxiliary port off
–25 IT$TRON Transparent

auxiliary port on

–26 IT$TROFF Transparent
auxiliary port off

–27 IT$AUXDLY Auxiliary port
delay time

–28 IT$PRSCRN Print screen
–29 IT$E80 Enter 80-column

mode

–30 IT$E132 Enter 132-column
mode

–31 IT$RIC Reset inhibit
cursor

–32 IT$SIC Set inhibit cursor
–33 IT$CUD Cursor down Number of lines to move cursor

@ function

37

Integer Equate name Function Argument

–34 IT$CUF Cursor forward Number of places to move cursor forward
–35 IT$VIDEO Set video

attributes
Additive attribute value

–36 IT$SCOLPR Set color pair Predefined color pairing
–37 IT$FCOLOR Set foreground

color
Foreground color code

–38 IT$BCOLOR Set background
color

Background color code

–39 IT$SLINEGRFX Start line graphics
–40 IT$ELINEGRFX End line graphics
–41 IT$LINEGRFXCH Line graphics

character
The required graphics character

–42 IT$DMI Disable manual
input

–43 IT$EMI Enable manual
input

–44 IT$BSCN Blank screen
–45 IT$UBS Unblank screen
–48 IT$SU Scroll up Number of lines to scroll
–49 IT$SD Scroll down Number of lines to scroll
–50 IT$SR Scroll right Number of columns to scroll
–51 IT$SL Scroll left Number of columns to scroll
–54 IT$SLT Set line truncate
–55 IT$RLT Reset line

truncate

–56 IT$SNK Set numeric
keypad

–57 IT$RNK Reset numeric
keypad

–58 IT$SBOLD Start bold
–59 IT$EBOLD End bold
–60 IT$SSECUR Start secure

mode

–61 IT$ESECUR End secure mode
–62 IT$SSCRPROT Start screen

protect mode

–63 IT$ESCRPROT End screen
protect mode

-64 IT$SLD System line
display

–65 IT$SLR System line reset
–66 IT$SLS System line set
–70 IT$CHA Cursor horizontal

absolute
Column number to position cursor

–71 IT$ECH Erase character Number of characters to erase

Chapter 1: Statements and functions

38

Integer Equate name Function Argument

–74 IT$NPC Character to
substitute for
nonprinting
character

–75 IT$DISPLAY EDFS main
display attributes

–76 IT$MINIBUF EDFS mini-buffer
display attributes

–77 IT$LOKL Lock line The line number
–78 IT$UNLL Unlock line The line number
–79 IT$MARKSUBS Display marks
–80
through
–100

 Reserved for U2

–101
through
–128

IT$USERFIRST

IT$USERLAST

Available for
general use

Screen clear and home @(IT$CS)

Clears the screen and positions the cursor in the upper-left corner.

Cursor home @(IT$CAH)

Moves the cursor to the upper-left corner of the screen.

Clear to end of screen @(IT$CLEOS)

Clears the current screen line starting at the position under the cursor to the end of that line and clears
all lines below that line. The cursor does not move.

Clear to end of line @(IT$CLEOL)

Clears the current screen line starting at the position under the cursor to the end of that line. The
cursor does not move.

Start blink @(IT$SBLINK)

Causes any printable characters that are subsequently displayed to blink. If you move the cursor
before issuing the stop blink function, @(IT$EBLINK), the operation of the @(IT$SBLINK) code is
undefined.

Stop blink @(IT$EBLINK)

Stops blink mode. If a start blink function, @(IT$SBLINK), was not transmitted previously, the effect of
this sequence is undefined.

Start protect @(IT$SPA)

Protects all printable characters that are subsequently displayed from update until the characters are
erased by one of the clear functions @(IT$CS), @(IT$CLEOS), or @(IT$CLEOL). If you move the cursor

@ function

39

before issuing the stop protect function, @(IT$EPA), the operation of this code is undefined. The start
protect function is useful only for terminals that are in block mode.

Stop protect @(IT$EPA)

Stops the protect mode. If a start protect string was not previously transmitted, the effect of this
sequence is undefined. The stop protect function is useful only for terminals that are in block mode.

Back space one char @(IT$CUB)

Moves the cursor one position to the left without deleting any data. For m greater than 0, the function
@(IT$CUB, m) moves the cursor m positions to the left. In moving to the left, the cursor cannot move
beyond the start of the line.

Move up one line @(IT$CUU)

Moves the cursor up one line toward the top of the screen. For m greater than 0, the function @(IT
$CUU, m) moves the cursor up m lines. The cursor remains in the same column, and cannot move
beyond the top of the screen.

Start half-intensity @(IT$SHALF)

Causes all printable characters that are subsequently displayed to be displayed at reduced intensity.
If a cursor-positioning sequence is used before the stop half-intensity function, @(IT$EHALF), the
operation of this function is undefined.

Stop half-intensity @(IT$EHALF)

Terminates half-intensity mode. The effect of this sequence is unspecified if a start half-intensity string
was not previously transmitted.

Start reverse video @(IT$SREV)

Causes printable characters that are subsequently displayed to be displayed with all pixels inverted.
If a cursor-positioning sequence is used before the stop reverse video function, @(IT$EREV), the
operation of this function is undefined.

Stop reverse video @(IT$EREV)

Terminates reverse video mode. If a start reverse video function, @(IT$SREV), was not previously
transmitted, the effect of this sequence is undefined.

Start underlining @(IT$SUL)

Causes all subsequent printable characters to be underlined when displayed. If a cursor-positioning
sequence is used before the stop underlining function, @(IT$EUL), the operation of this function is
undefined.

Stop underlining @(IT$EUL)

Terminates the underlining mode established by a start underlining function, @(IT$SUL). The effect of
this sequence is unspecified if a start underlining string was not previously transmitted.

Insert line @(IT$IL)

Inserts a blank line at the current cursor position. For m greater than 0, the function @(IT$IL, m) inserts
m blank lines at the current cursor position. If m is omitted, the default is 1. The effect when m is less

Chapter 1: Statements and functions

40

than 1 is undefined. All lines from the current cursor position to the end of the screen scroll down. The
bottom m lines on the screen are lost.

Delete line @(IT$DL)

Deletes the line at the current cursor position; the function @(IT$DL, 1) has the same effect. For m
greater than 1, the lines above the current line are deleted until m minus 1 lines have been deleted or
the top of the file has been reached, whichever occurs first. All lines below the current cursor position
scroll up. The last lines on the screen are cleared.

Insert character @(IT$ICH)

Inserts a space at the current cursor position. All characters from the cursor position to the right edge
of the screen are shifted over one character to the right. Any character at the rightmost edge of the
screen is lost. For m greater than 0, the function @(IT$ICH, m) inserts m spaces at the current cursor
position, shifting the other characters accordingly.

Set insert/replace mode @(IT$SIRM)

Starts insert character mode. Characters sent to the terminal screen are inserted at the current cursor
position instead of overwriting the character under the cursor. The characters under and to the right of
the cursor are shifted over one character to the right for each character transmitted, and any character
at the rightmost edge of the screen is lost.

Reset insert/replace mode @(IT$RIRM)

Turns off insert character mode. Characters sent to the terminal screen overwrite the characters at the
current cursor position.

Delete character @(IT$DCH)

Deletes the character at the current cursor position. All characters to the right of the cursor move
one space to the left, and the last character position on the line is made blank. For m greater than
1, the function @(IT$DCH, m) deletes further characters, to the right of the original position, until m
characters have been deleted altogether or until the end of the display has been reached, whichever
occurs first.

Auxiliary port on @(IT$AUXON)

Enables the auxiliary (printer) port on the terminal. All characters sent to the terminal are displayed on
the screen and also copied to the auxiliary port.

Auxiliary port off @(IT$AUXOFF)

Disables the auxiliary (printer) port on the terminal, and stops the copying of the character stream to
the auxiliary port.

Transparent auxiliary port on @(IT$TRON)

Places the auxiliary (printer) port on the terminal in transparent mode. All characters sent to the
terminal are sent only to the auxiliary port and are not displayed on the terminal screen.

Transparent auxiliary port off @(IT$TROFF)

Disables the auxiliary (printer) port on the terminal and enables the display of the character stream on
the terminal screen.

@ function

41

Auxiliary delay time @(IT$AUXDLY)

Sets a time, in milliseconds, that an application should pause after enabling or disabling the auxiliary
port. The value of this function is an integer in the range 0 through 32,767. The function is used in
conjunction with the !SLEEP$ subroutine; for example:

PRINT @(IT$AUXON):;CALL !SLEEP$(@(IT$AUXDLY))

Print screen @(IT$PRSCRN)

Copies the contents of the screen to the auxiliary port. The function does not work for some terminals
while echo delay is enabled.

Enter 80-column mode @(IT$E80)

Starts 80-column mode. On some terminals it can also clear the screen.

Enter 132-column mode @(IT$E132)

Starts 132-column mode. On some terminals it can also clear the screen.

Reset inhibit cursor @(IT$RIC)

Turns the cursor on.

Set inhibit cursor @(IT$SIC)

Turns the cursor off.

Cursor down @(IT$CUD)

Moves the cursor down one line. For m greater than 0, the function @(IT$CUD, m) moves the cursor
down m lines. The cursor remains in the same column, and cannot move beyond the bottom of the
screen.

Cursor forward @(IT$CUF)

Moves the cursor to the right by one character position without overwriting any data. For m greater
than 0, the function @(IT$CUF, m) moves the cursor m positions to the right. The cursor cannot move
beyond the end of the line.

Set video attributes @(IT$VIDEO)

Is an implementation of the ANSI X3.64-1979 and ISO 6429 standards for the video attribute portion of
Select Graphic Rendition. It always carries an argument m that is an additive key consisting of one or
more of the following video attribute keys:

Value Name Description

0 IT$NORMAL Normal
1 IT$BOLD Bold
2 IT$HALF Half-intensity
4 IT$STANDOUT Enhanced
4 IT$ITALIC Italic
8 IT$ULINE Underline
16 IT$SLOWBLINK Slow blink

Chapter 1: Statements and functions

42

Value Name Description

32 IT$FASTBLINK Fast blink
64 IT$REVERSE Reverse video
128 IT$BLANK Concealed
256 IT$PROTECT Protected
572 IT$ALTCHARSET Alternative character set

For example:

PRINT @(IT$VIDEO,IT$HALF+IT$ULINE+IT$REVERSE)

In this example, m is set to 74 (2 + 8 + 64) for half-intensity underline display in reverse video. Bold,
italic, fast blink, and concealed are not supported on all terminals. To set the video attributes half-
intensity and underline, specify the following:

@(-35,10)

In this example, 10 is an additive key composed of 2 (half-intensity) plus 8 (underline).

Set color pair @(IT$SCOLPR)

Sets the background and foreground colors to a combination that you have previously defined in your
system terminfo file.

Set foreground color @(IT$FCOLOR)

Sets the color that is used to display characters on the screen. @(IT$FCOLOR,arg) always takes an
argument that specifies the foreground color to be chosen, as follows:

Value Name Description

0 IT$63 Black
1 IT$RED Red
2 IT$GREEN Green
3 IT$YELLOW Yellow
4 IT$BLUE Blue
5 IT$MAGENTA Magenta
6 IT$CYAN Cyan
7 IT$WHITE White
8 IT$DARK.RED Dark red
9 IT$CERISE Cerise
10 IT$ORANGE Orange
11 IT$PINK Pink
12 IT$DARK.GREEN Dark green
13 IT$SEA.GREEN Sea green
14 IT$LIME.GREEN Lime green
15 IT$PALE.GREEN Pale green
16 IT$BROWN Brown
17 IT$CREAM Cream
18 IT$DARK.BLUE Dark blue
19 IT$SLATE.BLUE Slate blue
20 IT$VIOLET Violet

@ function

43

Value Name Description

21 IT$PALE.BLUE Pale blue
22 IT$PURPLE Purple
23 IT$PLUM Plum
24 IT$DARK.CYAN Dark cyan
25 IT$SKY.BLUE Sky blue
26 IT$GREY Grey

The color attributes are not additive. Only one foreground color at a time can be displayed. If a
terminal does not support a particular color, a request for that color should return an empty string.

Set background color @(IT$BCOLOR)

Sets the background color that is used to display characters on the screen. The @(IT$BCOLOR,
arg) function always has an argument that specifies the background color to be chosen. (See Set
foreground color @(IT$FCOLOR) on page 65 for a list of available colors.)

Start line graphics @(IT$SLINEGRFX)

Switches on the line graphics mode for drawing boxes or lines on the screen.

End line graphics @(IT$ELINEGRFX)

Switches off the line graphics mode.

Line graphics character @(IT$LINEGRFXCH)

Specifies the line graphics character required. The argument can be one of the following:

Value Token Description

0 IT$GRFX.CROSS Cross piece
1 IT$GRFX.H.LINE Horizontal line
2 IT$GRFX.V.LINE Vertical line
3 IT$GRFX.TL.CORNER Top-left corner
4 IT$GRFX.TR.CORNER Top-right corner
5 IT$GRFX.BL.CORNER Bottom-left corner
6 IT$GRFX.BR.CORNER Bottom-right corner
7 IT$GRFX.TOP.TEE Top-edge tee piece
8 IT$GRFX.LEFT.TEE Left-edge tee piece
9 IT$GRFX.RIGHT.TEE Right-edge tee piece
10 IT$GRFX.BOTTOM.TEE Bottom-edge tee piece

Disable manual input @(IT$DMI)

Locks the terminal’s keyboard.

Enable manual input @(IT$EMI)

Unlocks the terminal’s keyboard.

Chapter 1: Statements and functions

44

Blank screen @(IT$BSCN)

Blanks the terminal’s display. Subsequent output to the screen is not visible until the unblank screen
function, @(IT$UBS), is used.

Unblank screen @(IT$UBS)

Restores the terminal’s display after it was blanked. The previous contents of the screen, and any
subsequent updates, become visible.

Scroll up @(IT$SU)

Moves the entire contents of the display up one line. For m greater than 0, the function @(IT$SU, m)
moves the display up m lines or until the bottom of the display is reached, whichever occurs first. For
each line that is scrolled, the first line is removed from sight and another line is moved into the last
line. This function works only if the terminal is capable of addressing character positions that do not
all fit on the screen, such that some lines are not displayed. This normally requires the terminal to be
set to vertical two-page mode in the initialization string. The effect of attempting to scroll the terminal
too far is undefined.

Scroll down @(IT$SD)

Moves the entire contents of the display down one line. For m greater than 0, the function @(IT$SD,
m) moves the display down m lines or until the top of the display is reached, whichever occurs first.
For each line that is scrolled, the last line is removed from sight and another line is moved into the top
line. This function works only if the terminal is capable of addressing character positions that do not
all fit on the screen, such that some lines are not displayed. This normally requires the terminal to be
set to vertical two-page mode in the initialization string. The effect of attempting to scroll the terminal
too far is undefined.

Scroll right @(IT$SR)

Moves the entire contents of the display one column to the right. For m greater than 0, the function
@(IT$SR, m) moves the display m columns to the right or until the left edge of the display is reached,
whichever occurs first. For each column scrolled, the rightmost column is removed from sight and
another leftmost column appears. This function works only if the terminal is capable of addressing
character positions that do not fit on the screen, such that some columns are not displayed. This
normally requires the terminal to be set to horizontal two-page mode in the initialization string. The
effect of attempting to scroll the terminal too far is undefined.

Scroll left @(IT$SL)

Moves the entire contents of the display one column to the left. For m greater than 0, the function
@(IT$SL, m) moves the display m columns to the left or until the right edge of the display is reached,
whichever happens first. For each column scrolled, the leftmost column is removed from sight and
another rightmost column appears. This function works only if the terminal is capable of addressing
character positions that do not fit on the screen, such that some columns are not displayed. This
normally requires the terminal to be set to horizontal two-page mode in the initialization string. The
effect of attempting to scroll the terminal too far is undefined.

Set line truncate @(IT$SLT)

Makes the cursor stay in the last position on the line when characters are printed past the last
position.

@ function

45

Reset line truncate @(IT$RLT)

Makes the cursor move to the first position on the next line down when characters are printed past the
last position.

Set numeric keypad @(IT$SNK)

Sets keys on the numeric keypad to the labeled functions instead of numbers.

Reset numeric keypad @(IT$RNK)

Resets keys on the numeric keypad to numbers.

Start bold @(IT$SBOLD)

Starts bold mode; subsequently, any characters entered are shown more brightly on the screen.

End bold @(IT$EBOLD)

Ends bold mode; characters revert to normal screen brightness.

Start secure mode @(IT$SSECUR)

Characters entered in this setting are not shown on the screen. This function can be used when
entering passwords, for example.

End secure mode @(IT$ESECURE)

Switches off secure mode; characters appear on the screen.

Start screen protect mode @(IT$SSCRPROT)

Switches on start protect mode. Characters entered in this mode are not removed when the screen is
cleared.

End screen protect mode @(IT$ESCRPROT)

Switches off screen protect mode.

System line display @(IT$SLD)

Redisplays the user-defined characters that were sent by the system line set function, @(IT$SLS).
The system line is defined as an extra line on the terminal display but is addressable by the normal
cursor positioning sequence. On most terminals the system line normally contains a terminal status
description. The number of usable lines on the screen does not change.

System line reset @(IT$SLR)

Removes from the display the characters that were set by the @(IT$SLS) function and replaces them
with the default system status line. The number of usable lines on the screen does not change.

System line set @(IT$SLS)

Displays the user-defined status line, and positions the cursor at the first column of the status line.
Subsequent printing characters sent to the terminal are displayed on the status line. Issuing a system
line reset function, @(IT$SLR), terminates printing on the status line, and leaves the cursor position

Chapter 1: Statements and functions

46

undefined. The characters printed between the issuing of @(IT$SLS) and @(IT$SLR) can be recalled
subsequently and displayed on the line by issuing an @(IT$SLD) function.

Cursor horizontal absolute @(IT$CHA)

Positions the cursor at column m of the current line. If m is omitted, the default is 0. The @(IT$CHA, m)
function must have the same effect as @(m).

Erase character @(IT$ECH)

Erases the character under the cursor and replaces it with one or more spaces, determined by the
argument m. If you do not specify m, or you specify a value for m that is less than 2, only the character
under the cursor is replaced. If you specify an argument whose value is greater than 1, the function
replaces the character under the cursor, and m –1 characters to the right of the cursor, with spaces.
The cursor position is unchanged.

ITNPC, ITDISPLAY, and IT$MINIBUF

Reserved for EDFS attributes.

Lock line @(IT$LOKL)

Locks line n of the screen display (top line is 0). The line cannot be modified, moved, or deleted from
the screen until it is unlocked.

Unlock line @(IT$UNLL)

Unlocks line n of the screen display allowing it to be modified, moved, or deleted.

Display marks @(IT$MARKSUBS)

Returns the characters used to display UniVerse delimiters on screen. From left to right, the delimiters
are: item, field, value, subvalue, and text.

Allocated for U2 @(–80) to @(–100)

These functions are reserved for U2.

Allocated for general use @(–101) to @(–128)

These functions are available for any additional terminal definition strings that you require.

Video attributes: points to note

Terminals whose video attributes are described as embedded or on-screen use a character position
on the terminal screen whenever a start or stop video attribute is received. Programs driving such
terminals must not change an attribute in the middle of a contiguous piece of text. You must leave
at least one blank character position at the point where the attribute changes. The field in the
terminal definition record called xmc is used to specify the number of character positions required
for video attributes. A program can examine this field, and take appropriate action. To do this, the
program must execute GET.TERM.TYPE and examine the @SYSTEM.RETURN.CODE variable, or use the
definition VIDEO.SPACES from the TERM INFO.H file.

Many terminals do not clear video attributes automatically when the data on a line is cleared or
deleted. The recommended programming practice is to reposition to the point at which a start
attribute was emitted, and overwrite it with an end attribute, before clearing the line.

@ function

47

On some terminals you can set up the Clear to End of Line sequence to clear both data and video
attributes. This is done by combining the strings for erase data from active position to end of line,
selecting Graphic Rendition normal, and changing all video attributes from active position to end
of line. Sending the result of the @(IT$CLEOL) function causes both the visible data on the line to be
cleared, and all video attributes to be set to normal, after the cursor position.

Note: Where possible, you should try to ensure that any sequences that clear data also clear video
attributes. This may not be the case for all terminal types.

An exception is @(IT$CS) clear screen. The sequence associated with this function should always
clear not only all data on the screen but also reset any video attributes to normal.

Examples

The following example displays “Demonstration” at column 5, line 20:

PRINT @(5,20):"Demonstration"

In the next example, the PRINT statement positions the cursor to home, at the top-left corner of the
screen, and clears the screen:

PRINT @(IT$CS):

The $INCLUDE statement is used to include the ATFUNCTIONS insert file of equate names. Assignment
statements are used to assign the evaluated @ functions to variables. The variables are used in PRINT
statements to produce code that clears the screen and returns the cursor to its original position;
positions the cursor at column 5, line 20; turns on the reverse video mode; prints the string; and turns
off the reverse video mode.

$INCLUDE UNIVERSE.INCLUDE ATFUNCTIONS.H
 CLS = @(IT$CS)
 REVERSE.ON = @(IT$SREV)
 REVERSE.OFF = @(IT$EREV)
 .
 .
 .
 PRINT CLS: @(5,20):
 PRINT REVERSE.ON:"THIS IS REVERSE VIDEO":REVERSE.OFF

The next example displays any following text in yellow letters:

PRINT @(IT$FCOLOR, IT$YELLOW)

The next example displays any following text on a cyan background:

PRINT @(IT$BCOLOR, IT$CYAN)

The next example gives a yellow foreground, not a green foreground, because color changes are not
additive:

PRINT @(IT$FCOLOR, IT$BLUE):@(IT$FCOLOR, IT$YELLOW)

If you have a terminal that supports colored letters on a colored background, the next example
displays the text “Hello” in yellow on a cyan background. All subsequent output is in yellow on cyan
until another color @ function is used. If your color terminal cannot display colored foreground on
colored background, only the last color command is used, so that this example displays the text
“Hello” in yellow on a black background.

PRINT @(IT$BCOLOR,IT$CYAN):@(IT$FCOLOR,IT$YELLOW):"Hello"

If your color terminal cannot display colored foreground on colored background, the previous
example displays the text “Hello” in black on a cyan background.

Chapter 1: Statements and functions

48

The next example gives the same result as the previous example for a terminal that supports colored
letters on a colored background. Strings containing the @ functions can be interpreted as a sequence
of instructions, which can be stored for subsequent frequent reexecution.

PRINT @(IT$FCOLOR,IT$YELLOW):@(IT$BCOLOR,IT$CYAN):"Hello"

In the last example, the screen is cleared, the cursor is positioned to the tenth column in the tenth line,
and the text “Hello” is displayed in foreground color cyan. The foreground color is then changed to
white for subsequent output. This sequence of display instructions can be executed again, whenever it
is required, by a further PRINT SCREEN statement.

SCREEN = @(IT$CS):@(10,10):@(IT$FCOLOR,IT$CYAN):"Hello"
 SCREEN = SCREEN:@(IT$FCOLOR,IT$WHITE)
 PRINT SCREEN

[] operator
Use the [] operator (square brackets) to extract a substring from a character string. The bold brackets
are part of the syntax and must be typed.

Syntax

expression [[start,] length]

expression [delimiter, occurrence, fields]

Parameters

Parameter Description

expression Evaluates to any character string.
start An expression that evaluates to the starting character position of the

substring. If start is 0 or a negative number, the starting position is assumed
to be 1. If you omit start, the starting position is calculated according to the
following formula:

string.length – substring.length + 1

This lets you specify a substring consisting of the last n characters of a string
without having to calculate the string length.

length is an expression that evaluates to the length of the substring.

If start exceeds the number of characters in expression, an empty string results. An empty string
also results if length is 0 or a negative number. If the sum of start and length exceeds the number of
characters in the string, the substring ends with the last character of the string.

Use the second syntax to return a substring located between the specified number of occurrences of
the specified delimiter. This syntax performs the same function as the FIELD function, on page 160.

Parameter Description

delimiter Any string, including field mark, value mark, and subvalue mark characters.
It delimits the start and end of the substring (all that appears within the two
delimiters). If delimiter consists of more than one character, only the first
character is used.

occurrence Specifies which occurrence of the delimiter is to be used as a terminator. If
occurrence is less than 1, 1 is assumed.

ABORT statement

49

Parameter Description

fields Specifies the number of successive fields after the delimiter specified by
occurrence that are to be returned with the substring. If the value of fields is
less than 1, 1 is assumed. The delimiter is part of the returned value in the
successive fields.

If the delimiter or the occurrence specified does not exist within the string, an empty string is returned.
If occurrence specifies 1 and no delimiter is found, the entire string is returned.

If expression is the null value, any substring extracted from it will also be the null value.

Examples

In the following example (using the second syntax) the fourth # is the terminator of the substring to be
extracted, and one field is extracted:

A="###DHHH#KK"
 PRINT A["#",4,1]

This is the result:

DHHH

The following syntaxes specify substrings that start at character position 1:

expression [0, length]expression [–1, length]

The following example specifies a substring of the last five characters:

"1234567890" [5]

This is the result:

67890

All substring syntaxes can be used in conjunction with the assignment operator (=). The new value
assigned to the variable replaces the substring specified by the [] operator. For example:

A='12345'
 A[3]=1212
 PRINT "A=",A

returns the following:

A= 12121

A[3] replaces the last three characters of A (345) with the newly assigned value for that substring
(1212).

The FIELDSTORE function provides the same functionality as assigning the three-argument syntax of
the [] operator.

ABORT statement
Use the ABORT statement to terminate execution of a BASIC program and return to the UniVerse
prompt. ABORT differs from STOP in that a STOP statement returns to the calling environment (for
example, a menu, a paragraph, another UniVerse BASIC program following an EXECUTE statement,
and so on), whereas ABORT terminates all calling environments as well as the UniVerse BASIC
program. You can use it as part of an IF…THEN statement to terminate processing if certain conditions
exist.

Chapter 1: Statements and functions

50

Syntax

ABORT [expression …]

ABORTE [expression …]

ABORTM [expression …]

If expression is used, it is printed when the program terminates. If expression evaluates to the null
value, nothing is printed.

The ABORTE statement is the same as the ABORT statement except that it behaves as if $OPTIONS
statement STOP.MSG were in force. This causes ABORT to use the ERRMSG file to produce error
messages instead of using the specified text. If expression in the ABORTE statement evaluates to the
null value, the default error message is printed:

Message ID is NULL: undefined error

For information about the ERRMSG file, see the ERRMSG statement, on page 152.

The ABORTM statement is the same as the ABORT statement except that it behaves as if $OPTIONS -
STOP.MSG were in force. This causes ABORT to use the specified text instead of text from the ERRMSG
file.

Example

PRINT "DO YOU WANT TO CONTINUE?":
INPUT A
IF A="NO" THEN ABORT

This is the program output:

DO YOU WANT TO CONTINUE?

ABS function
Use the ABS function to return the absolute value of any numeric expression. The absolute value of an
expression is its unsigned magnitude. If expression is negative, the value returned is:

-expression

For example, the absolute value of -6 is 6.

If expression is positive, the value of expression is returned. If expression evaluates to the null value,
null is returned.

Syntax

ABS (expression)

Example

Y = 100
X = ABS(43-Y)
PRINT X

This is the program output:

ABSS function

51

57

ABSS function
Use the ABSS function to return the absolute values of all the elements in a dynamic array. If an
element in dynamic.array is the null value, null is returned for that element.

Syntax

ABSS (dynamic.array)

Example

Y = REUSE(300)
Z = 500:@VM:400:@VM:300:@SM:200:@SM:100
A = SUBS(Z,Y)
PRINT A
PRINT ABSS(A)

This is the program output:

200V100V0S-100S-200
 200V100V0S100S200

acceptConnection function
Use the acceptConnection() function to accept an incoming connection attempt on the server
side socket.

Syntax

acceptConnection(svr_socket, blocking_mode, timeout, in_addr, in_name,
socket_handle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

svr_socket The handle to the server side socket which is returned by
initServerSocket().

blocking_mode blocking_mode is one of the following:

▪ 0: using current mode.

▪ 1: blocking mode (default). If this mode and the current blocking
mode of svr_socket is set to blocking, acceptConnection() blocks
the caller until a connection request is received or the specified
time_out has expired.

▪ 2: non-blocking mode. In this mode, if there are no pending
connections present in the queue, acceptConnection() returns an
error status code. If this mode, time_out is ignored.

time_out Timeout in milliseconds.

Chapter 1: Statements and functions

52

Parameter Description

in_addr The buffer that receives the address of the incoming connection. If NULL,
it will return nothing.

in_name The variable that receives the name of the incoming connection. If NULL,
it will return nothing.

socket_handle The handle to the newly created socket on which the actual connection
will be made. The server will use readSocket(), writeSocket(), and
so forth with this handle to communicate with the client.

Return codes

The following table describes the status of each return code.

Return code Description

0 Success.
1-41 See Socket function error return codes, on page 599.
102 SSL Handshake failure.
103 No client certificate.
105 Client authentication failure.
106 Peer not speaking SSL.

ACOS function
Use the ACOS function to return the trigonometric arc-cosine of expression. expression must be a
numeric value. The result is expressed in degrees. If expression evaluates to the null value, null is
returned. The ACOS function is the inverse of the COS function.

Syntax

ACOS (expression)

Example

PRECISION 5
PRINT "ACOS(0.707106781) = ":ACOS(0.707106781):" degrees"

This is the program output:

ACOS(0.707106781) = 45 degrees

ACTIVATEKEY statement
Use the ACTIVATEKEY command to activate a key. It is necessary to activate a key if you want to
supply a password for key protection.

Syntax

ACTIVATEKEY <key.id>, <password> [ON <hostname>]

addAuthenticationRule function

53

Parameters

The following table describes each parameter of the syntax.

Parameter Description

key.id The key ID to activate.
password The password corresponding to key.id.
ON hostname The name of the remote host on which you want to activate the encryption key.

Note: You can activate only keys with password protection with this command. Keys that do not
have password protection are automatically activated. Also, you can activate only keys to which
you are granted access.

Use the STATUS function after an ACTIVATEKEY statement is executed to determine the result of the
operation, as follows:

Value Description

0 Operation successful.
1 Key is already activated. This applies to a single key, not a wallet operation.
2 Operation failed. This applies to a single key, not a wallet operation.
3 Invalid key or wallet ID or password.
4 No access to wallet.
5 Invalid key ID or password in a wallet.
6 No access to one of the keys in the wallet.
9 Other error.

addAuthenticationRule function
The addAuthenticationRule() function adds an authentication rule to a security context. The
rules are used during SSL negotiation to determine whether the peer is to be trusted.

Syntax

addAuthenticationRule(context, ServerOrClient, Rule, RuleString)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

context The security context handle.
ServerOrClient Flag:

1- Server (SSL_SERVER)

2- Client (SSL_CLIENT)

Any other value is treated as a value of 1.

Chapter 1: Statements and functions

54

Parameter Description

Rule The rule name string. Valid settings are:

▪ SSL_RULE_STRENGTH

▪ SSL_RULE_PEER_NAME

▪ SSL_RULE_CERTPATH

▪ SSL_RULE_SERVER_NAME
RuleString Rule content string. Can be attribute-mark separated.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid security context handle.
2 Invalid rule name.
3 Invalid rule content.

VerificationStrength rule

This VerificationStrength rule (SSL_RULE_STRENGTH) governs the SSL negotiation and determines
whether an authentication process is considered successful. There are two levels of security: generous
and strict. If you specify generous, the certificate need only contain the subject name (common
name) that matches one specified by “PeerName”, to be considered valid. There is no need to have
its complete certificate chain established. If you specify strict, the incoming certificate must pass
a number of checks, including signature check, expiry check, purpose check, and issuer check. A
complete certificate chain must be established.

Note: Setting the rule to generous is recommended only for development or testing purposes.

PeerName rule

By specifying the PeerName rule (SSL_RULE_PEER_NAME) and attribute-mark separated common
names in ruleString, trusted server/client names will be stored into the context.

During the SSL handshake negotiation, the server will send its certificate to the client. By specifying
trusted server names, the client can control which server or servers it should communicate with.
During the handshake, once the server certificate has been verified by way of the establishment of the
complete certificate chain, the subject name contained in the certificate will be compared against the
trusted server names set in the context. If the server subject name matches one of the trusted names,
communication will continue, otherwise the connection will not be established.

If no trusted peername is set, then any peer is considered legitimate.

CertificatePath rule

The CertificatePath rule (SSL_RULE_CERTPATH) enables you to specify locations in which to search for
certificates. From the list of options, choose a CertificatePath rule to specify the search path:

▪ Default – When you add a certificate to a security context record, the full path for that certificate is
registered in the security context record. This path is derived from the current directory in which
UniData or UniVerse is running. When the certificate is loaded into memory to establish the SSL
connection, UniData or UniVerse by default uses this registered full path to retrieve the certificate.

addCertificate function

55

▪ Relative – With this option, UniData or UniVerse looks for the certificate in the current directory in
which it is running.

Note: Some of the UniData or UniVerse processes, such as the Telnet server processes, run
from the system directory.

▪ Path – With this option, UniData or UniVerse uses the path you specify for loading the certificate
added to this security context record. You can specify either an absolute path or a relative path.

▪ Env – If you select this option, enter an environment variable name in the Env text box. With this
option, the UniData or UniVerse process first obtains the value of the environment variable you
specify, and then uses that value as the path to load the certificates.

Note: UniData or UniVerse evaluates the environment variable only when the first SSL connection
is made. The value is cached for later reference.

ServerName rule

The ServerName rule (SSL_RULE_SERVER_NAME or Server Name Indication - SNI) is an extension to
the TLS computer networking protocol by which a client indicates which hostname it is attempting to
connect to at the start of the handshaking ("client hello") process. This rule allows a server to present
multiple certificates on the same IP address and TCP port number. As a result, it allows multiple
secure (HTTPS) websites or any other service over TLS to be served off the same IP address without
requiring all those sites to use the same certificate.

See the RFC 6066 standard for more information. In order to provide any of the server names, clients
can include an extension of type "server_name" in the extended "client hello."

If a secure HTTP request is requested and the specified protocols include at least one TLS version, and
a ServerName rule exists in the SCR, then an SNI extension will be added to the protocol handshake,
allowing users to connect to a server that serves different virtual hosts on a single IP address.

addCertificate function
The addCertificate() function stores a certificate (or multiple certificates) into a security context
to be used as a UniData or UniVerse server or client certificate. Alternatively, it can specify a certificate
or a directory which contains the certificates that are either used as CA (Certificate Authority)
certificates to verify incoming certificates or act as a Revocation list to check against expired or
revoked certificates.

There are three kinds of certificates:

▪ Self-signed root certificate, or root CA certificate – these certificates are used to sign other
certificates as a means to vouch for the authenticity of holders of those certificates.

▪ Intermediate CA certificates – these certificates are signed by a root CA certificate or another
intermediate CA certificate and are used to sign other certificates.

▪ Server/client certificates – these certificates are signed by root CA or intermediate CA certificates,
and are used by a server or client to provide its identity.

Root CA or Intermediate certificates are sometimes also called Issuer certificates.

For a server/client certificate, a complete certificate chain contains all the certificates starting from
the server/client certificate to its immediate intermediate CA certificate (and the intermediate CA
certificate’s immediate intermediate CA certificates, if any), up to the root CA certificate. To verify
a server/client certificate, the complete certificate chain needs to be established. For UniData and
UniVerse, this means that all intermediate root CA certificates must be specified in the security context

Chapter 1: Statements and functions

56

record. Note that sometimes the intermediate CA certificates can be sent from a server or client,
along with the server client certificate. In this case, you only need to add the root CA certificate to the
security context record.

A certificate’s purpose is to bind an entity’s name with its public key. It is a means of distributing
public keys. A certificate always contains three pieces of information: a name that identifies the owner
of this certificate, a public key of this owner, and a digital signature signed by a trusted third party
called a Certificate Authority (CA) with its private key. If you have the CA’s public key, you can verify
that the certificate is authentic, that is, whether the public key contained in the certificate is indeed
associated with the entity specified with the name in the certificate. In practice, a certificate can and
often does contain more information, for example, the period of time the certificate is valid.

SSL protocol specifies that when two parties start an SSL handshake, the server must always send its
certificate to the client for authentication. It might optionally require the client to send its certificate
to the server for authentication as well. Therefore, UniData and UniVerse applications that act as
HTTPS clients are not required to maintain a client certificate. The application should work with web
servers that do not require client authentication, while UniData and UniVerse applications that do act
as SSL servers must install a server certificate.

Regardless of which role the application is going to assume, it needs to install a CA certificate or a CA
certificate chain to be able to verify an incoming certificate.

Syntax

addCertificate(certPath, usedAs, format, algorithm, context, p12pass)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

certPath A string containing the name of the OS level file that holds the
certificate, or the directory containing certificates.

usedAs Flag

1- Used as a client/server certificate (SSL_CERT_SELF)

2- Used as an issuer certificate (SSL_CERT_CA)

3- Used as a certificate revocation list (SSL_CERT_CRL)
format 1 - PEM (Base64 encoded) format (SSL_FMT_PEM)

2 - DER (ASN.1 binary) format (SSL_FMT_DER)

3 - PKCS #12 format (SSL_FMT_P12)
algorithm Flag

1- RSA key (SSL_KEY_RSA)

2- DSA key (SSL_KEY_DSA)
context The security context handle.
p12pass Optional. Sets a password on the PKCS #12 file. This parameter should

only be included if using a PKCS #12 certificate that has a password.
Otherwise the parameter should be omitted.

Note: To use the predefined constants, you must include SSL.H in your program. The value for
PKCS #12 file format is 3. If you include the SSL.H shipped with UniVerse in your BASIC program,
you can also use the predefined format constant SSL_FMT_P12.

addRequestParameter function

57

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid security context handle.
2 Certificate file could not be opened or directory does not exist.
3 Unrecognized format.
4 Corrupted or unrecognized certificate contents.
5 Invalid parameter value(s).

addRequestParameter function
The addRequestParameter function adds a parameter to the request.

Syntax

addRequestParameter(request_handle, parameter_name, parameter_value,
content_handling)

Parameters

Parameter Description

request_handle The handle to the request.
parameter_name The name of the parameter.
parameter_value The value of the parameter.
content_handling The dynamic MIME type for the parameter value.

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid request handle.
2 Invalid parameter.
3 Bad content type.

Note: For a GET request, content_handling is ignored.

For a POST request with default content type, the default for content handling is “ContentType:text/
plain” if content_handling is not specified. For a POST request with “Multipart/*” content-type,
content_handling is a dynamic array containing Content-* strings separated by field marks (@FM).
They will be included in the multipart message before the data contained in parameter_value is sent.
An example of content_handling:

Content-Type: application/XML @FM
 Content-Dispostion: attachment; file=”C:\drive\test.dat @FM
 Content-Length: 1923

Chapter 1: Statements and functions

58

Specifically, for a POST request with content type “multipart/form-data,” a “Content-
Disposition:form-data” header will be created (or, in the case of Content-Dispostion already in
content_handling, “form-data” will be added to it).

For both a GET and a POST request with either no content type specified or specified as “application/
x-www-form-urlencoded,” as described in createRequest(), URL encoding is performed on data in
parameter_value automatically. Basically, any character other than alphanumeric is considered
“unsafe” and will be replaced by %HH, where HH is the ASCII value of the character in question. For
example, “#” is replaced by %23, and “/” is replaced by %2F, and so forth. One exception is that by
convention, spaces (‘ ‘) are converted into “+”.

For a POST method with other MIME-type specified, no encoding is done on data contained in
parameter_value.

ADDS function
Use the ADDS function to create a dynamic array of the element-by-element addition of two dynamic
arrays.

Each element of array1 is added to the corresponding element of array2. The result is returned in
the corresponding element of a new dynamic array. If an element of one array has no corresponding
element in the other array, the existing element is returned. If an element of one array is the null value,
null is returned for the sum of the corresponding elements.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Syntax

ADDS (array1, array2)

CALL -ADDS (return.array, array1, array2)

CALL !ADDS (return.array, array1, array2)

Example

A = 2:@VM:4:@VM:6:@SM:10
B = 1:@VM:2:@VM:3:@VM:4
PRINT ADDS(A,B)

This is the program output:

3V6V9S10V4

ALPHA function
Use the ALPHA function to determine whether expression is an alphabetic or non-alphabetic string.
If expression contains the characters a through z or A through Z, it evaluates to true and a value of 1
is returned. If expression contains any other character or an empty string, it evaluates to false and a
value of 0 is returned. If expression evaluates to the null value, null is returned.

If NLS is enabled, the ALPHA function uses the characters in the Alphabetics field in the NLS.LC.CTYPE
file. For more information, see the NLS Guide.

amInitialize function

59

Syntax

ALPHA (expression)

Example

PRINT "ALPHA('ABCDEFG') = ":ALPHA('ABCDEFG')
PRINT "ALPHA('abcdefg') = ":ALPHA('abcdefg')
PRINT "ALPHA('ABCDEFG.') = ":ALPHA('ABCDEFG.')
PRINT "ALPHA('SEE DICK') = ":ALPHA('SEE DICK')
PRINT "ALPHA('4 SCORE') = ":ALPHA('4 SCORE')
PRINT "ALPHA('') = ":ALPHA('')

This is the program output:

ALPHA('ABCDEFG') = 1
ALPHA('abcdefg') = 1
ALPHA('ABCDEFG.') = 0
ALPHA('SEE DICK') = 0
ALPHA('4 SCORE') = 0
ALPHA('') = 0

amInitialize function
The amInitialize function creates and opens an AMI session. The hSession output parameter is
a session handle which is valid unless the session is terminated. The function returns a status code
indicating success, warning, or failure. You can also use the STATUS() function to obtain this value.

Syntax

amInitialize(hSession, appName, policyName, reasonCode)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

hSession Upon successful return, holds a handle to a session. You can then use this
handle in other UniData and UniVerse WebSphere MQ API calls. [OUT]

appName An optional name you can use to identify the session. [IN]
policyName The name of a policy. If you specify "" (null), the system default policy name is

used. [IN]
reasonCode Holds an AMI Reason Code when the function returns a status indicating an AMI

warning or an AMI error occurred. The AMI Reason Code can be used to obtain
more information about the cause of the warning or error. See the MQSeries
Application Messaging Interface manual for a list of AMI Reason Codes and their
descriptions. [OUT]

Return codes

The following table describes the status of each return code.

Return code Status

0 – AMCC_SUCCESS Function completed successfully.

Chapter 1: Statements and functions

60

Return code Status

1 – AMCC_WARNING A warning was returned from AMI. The reasonCode output
parameter contains an AMI reason code with further details about
the warning.

2 – AMCC_FAILED An error was returned from AMI. The reasonCode output parameter
contains an AMI reason code with further details about the error.

99 – IPHANTOM_LICN_ERROR Failed to get an IPHANTOM license.
100 –
U2AMI_ERR_MQUNAVAILABLE

MQ AMI libraries are not available.

101 – U2AMI_ERR_UNKNOWN Unknown error.
102 – U2AMI_ERR_NOBINDIR The UVBIN environment variable was not found.
103 – U2AMI_ERR_FORK Error during the execution of AMI pipes to AMI process.
104 – U2AMI_ERR_PIPECREATE Error creating pipes to AMI process.
105 –
U2AMI_ERR_PIPEWRITETOAMI

Error writing to pipe of AMI process.

106 –
U2AMI_ERR_PIPEREADFROMAMI

Error reading pipe from AMI process.

107 –
U2AMI_ERR_PIPEWRITETOU2

Error writing to pipe of U2 process.

108 –
U2AMI_ERR_PIPEREADFROMU2

Error reading pipe from U2 process.

109 – U2AMI_ERR_EXEC Error during execution of AMI process.
110 –
U2AMI_ERR_INVALIDFORMAT

Variable does not match required format.

111 – U2AMI_ERR_NOT_HANDLE Variable not of type MQShandle.
112 –
U2SAMI_ERR_NULL_HANDLE

Uninitialized handle.

113 –
U2AMI_ERR_INVALID_HANDLE

Handle has been closed with amTermnate.

114 –
U2AMI_ERR_UNKNOWN_HANDLE

Unexpected handle value reported.

115 –
U2AMI_ERR_SESSION_IN_USE

An active session already exists (under a different hSession
variable than the one being passed in. See Usage Notes for more
details).

116 –
U2AMI_ERR_CREATE_HANDLE

Error creating U2AMI session handle.

117 – U2AMI_ERR_DL_OPEN Error opening MQ AMI library.
118 – U2AMI_ERR_DL_FUNC Error calling function in MQ AMI library.
119 –
U2AMI_ERR_RCVMSGOPTS

Invalid amRcvMsgOptions passed in.

Other A non-AMI error occurred.

Usage Notes

Only one session can be active at one time. If you call amInitialize while another session is active,
AMI returns an error code of U2AMI_ERR_SESSION_IN_USE. The one exception to this case is if the
subsequent call to amInitialize uses the same hSession variable from the first call. In this case, the

amReceiveMsg function

61

session is automatically terminated using the same AMI policy with which it was initialized, and a new
session is started in its place.

amReceiveMsg function
The amReceiveMsg function receives a message sent by the amSendMsg function.

Syntax

amReceiveMsg(hSession, receiverName, policyName, selMsgName, maxMsgLen,
dataLen, data, rcvMsgName, reasonCode[,recMsgOption])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

hSession The session handle returned by the amInitialize function. [IN]
receiverName The name of a receiver service. If you specify "" (null), the system default name

is used. [IN]
policyName The name of a policy. If you specify "" (null), the system default policy name is

used. [IN]
selMsgName An optional parameters specifying the name of a message object containing

information (such as a Correl ID) that will be used to retrieve the required
message from the queue. See Usage Notes for additional information about
the use of this parameter. [IN]

maxMsgLen The maximum message length the application will accept. Specify as -1 to
accept messages of any length, or use the optional parameter U2AMI_RESIZE
BUFFER. See Usage Notes for additional information about the use of this
parameter. [IN]

dataLen The length of the received message data, in bytes. If this parameter is not
required, specify as "" (null). [OUT]

data The received message data. [OUT]
rcvMsgName The name of a message object for the retrieved message. If you

specify "" (null) for this parameter, the system default name (constant
AMSD_RCV_MSG) is used. See Usage notes for additional information about
the use of this parameter. [IN]

reasonCode Holds an AMI Reason Code when the function returns a status indicating an
AMI warning or an AMI error occurred. The AMI Reason Code can be used to
obtain more information about the cause of the warning or error. See the
MQSeries Application Messaging Interface manual for a list of AMI Reason
Codes and their descriptions. [OUT]

Chapter 1: Statements and functions

62

Parameter Description

U2AMI_RECEIVEMSG This is the default behavior. It returns both
the message and the message length into
the respective output parameters of the
amReceiveMsg function.

U2AMI_LEAVEMSG If you specify U2AMI_LEAVEMSG for this
parameter, and Accept Truncated Messages is
not set in the policy receive attributes, UniVerse
returns the message length in the dataLen
parameter, but the message itself remains on
the queue.

U2AMI_DISCARDMSG If you specify U2AMI_DISCARDMSG for this
parameter and Accept Truncated Messages is
set in the policy receive attributes, UniVerse
discards the message at the MQSeries level
with an AMRC_MSG_TRUNCATED warning.
This behavior is preferable to discarding the
message at the UniVerse level.

recMsgOption

U2AMI_RESIZEBUFFER If you specify U2AMI_RESIZEBUFFER for this
parameter, UniVerse handles the details of
the buffer size used to retrieve the message.
If you do not specify this parameter, you must
specify the buffer size. See Usage Notes for
more information about this option.

Return codes

The following table describes the status of each return code.

Return code Description

0 – AMCC_SUCCESS Function completed successfully.
1 – AMCC_WARNING A warning was returned from AMI. The reasonCode output parameter

contains an AMI reason code with further details about the warning.
2 – AMCC_FAILED An error was returned from AMI. The reasonCode output parameter

contains an AMI reason code with further details about the error.
Other A non-AMI error occurred.

Usage notes

The selMsgtName parameter:

You can use the selMsgName parameter in Request/Reply messaging to tell amReceiveMsg to retrieve
only those messages from the queue that correlate with a message previously placed on the queue
with the amSendRequest function. When you use selMsgName in this manner, you should use the
sndMsgName parameter of the amSendRequest call as the value for selMsgName in amReceiveMsg.
Message correlation occurs here due to the following:

▪ The underlying message object created when the request message was sent, and referenced by
the name sndMsgName, holds information about the sent message, such as its Correlation ID and
Message ID.

▪ When you use this message object (sndMsgName) as the selMsgName parameter to
amReceiveMsg, the information held in this message object is used to ensure that the function
retrieves only correlating response messages from the queue.

The maxMsgLen parameter:

amReceiveRequest function

63

You can use the maxMsgLen parameter to define the maximum length message that the
amReceiveMsg function retrieves from the queue. If the value of maxMsgLen is less than the length
of the message to retrieve, behavior depends on the value of the Accept Truncated Message parameter
in the policy receive attribute. If Accept Truncated Message is set to true, the amReceiveMsg function
truncates the data, and there is an AMRC_MSG_TRUNCATED warning in the reasonCode parameter. If
Accept Truncated Message is set to false, the default, the amReceiveMsg function fails with return
status AMCC_FAILED(2), and the reason code is AMRC_RECEIVE_BUFF_LEN_ERR.

Note: If amReceiveMsg returns AMRC_RECEIVE_BUFF_LEN_ERR as the reasonCode, the
dataLen parameter contains the message length, even though the call failed with return value
MQCC_FAILED.

If you do not specify the U2AMI_RESIZE BUFFER optional parameter and the buffer
size you specify with the maxMsgLen parameter is too small, the function fails with the
AMRC_RECEIVE_BUFF_LEN_ERR. If this happens, UniVerse returns the necessary buffer size in the
dataLen parameter so you can reissue the request with the correct size.

If you specify the U2AMI_RESIZEBUFFER parameter, UniVerse uses a default buffer size of 8K. If this
buffer size is too small, UniVerse automatically reissues the request with the correct buffer size. While
convenient, this behavior can result in performance degradation for the following reasons:

▪ If the default buffer size is larger than necessary for the received message, UniVerse incurs an
unnecessary overhead.

▪ If the default buffer size is too small for the received message, UniVerse must issue to requests to
the queue before successfully retrieving the message.

For performance reasons, we recommend you set the maxMsgLen parameter to the expected size of
the message whenever possible.

The rcvMsgName parameter:

The rcvMsgName parameter enables the application to attach a name to the underlying message
object used to retrieve the message. Although UniVerse supports this parameter, it is mainly intended
for future additions to the WebSphere MQ for UniData and UniVerse API.

amReceiveRequest function
The amReceiveRequest function receives a request message.

Syntax

amReceiveRequest(hSession, receiverName, policyName, maxMsgLen,
dataLen, data, rcvMsgName, senderName, reasonCode [,recReqOption])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

hSession The session handle returned by the amInitialize function. [IN]
receiverName The name of a receiver service. If you specify "" (null), the system default

name is used. [IN]
policyName The name of a policy. If you specify "" (null), the system default policy name

is used. [IN]

Chapter 1: Statements and functions

64

Parameter Description

maxMsgLen The maximum message length the application will accept. Specify as
-1 to accept messages of any length, or use the optional parameter
U2AMI_RESIZE BUFFER. See Usage Notes for additional information about
the use of this parameter. [IN]

dataLen The length of the received message data, in bytes. If this parameter is not
required, specify as "" (null). [OUT]

data The received message data. [OUT]
rcvMsgName The name of the message object for the retrieved message. If you specify

"" (null), the system default receiver name is used. amReceiveRequest uses
the value of rcvMsgName in the subsequent call to the amSendResponse
function. [OUT]

senderName The name of a special type of sender service known as a response sender, to
which the response message will be sent. If you do not specify a name, the
system default response sender service is used. [IN]

Note: The sender name you specify must not exist in your AMI repository.
reasonCode Holds an AMI Reason Code when the function returns a status indicating an

AMI warning or an AMI error occurred. The AMI Reason Code can be used to
obtain more information about the cause of the warning or error. See the
MQSeries Application Messaging Interface manual for a list of AMI Reason
Codes and their descriptions. [OUT]
U2AMI_RECEIVEMSG This is the default behavior. It returns both

the message and the message length into
the respective output parameters of the
amReceiveReq function.

U2AMI_LEAVEMSG If you specify U2AMI_LEAVEMSG for this
parameter, and Accept Truncated Messages is
not set in the policy receive attributes, UniVerse
returns the message length in the dataLen
parameter, but the message itself remains on the
queue.

U2AMI_DISCARDMSG If you specify U2AMI_DISCARDMSG for this
parameter and Accept Truncated Messages is
set in the policy receive attributes, UniVerse
discards the message at the MQSeries level
with an AMRC_MSG_TRUNCATED warning. This
behavior is preferable to discarding the message
at the UniVerse level.

recReqOption

U2AMI_RESIZEBUFFER If you specify U2AMI_RESIZEBUFFER for this
parameter, UniVerse handles the details of
the buffer size used to retrieve the message.
If you do not specify this parameter, you must
specify the buffer size. See Usage Notes for more
information about this option.

Return codes

The following table describes the status of each return code.

Return code Description

0 – AMCC_SUCCESS Function completed successfully.

amSendMsg function

65

Return code Description

1 – AMCC_WARNING A warning was returned from AMI. The reasonCode output parameter
contains an AMI reason code with further details about the warning.

2 – AMCC_FAILED An error was returned from AMI. The reasonCode output parameter
contains an AMI reason code with further details about the error.

Other A non-AMI error occurred.

Usage notes

The maxMsgLen parameter:

You can use the maxMsgLen parameter to define the maximum length message the amReceiveRequest
will retrieve from the queue. If the value of maxMsgLen is less than the length of the message to
retrieve, behavior depends on the value of Accept Truncated Message in the policy receive attributes.
If the value of Accept Truncated Message is true, amReceiveRequest truncates the data and there is
an AMRC_MSG_TRUNCATED warning in the reasonCode parameter. If the value of Accept Truncated
Message is false, the default, amReceiveRequest fails with a return status AMCC_FAILED (2), and
reason code AMRC_RECEIVE_BUFF_LEN_ERR.

Note: If amReceiveRequest returns AMRC_RECEIVE_BUFF_LEN_ERR as the reasonCode, the
message length is contained in the dataLen parameter, even thought the call failed with return
value MQCC_FAILED.

If you do not specify the U2AMI_RESIZE BUFFER optional parameter and the buffer
size you specify with the maxMsgLen parameter is too small, the function fails with the
AMRC_RECEIVE_BUFF_LEN_ERR. If this happens, UniVerse returns the necessary buffer size in the
dataLen parameter so you can reissue the request with the correct size.

If you specify the U2AMI_RESIZEBUFFER parameter, UniVerse uses a default buffer size of 8K. If this
buffer size is too small, UniVerse automatically reissues the request with the correct buffer size. While
convenient, this behavior can result in performance degradation for the following reasons:

▪ If the default buffer size is larger than necessary for the received message, UniVerse incurs an
unnecessary overhead.

▪ If the default buffer size is too small for the received message, UniVerse must issue to requests to
the queue before successfully retrieving the message.

For performance reasons, we recommend you set the maxMsgLen parameter to the expected size of
the message whenever possible.

amSendMsg function
The amSendMsg function sends a datagram (send and forget) message.

Syntax

amSendMsg(hSession, senderName, policyName, data, sndMsgName,
reasonCode)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

hSession The session handle returned by the amInitialize function. [IN]

Chapter 1: Statements and functions

66

Parameter Description

senderName The name of a sender service. If you specify "" (null), the system default sender
name is used. [IN]

policyName The name of a policy. If you specify "" (null), the system default policy name is
used. [IN]

data The message data to be sent. [IN]
sndMsgName The name of a message object for the message being sent. If you specify

"" (null), the system default policy name is used. [IN]
reasonCode Holds an AMI Reason Code when the function returns a status indicating an AMI

warning or an AMI error occurred. The AMI Reason Code can be used to obtain
more information about the cause of the warning or error. See the MQSeries
Application Messaging Interface manual for a list of AMI Reason Codes and their
descriptions. [OUT]

Return codes

The following table describes the status of each return code.

Return code Description

0 –
AMCC_SUCCESS

Function completed successfully.

1 –
AMCC_WARNING

A warning was returned from AMI. The reasonCode output parameter contains
an AMI reason code with further details about the warning.

2 – AMCC_FAILED An error was returned from AMI. The reasonCode output parameter contains an
AMI reason code with further details about the error.

Other A non-AMI error occurred.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

amSendRequest function
The amSendRequest function sends a request message.

Syntax

amSendRequest(hSession, senderName, policyName, responseName, data,
sndMsgName, reasonCode)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

hSession The session handle returned by the amInitialize function. [IN]
senderName The name of a sender service. If you specify "" (null), the system default sender

name is used. [IN]
policyName The name of a policy. If you specify "" (null), the system default policy name is

used. [IN]
responseName The name of the receiver service to which the response to this send request

should be sent. Specify as ““ (null) if no response is required. [IN]
data The message data to be sent. [IN]

amSendResponse function

67

Parameter Description

sndMsgName The name of a message object for the message being sent. If you specify
““ (null), amSendRequest uses the system default message name (constant
AMSD_SND_MSG). [IN]

reasonCode Holds an AMI Reason Code when the function returns a status indicating an AMI
warning or an AMI error occurred. The AMI Reason Code can be used to obtain
more information about the cause of the warning or error. See the MQSeries
Application Messaging Interface manual for a list of AMI Reason Codes and their
descriptions. [OUT]

Return codes

The following table describes the status of each return code.

Return code Description

0 – AMCC_SUCCESS Function completed successfully.
1 – AMCC_WARNING A warning was returned from AMI. The reasonCode output parameter

contains an AMI reason code with further details about the warning.
2 – AMCC_FAILED An error was returned from AMI. The reasonCode output parameter

contains an AMI reason code with further details about the error.
Other A non-AMI error occurred.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

amSendResponse function
The amSendResponse function sends a request message.

Syntax

amSendResponse(hSession, senderName, policyName, rcvMsgName, data,
sndMsgName, reasonCode)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

hSession The session handle returned by the amInitialize function. [IN]
senderName The name of a sender service. If you specify "" (null), the system default sender

name is used. [IN]
policyName The name of a policy. If you specify "" (null), the system default policy name is

used. [IN]
rcvMsgName The name of the received message to which this message is a response. You

must set this parameter to the rcvMsgName specified for the amReceiveRequest
function. [IN]

data The message data to be sent. [IN]
sndMsgName The name of a message object for the message being sent. If you specify

"" (null), the system default message name (constant AMSD_SND_MSG) is used.
[IN]

Chapter 1: Statements and functions

68

Parameter Description

reasonCode Holds an AMI Reason Code when the function returns a status indicating an AMI
warning or an AMI error occurred. The AMI Reason Code can be used to obtain
more information about the cause of the warning or error. See the MQSeries
Application Messaging Interface manual for a list of AMI Reason Codes and their
descriptions. [OUT]

Return codes

The following table describes the status of each return code.

Return code Description

0 – AMCC_SUCCESS Function completed successfully.
1 – AMCC_WARNING A warning was returned from AMI. The reasonCode output parameter

contains an AMI reason code with further details about the warning.
2 – AMCC_FAILED An error was returned from AMI. The reasonCode output parameter

contains an AMI reason code with further details about the error.
Other A non-AMI error occurred.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

amTerminate function
The amTerminate function closes a session.

Syntax

amTerminate(hSession, policyName, reasonCode)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

hSession The session handle returned by the amInitialize function. [IN/OUT]
policyName The name of a policy. If you specify "" (null), the system default policy name is

used. [IN]
reasonCode Holds an AMI Reason Code when the function returns a status indicating an AMI

warning or an AMI error occurred. The AMI Reason Code can be used to obtain
more information about the cause of the warning or error. See the MQSeries
Application Messaging Interface manual for a list of AMI Reason Codes and their
descriptions. [OUT]

Return codes

The following table describes the status of each return code.

Return code Description

0 – AMCC_SUCCESS Function completed successfully.
1 – AMCC_WARNING A warning was returned from AMI. The reasonCode output parameter

contains an AMI reason code with further details about the warning.

analyzeCertificate function

69

Return code Description

2 – AMCC_FAILED An error was returned from AMI. The reasonCode output parameter
contains an AMI reason code with further details about the error.

Other A non-AMI error occurred.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

analyzeCertificate function
The analyzeCertificate() function decodes a certificate and puts plain text into the result
parameter. The result parameter will then contain such information as the subject name, location,
institute, issuer, public key, other extensions, and the issuer’s signature.

Syntax

analyzeCertificate(cert, format, result, p12pass)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

cert A string containing the certificate file name.
format 1 - PEM (Base64 encoded) format (SSL_FMT_PEM)

2 - DER (ASN.1 binary) format (SSL_FMT_DER)

3 - PKCS #12 format (SSL_FMT_P12)
result A dynamic array containing parsed cert data, in ASCII format.
p12pass Optional. Sets a password on the PKCS #12 file. This parameter should

only be included if using a PKCS #12 certificate that has a password.
Otherwise the parameter should be omitted.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.
1 Failed to open cert file.
2 Invalid format.
3 Unrecognized cert.
4 Other errors.

ANDS function
Use the ANDS function to create a dynamic array of the logical AND of corresponding elements of two
dynamic arrays.

Each element of the new dynamic array is the logical AND of the corresponding elements of array1 and
array2. If an element of one dynamic array has no corresponding element in the other dynamic array,
a false (0) is returned for that element.

Chapter 1: Statements and functions

70

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

If both corresponding elements of array1 and array2 are the null value, null is returned for those
elements. If one element is the null value and the other is 0 or an empty string, a false is returned for
those elements.

Syntax

ANDS (array1, array2)

CALL -ANDS (return.array, array1, array2)

CALL !ANDS (return.array, array1, array2)

Example

A = 1:@SM:4:@VM:4:@SM:1
B = 1:@SM:1-1:@VM:2
PRINT ANDS(A,B)

This is the program output:

1S0V1S0

ASCII function
Use the ASCII function to convert each character of expression from its EBCDIC representation value
to its ASCII representation value. If expression evaluates to the null value, null is returned.

The ASCII function and the EBCDIC function perform complementary operations.

Syntax

ASCII (expression)

Example

X = EBCDIC('ABC 123')
 Y = ASCII(X)
 PRINT "EBCDIC", "ASCII", " Y "
 PRINT "------", "-----", "---"
 FOR I = 1 TO LEN (X)
 PRINT SEQ(X[I,1]) , SEQ(Y[I,1]),Y[I,1]
 NEXT I

This is the program output:

EBCDIC ASCII Y
------ ----- ---
193 65 A
194 66 B
195 67 C
64 32
241 49 1
242 50 2
243 51 3

ASIN function

71

ASIN function
Use the ASIN function to return the trigonometric arc-sine of expression. expression must be a
numeric value. The result is expressed in degrees. If expression evaluates to the null value, null is
returned. The ASIN function is the inverse of the SIN function.

Syntax

ASIN (expression)

Example

PRECISION 5
PRINT "ASIN(0.707106781) = ":ASIN(0.707106781):" degrees"

This is the program output:

ASIN(0.707106781) = 45 degrees

ASSIGNED function
Use the ASSIGNED function to determine if variable is assigned a value. ASSIGNED returns 1 (true)
if variable is assigned a value, including common variables and the null value. It returns 0 (false) if
variable is not assigned a value.

Syntax

ASSIGNED (variable)

PICK Flavor

When you run UniVerse in a PICK flavor account, all common variables are initially unassigned.
ASSIGNED returns 0 (false) for common variables until the program explicitly assigns them a value.

Example

A = "15 STATE STREET"
C = 23
X = ASSIGNED(A)
Y = ASSIGNED(B)
Z = ASSIGNED(C)
PRINT X,Y,Z

This is the program output:

1 0 1

assignment statements
Use assignment statements to assign a value to a variable. The variable can be currently unassigned
(that is, one that has not been assigned a value by an assignment statement, READ statements, or
any other statement that assigns values to variables) or have an old value that is to be replaced. The

Chapter 1: Statements and functions

72

assigned value can be a constant or an expression. It can be any data type (that is, numeric, character
string, or the null value).

Syntax

variable = expression

variable += expression

variable -= expression

variable := expression

Use the operators += , -= , and := to alter the value of a variable. The += operator adds the value of
expression to variable. The -= operator subtracts the value of expression from variable. The := operator
concatenates the value of expression to the end of variable.

Use the system variable @NULL to assign the null value to a variable:

variable = @NULL

Use the system variable @NULL.STR to assign a character string containing only the null value (more
accurately, the character used to represent the null value) to a variable:

variable = @NULL.STR

Example

EMPL=86
A="22 STAGECOACH LANE"
X='$4,325'
B=999
PRINT "A= ":A,"B= ":B,"EMPL= ":EMPL
B+=1
PRINT "X= ":X,"B= ":B

This is the program output:

A= 22 STAGECOACH LANE B= 999 EMPL= 86
X= $4,325 B= 1000

ATAN function
Use the ATAN function to return the trigonometric arc-tangent of expression. expression must be a
numeric value. The result is expressed in degrees. If expression evaluates to the null value, null is
returned. The ATAN function is the inverse of the TAN function.

Syntax

ATAN (expression)

Examples

The following example prints the numeric value 135 and the angle, in degrees, that has an arc-tangent
of 135:

PRINT 135, ATAN(135)

AuditLog() function

73

This is the program output:

135 89.5756

The next example finds what angle has an arc-tangent of 1:

X = ATAN(1)
PRINT 1, X

This is the program output:

1 45

AuditLog() function
To reduce unnecessary or excessive logging, the UniVerse BASIC AuditLog() function has been
added to allow for application-driven audit. For example, instead of enabling system-wide UniVerse
BASIC READ auditing, which could create a huge number of audit log records, you can choose to have
your application call this function at a strategic point to have the action recorded in the system audit
file.

Syntax

AuditLog(Originator, Action, File, Record, Info, Status, {OldData},
{NewData})

Parameters

The following table describes each parameter of the syntax.

Parameter Description

Originator The ID of the originator of the event.
Action The action taken.
File The file name to audit.
Record The record ID to audit.
Info Additional details about this logged action. The content specified in this

parameter goes into the Details field of the audit log file.
Status An integer indicating the status of the logged actions. 0 usually

indicates success, and nonzero values indicate errors.
OldData Optional. The data before the change was made.
NewData Optional. The data after the change was made.

All parameters are expressions that evaluate to text strings (Originators, Action, File, and Info) or
dynamic arrays (Record, OldData, NewData), except for Status, which must be an integer.

Chapter 1: Statements and functions

74

Note: OldData and NewData are optional parameters. You can omit them if you do not need to
store these values. Also, if you do not need File or RecordID, you can supply empty strings instead.
For example:

OldAddr = Rec.addr
NewAddr = "1234 Main St Cape Town MA 02021"
CALL ChangeAddr("file1", "ID1", Rec, NewAddr)
Status = AuditLog("myapp1", "ChangeAddr", "file1", "ID1","replaced
billing address", 0, OldAddr, NewAddr)

AUTHORIZATION statement
Use the AUTHORIZATION statement to specify or change the effective runtime user of a program. After
an AUTHORIZATION statement is executed, any SQL security checking acts as if username is running
the program.

Syntax

AUTHORIZATION "username"

username is a valid login name on the machine where the program is run. username must be a
constant. username is compiled as a character string whose user identification (UID) number is looked
up in the /etc/passwd file at run time.

If your program accesses remote files across UVNet, username must also be a valid login name on the
remote machine.

An AUTHORIZATION statement changes only the user name that is used for SQL security checking
while the program is running. It does not change the actual user name, nor does it change the
user’s effective UID at the operating system level. If a program does not include an AUTHORIZATION
statement, it runs with the user name of the user who invokes it.

You can change the effective user of a program as many times as you like. The username specified by
the most recently executed AUTHORIZATION statement remains in effect for a subsequent EXECUTE
statement and PERFORM statement as well as for subroutines.

When a file is opened, the effective user’s permissions are stored in the file variable. These permissions
apply whenever the file variable is referenced, even if a subsequent AUTHORIZATION statement
changes the effective user name.

The effective user name is stored in the system variable @AUTHORIZATION.

A program using the AUTHORIZATION statement must be compiled on the machine where the
program is to run. To compile the AUTHORIZATION statement, SQL DBA privilege is required. If the
user compiling the program does not have DBA privilege, the program will not be compiled. You
cannot run the program on a machine different from the one where it was compiled. If you try, the
program terminates with a fatal error message.

Example

AUTHORIZATION "susan"
 OPEN "","SUES.FILE" TO FILE.S ELSE PRINT "CAN'T OPEN SUES.FILE"
 AUTHORIZATION "bill"
 OPEN "","BILLS.FILE" TO FILE.B ELSE PRINT "CAN'T OPEN BILLS.FILE"
 FOR ID = 5000 TO 6000
 READ SUE.ID FROM FILE.S, ID THEN PRINT ID ELSE NULL
 READ BILL.ID FROM FILE.B, ID THEN PRINT ID ELSE NULL

AUXMAP statement

75

 NEXT ID

AUXMAP statement
In NLS mode, use the AUXMAP statement to associate an auxiliary device with a terminal.

Syntax

AUXMAP { ON | OFF | expression }

AUXMAP ON causes a subsequent PRINT statement directed to print channel 0 to use the auxiliary
map. If no auxiliary map is defined, the terminal map is used. AUXMAP OFF causes subsequent PRINT
statements to use the terminal map. OFF is the default. If expression evaluates to true, AUXMAP is
turned on. If expression evaluates to false, AUXMAP is turned off.

A program can access the map for an auxiliary device only by using the AUXMAP statement. Other
statements used for printing to the terminal channel, such as a CRT statement, a PRINT statement, or
a INPUTERR statement, use the terminal map.

If NLS is not enabled and you execute the AUXMAP statement, the program displays a run-time error
message. For more information, see the NLS Guide.

BEGIN CASE statement
Use the BEGIN CASE statement to begin a set of CASE statements.

For details, see CASE statements, on page 86.

BEGIN TRANSACTION statement
Use the BEGIN TRANSACTION statement to indicate the beginning of a transaction.

Syntax

BEGIN TRANSACTION [ISOLATION LEVELlevel]
[statements]

The ISOLATION LEVEL clause sets the transaction for isolation level for the duration of that
transaction. The isolation level reverts to the original value at the end of the transaction.

level is an expression that evaluates to one of the following:

Chapter 1: Statements and functions

76

▪ An integer from 0 through 4

▪ One of the following keywords

Integer Keyword Effect on this transaction

0 NO.ISOLATION Prevents lost updates.

Lost updates are prevented if the ISOMODE
configurable parameter is set to 1 or 2.

1 READ.UNCOMMITTED Prevents lost updates.
2 READ.COMMITTED Prevents lost updates and dirty reads.
3 REPEATABLE.READ Prevents lost updates, dirty reads, and nonrepeatable

reads.
4 SERIALIZABLE Prevents lost updates, dirty reads, nonrepeatable

reads, and phantom writes.

Examples

The following examples both start a transaction at isolation level 3:

BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE.READ
BEGIN TRANSACTION ISOLATION LEVEL 3

BITAND function
Use the BITAND function to perform the bitwise AND comparison of two integers specified by numeric
expressions. The bitwise AND operation compares two integers bit by bit. It returns a bit of 1 if both
bits are 1; otherwise it returns a bit of 0.

Syntax

BITAND (expression1, expression2)

If either expression1 or expression2 evaluates to the null value, null is returned.

Noninteger values are truncated before the operation is performed.

The BITAND operation is performed on a 32-bit twos-complement word.

Note: Differences in hardware architecture can make the use of the high-order bit nonportable.

Example

PRINT BITAND(6,12)
* The binary value of 6 = 0110
* The binary value of 12 = 1100

This results in 0100, and the following output is displayed:

4

BITNOT function

77

BITNOT function
Use the BITNOT function to return the bitwise negation of an integer specified by any numeric
expression.

Syntax

BITNOT (expression [,bit#])

bit# is an expression that evaluates to the number of the bit to invert. If bit# is unspecified, BITNOT
inverts each bit. It changes each bit of 1 to a bit of 0 and each bit of 0 to a bit of 1. This is equivalent to
returning a value equal to the following:

(-expression)-1

If expression evaluates to the null value, null is returned. If bit# evaluates to the null value, the BITNOT
function fails and the program terminates with a run-time error message.

Noninteger values are truncated before the operation is performed.

The BITNOT operation is performed on a 32-bit twos-complement word.

Note: Differences in hardware architecture can make the use of the high-order bit nonportable.

Example

PRINT BITNOT(6),BITNOT(15,0),BITNOT(15,1),BITNOT(15,2)

This is the program output:

-7 14 13 11

BITOR function
Use the BITOR function to perform the bitwise OR comparison of two integers specified by numeric
expressions. The bitwise OR operation compares two integers bit by bit. It returns the bit 1 if the bit in
either or both numbers is 1; otherwise it returns the bit 0.

Syntax

BITOR (expression1, expression2)

If either expression1 or expression2 evaluates to the null value, null is returned.

Noninteger values are truncated before the operation is performed.

The BITOR operation is performed on a 32-bit twos-complement word.

Note: Differences in hardware architecture can make the use of the high-order bit nonportable.

Example

PRINT BITOR(6,12)
* Binary value of 6 = 0110
* Binary value of 12 = 1100

Chapter 1: Statements and functions

78

This results in 1110, and the following output is displayed:

14

BITRESET function
Use the BITRESET function to reset to 0 the bit number of the integer specified by expression. Bits are
counted from right to left. The number of the rightmost bit is 0. If the bit is 0, it is left unchanged.

Syntax

BITRESET (expression, bit#)

If expression evaluates to the null value, null is returned. If bit# evaluates to the null value, the
BITRESET function fails and the program terminates with a run-time error message.

Noninteger values are truncated before the operation is performed.

Example

PRINT BITRESET(29,0),BITRESET(29,3)
* The binary value of 29 = 11101
* The binary value of 28 = 11100
* The binary value of 21 = 10101

PRINT BITRESET(2,1),BITRESET(2,0)
* The binary value of 2 = 10
* The binary value of 0 = 0

This is the program output:

28 21
0 2

BITSET function
Use the BITSET function to set to 1 the bit number of the integer specified by expression. The number
of the rightmost bit is 0. If the bit is 1, it is left unchanged.

Syntax

BITSET (expression, bit#)

If expression evaluates to the null value, null is returned. If bit# evaluates to the null value, the BITSET
function fails and the program terminates with a run-time error message.

Noninteger values are truncated before the operation is performed.

Example

PRINT BITSET(20,0),BITSET(20,3)
* The binary value of 20 = 10100
* The binary value of 21 = 10101
* The binary value of 28 = 11100

BITTEST function

79

PRINT BITSET(2,0),BITSET(2,1)
* The binary value of 2 = 10
* The binary value of 3 = 11

This is the program output:

21 28
3 2

BITTEST function
Use the BITTEST function to test the bit number of the integer specified by expression. The function
returns 1 if the bit is set; it returns 0 if it is not. Bits are counted from right to left. The number of the
rightmost bit is 0.

Syntax

BITTEST (expression, bit#)

If expression evaluates to the null value, null is returned. If bit# evaluates to null, the BITTEST
function fails and the program terminates with a runtime error message.

Noninteger values are truncated before the operation is performed.

Example

PRINT BITTEST(11,0),BITTEST(11,1),BITTEST(11,2),BITTEST(11,3)
* The binary value of 11 = 1011

This is the program output:

1 1 0 1

BITXOR function
Use the BITXOR function to perform the bitwise XOR comparison of two integers specified by numeric
expressions. The bitwise XOR operation compares two integers bit by bit. It returns a bit 1 if only one of
the two bits is 1; otherwise it returns a bit 0.

Syntax

BITXOR (expression1, expression2)

If either expression1 or expression2 evaluates to the null value, null is returned.

Noninteger values are truncated before the operation is performed.

The BITXOR operation is performed on a 32-bit twos-complement word.

Note: Differences in hardware architecture can make the use of the high-order bit nonportable.

Chapter 1: Statements and functions

80

Example

PRINT BITXOR(6,12)
* Binary value of 6 = 0110
* Binary value of 12 = 1100

This results in 1010, and the following output is displayed:

10

BREAK statement
Use the BREAK statement to enable or disable the Intr, Quit, and Susp keys on the keyboard.

Syntax

BREAK [KEY] { ON | OFF | expression }

When the BREAK ON statement is in effect, pressing Intr, Quit, or Susp causes operations to pause.

When the BREAK OFF statement is in effect, pressing Intr, Quit, or Susp has no effect. This prevents a
break in execution of programs that you do not want interrupted.

When expression is used with the BREAK statement, the value of expression determines the status of
the Intr, Quit, and Susp keys. If expression evaluates to false (0, an empty string, or the null value), the
Intr, Quit, and Susp keys are disabled. If expression evaluates to true (not 0, an empty string, or the null
value), the Intr, Quit, and Susp keys are enabled.

A counter is maintained for the BREAK statement. It counts the number of executed BREAK ON and
BREAK OFF commands. When program control branches to a subroutine, the value of the counter is
maintained; it is not set back to 0. For each BREAK ON statement executed, the counter decrements by
1; for each BREAK OFF statement executed, the counter increments by 1. The counter cannot go below
0. The Intr, Quit, and Susp keys are enabled only when the value of the counter is 0. The following
example illustrates the point:

Statement from Command Counter Key status

— — 0 ON
Main program BREAK OFF +1 OFF
Subroutine BREAK OFF +2 OFF
Subroutine BREAK ON +1 OFF
Main program BREAK ON 0 ON

Examples

The following example increases the counter by 1:

BREAK KEY OFF

The following example decreases the counter by 1:

BREAK KEY ON

The following example disables the Intr, Quit, and Susp keys if QTY is false, 0, an empty string, or the
null value; it enables them if QTY is true, not 0, not an empty string, or not the null value:

BREAK QTY ;*

BSCAN statement

81

BSCAN statement
Use the BSCAN statement to scan the leaf nodes of a B-tree file (type 25) or of a secondary index. The
record ID returned by the current scan operation is assigned to ID.variable. If you specify rec.variable,
the contents of the record whose ID is ID.variable is assigned to it.

Syntax

BSCAN ID.variable [, rec.variable] [FROM file.variable [, record]]
[USING indexname] [RESET] [BY seq] {THEN statements [ELSE statements] |
ELSE statements}

file.variable specifies an open file. If file.variable is not specified, the default file is assumed (for more
information on default files, see the OPEN statement, on page 283). If the file is neither accessible
nor open, the program terminates with a runtime error message.

record is an expression that evaluates to a record ID of a record in the B-tree file. If the USING clause is
used, record is a value in the specified index. record specifies the relative starting position of the scan.

record need not exactly match an existing record ID or value. If it does not, the scan finds the next or
previous record ID or value, depending on whether the scan is in ascending or descending order. For
example, depending on how precisely you want to specify the starting point at or near the record ID or
value SMITH, record can evaluate to SMITH, SMIT, SMI, SM, or S.

If you do not specify record, the scan starts at the leftmost slot of the leftmost leaf, or the rightmost
slot of the rightmost leaf, depending on the value of the seq expression. The scan then moves in the
direction specified in the BY clause.

indexname is an expression that evaluates to the name of a secondary index associated with the file.

RESET resets the internal B-tree scan pointer. If the scanning order is ascending, the pointer is set
to the leftmost slot of the leftmost leaf; if the order is descending, the pointer is set to the rightmost
slot of the rightmost leaf. If you do not specify seq, the scan is done in ascending order. If you specify
record in the FROM clause, RESET is ignored.

seq is an expression that evaluates to A or D; it specifies the direction of the scan. "A", the default,
specifies ascending order. "D" specifies descending order.

If the BSCAN statement finds a valid record ID, or a record ID and its associated data, the THEN
statements are executed; the ELSE statements are ignored. If the scan does not find a valid record
ID, or if some other error occurs, any THEN statements are ignored, and the ELSE statements are
executed.

Any file updates executed in a transaction (that is, between a BEGIN TRANSACTION statement and a
COMMIT statement) are not accessible to the BSCAN statement until after the COMMIT statement has
been executed.

The STATUS function returns the following values after the BSCAN statement is executed:

Value Description

0 The scan proceeded beyond the leftmost or rightmost leaf node. ID.variable and
rec.variable are set to empty strings.

1 The scan returned an existing record ID, or a record ID that matches the record
ID specified by record.

2 The scan returned a record ID that does not match record. ID.variable is either
the next or the previous record ID in the B-tree, depending on the direction of
the scan.

Chapter 1: Statements and functions

82

Value Description

3 The file is not a B-tree (type 25) file, or, if the USING clause is used, the file has
no active secondary indexes.

4 indexname does not exist.
5 seq does not evaluate to A or D.
6 The index specified by indexname needs to be built, or is currently being built

concurrently.
10 An internal error was detected.

If NLS is enabled, the BSCAN statement retrieves record IDs in the order determined by the active
collation locale; otherwise, BSCAN uses the default order, which is simple byte ordering that uses the
standard binary value for characters; the Collate convention as specified in the NLS.LC.COLLATE file
for the current locale is ignored. For more information about collation, see the NLS Guide.

Example

The following example shows how you might indicate that the ELSE statements were executed
because the contents of the leaf nodes were exhausted:

BSCAN ID,REC FROM FILE,MATCH USING "PRODUCT" BY "A" THEN
PRINT ID,REC
END ELSE
ERR = STATUS()
BEGIN CASE
CASE ERR = 0
PRINT "Exhausted leaf node contents."
CASE ERR = 3
PRINT "No active indices, or file is not type 25."
CASE ERR = 4
PRINT "Index name does not exist."
CASE ERR = 5
PRINT "Invalid BY clause value."
CASE ERR = 6
PRINT "Index must be built."
CASE ERR = 10
PRINT "Internal error detected."
END CASE
GOTO EXIT.PROGRAM:
END

BYTE function
In NLS mode, use the BYTE function to generate a byte from the numeric value of expression. BYTE
returns a string containing a single byte.

Syntax

BYTE (expression)

If expression evaluates to a value in the range 0 to 255, a single-byte character is returned. If expression
evaluates to a value in the range 0x80 to 0xF7, a byte that is part of a multibyte character is returned.

If NLS is not enabled, BYTE works like the CHAR function, on page 90. For more information, see the
NLS Guide.

BYTELEN function

83

Example

When NLS is enabled, the BYTE and CHAR functions return the following:

Function Value

BYTE(32) Returns a string containing a single space.
CHAR(32) Returns a string containing a single space.
BYTE(230) Returns a string containing the single byte 0xe6.
CHAR(230) Returns a string containing the multibyte characters æ (small ligature Æ).

BYTELEN function
In NLS mode, use the BYTELEN function to generate the number of bytes contained in the ASCII string
value in expression.

Syntax

BYTELEN (expression)

The bytes in expression are counted, and the count is returned. If expression evaluates to the null
value, null is returned.

If NLS is not enabled, BYTELEN works like the LEN function, on page 241. For more information, see
the NLS Guide.

BYTETYPE function
In NLS mode, use the BYTETYPE function to determine the function of a byte in value.

Syntax

BYTETYPE (value)

If value is from 0 to 255, the BYTETYPE function returns a number that corresponds to the following:

Return value Description

–1 value is out of bounds
0 Trailing byte of a 2-, 3-, or > 3-byte character
1 Single-byte character
2 Leading byte of a 2-byte character
3 Leading byte of a 3-byte character
4 Reserved for the leading byte of a 4-byte character
5 System delimiter

If value evaluates to the null value, null is returned.

BYTETYPE behaves the same whether NLS is enabled or not. For more information, see the NLS
Guide.

Chapter 1: Statements and functions

84

BYTEVAL function
In NLS mode, use the BYTEVAL function to examine the bytes contained in the internal string value
of expression. The BYTEVAL function returns a number from 0 through 255 as the byte value of n in
expression. If you omit n, 1 is assumed.

Syntax

BYTEVAL (expression [, n])

If an error occurs, the BYTEVAL function returns –1 if expression is the empty string or has fewer than
n bytes, or if n is less than 1. If expression evaluates to the null value, BYTEVAL returns null.

BYTEVAL behaves the same whether NLS is enabled or not. For more information, see the NLS Guide.

CALL statement
Use the CALL statement to transfer program control from the calling program to an external
subroutine or program that has been compiled and cataloged.

Syntax

CALL name [([MAT] argument [, [MAT] argument …])]

variable = 'name'
CALL @variable [([MAT] argument [, [MAT] argument …])]

Locally cataloged subroutines can be called directly. Specify name using the exact name under which
it was cataloged. For more details, see the CATALOG command.

External subroutines can be called directly or indirectly. To call a subroutine indirectly, the name
under which the subroutine is cataloged must be assigned to a variable or to an element of an array.
This variable name or array element specifier, prefixed with an at sign (@), is used as the operand of
the CALL statement.

The first time a CALL is executed, the system searches for the subroutine in a cataloged library and
changes a variable that contains the subroutine name to contain its location information instead. This
procedure eliminates the need to search the catalog again if the same subroutine is called later in the
program. For indirect calls, the variable specified in the CALL as the @variable is used; for direct calls,
an internal variable is used. With the indirect method, it is best to assign the subroutine name to the
variable only once in the program, not every time the indirect CALL statement is used.

arguments are variables, arrays, array variables, expressions, or constants that represent actual
values. You can pass one or more arguments from the calling program to a subroutine. The number
of arguments passed in a CALL statement must equal the number of arguments specified in the
SUBROUTINE statement, on page 400 that identifies the subroutine. If multiple arguments are
passed, they must be separated by commas. If an argument requires more than one physical line, use
a comma at the end of the line to indicate that the list continues.

If argument is an array, it must be preceded by the MAT keyword, and the array should be named and
dimensioned in both the calling program and the subroutine before using this statement. If the array
is not dimensioned in the subroutine, it must be declared using the MAT keyword in the SUBROUTINE
statement. Other arguments can be passed at the same time regardless of the size of the array.

The actual values of arguments are not passed to the subroutine. Instead, a pointer to the location of
each argument is passed. Passing a pointer instead of the values is more efficient when many values

CALL statement

85

need to be passed to the subroutine. This method of passing arguments is called passing by reference;
passing actual values is called passing by value.

All scalar and matrix variables are passed to subroutines by reference. If you want to pass variables
by value, enclose them in parentheses. When data is passed by value, the contents of the variable in
the main program do not change as a result of manipulations to the data in the subroutine. When data
is passed by reference, the memory location of the variable is changed by manipulations in both the
main program and the subroutines. Constants are passed to subroutines by value.

When an array is passed to an external subroutine as an argument in a CALL statement, any
dimensions assigned to the array in the subroutine are ignored. The dimensions of the original array
as it exists in the calling program are maintained. Therefore, it is a common and acceptable practice
to dimension the array in the subroutine with subscripts or indices of one. For example, you could
dimension the arrays in the subroutine as follows:

DIM A (1), B (1, 1), C (1, 1)

When the corresponding array arguments are passed from the calling program to the subroutine at
run time, arrays A, B, and C inherit the dimensions of the arrays in the calling program. The indices in
the DIMENSION statement are ignored.

A better way to declare array arguments in a subroutine is to use the MAT keyword of the SUBROUTINE
statement in the first line of the subroutine. The following example tells the subroutine to expect the
three arrays A, B, and C:

SUBROUTINE X(MAT A, MAT B, MAT C)

When a RETURN statement is encountered in the subroutine, or when execution of the subroutine
ends without encountering a RETURN statement, control returns to the statement following the CALL
statement in the calling program. For more details, see the RETURN statement, on page 334.

Examples

The following example calls the local subroutine SUB. It has no arguments.

CALL SUB

The following example calls the local subroutine QTY.ROUTINE with three arguments:

CALL QTY.ROUTINE(X,Y,Z)

The following example calls the subroutine cataloged as *PROGRAM.1 with six arguments. The
argument list can be expressed on more than one line.

AAA="*PROGRAM.1"
 CALL @AAA(QTY,SLS,ORDER,ANS,FILE.O,SEQ)

The following example calls the subroutine *MA with three arguments. Its index and three arguments
are passed.

STATE.TAX(1,2)='*MA'
 CALL @STATE.TAX(1,2)(EMP.NO,GROSS,NET)

The following example calls the subroutine cataloged as *SUB and two matrices are passed to two
subroutine matrices. A third, scalar, argument is also passed.

GET.VALUE="*SUB"
 DIM QTY(10)
 DIM PRICE(10)
 CALL @GET.VALUE(MAT QTY,MAT PRICE,COST)

Chapter 1: Statements and functions

86

The following example shows the SUBROUTINE statement in the subroutine SUB that is called by the
preceding example. The arrays Q and P need not be dimensioned in the subroutine.

SUBROUTINE SUB(MAT Q,MAT P,C)

CASE statements
Use the CASE statement to alter the sequence of instruction execution based on the value of one or
more expressions. If expression in the first CASE statement is true, the following statements up to the
next CASE statement are executed. Execution continues with the statement following the END CASE
statement.

Syntax

BEGIN CASE
CASE expression
statements
[CASE expression
statements
 .
 .
.]
END CASE

If the expression in a CASE statement is false, execution continues by testing the expression in the
next CASE statement. If it is true, the statements following the CASE statement up to the next CASE or
END CASE statement are executed. Execution continues with the statement following the END CASE
statement.

If more than one CASE statement contains a true expression, only the statements following the first
such CASE statement are executed. If no CASE statements are true, none of the statements between
the BEGIN CASE and END CASE statements are executed.

If an expression evaluates to the null value, the CASE statement is considered false.

Use the ISNULL function with the CASE statement when you want to test whether the value of a
variable is the null value. This is the only way to test for the null value since null cannot be equal to any
value, including itself. The syntax is:

CASE ISNULL (expression)

Use an expression of the constant "1" to specify a default CASE to be executed if none of the other
CASE expressions evaluate to true.

Examples

In the following example NUMBER is equal to 3. CASE 1 is always true, therefore control is transferred
to subroutine 30. Once the subroutine RETURN is executed, control proceeds to the statement
following the END CASE statement.

NUMBER=3
BEGIN CASE
CASE NUMBER=1
GOTO 10
CASE 1
GOSUB 30
CASE NUMBER<3
GOSUB 20

CATS function

87

END CASE
PRINT 'STATEMENT FOLLOWING END CASE'
GOTO 50
10*
PRINT 'LABEL 10'
STOP
20*
PRINT 'LABEL 20'
RETURN
30*
PRINT 'LABEL 30'
RETURN
50*

This is the program output:

LABEL 30
STATEMENT FOLLOWING END CASE

In the following example, control proceeds to the statement following the END CASE because 'NAME'
does not meet any of the conditions:

NAME="MICHAEL"
BEGIN CASE
CASE NAME[1,2]='DA'
PRINT NAME
GOTO 10
CASE NAME[1,2]='RI'
PRINT NAME
GOSUB 20
CASE NAME[1,2]='BA'
PRINT NAME
GOSUB 30
END CASE
PRINT 'NO MATCH'
STOP

This is the program output:

NO MATCH

CATS function
Use the CATS function to create a dynamic array of the element-by-element concatenation of two
dynamic arrays.

Syntax

CATS (array1, array2)

CALL -CATS (return.array, array1, array2)

CALL !CATS (return.array, array1, array2)

Each element of array1 is concatenated with the corresponding element of array2. The result is
returned in the corresponding element of a new dynamic array. If an element of one dynamic array has
no corresponding element in the other dynamic array, the existing element is returned. If an element
of one dynamic array is the null value, null is returned for the concatenation of the corresponding
elements.

Chapter 1: Statements and functions

88

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Example

A="A":@VM:"B":@SM:"C"
B="D":@SM:"E":@VM:"F"
PRINT CATS(A,B)

This is the program output:

ADSEVBFSC

CENTURY.PIVOT function
Use the CENTURY.PIVOT function to override the system-wide century pivot year defined in the
uvconfig file.

Syntax

CENTURY.PIVOT (year | nn)

In UniVerse, when you enter as input a year in two-digit format (for example, 99 or 01), UniVerse by
default assumes the following:

▪ Years entered in the range 30 through 99 stand for 1930 through 1999

▪ Years entered in the range 00 through 29 stand for 2000 through 2029

Administrators can change these default ranges in three ways:

▪ Setting or changing the CENTURYPIVOT configurable parameter in the uvconfig file (for
information about configurable parameters, see Administering UniVerse).

▪ Using the CENTURY.PIVOT UniVerse command (see User Reference Guide).

▪ Using the CENTURY.PIVOT function

The CENTURYPIVOT configurable parameter sets the system-wide century pivot year for UniVerse. You
can use the CENTURY.PIVOT command to override the century pivot year for the current session.

You can set the century pivot year in two ways:

Static century pivot year

If you specify the century pivot year with four digits, the first two digits specify the century, and the last
two digits specify the pivot year.

For example, if you specify year as 1940, two-digit years specified in the range of 40 through 99 stand
for 1940 though 1999, and two-digit years specified in the range of 00 through 29 stand for 2000
through 2039. These ranges remain fixed until you explicitly change them.

Sliding century pivot year

If you enter the century pivot year as a two-digit code (nn), the century pivot year changes relative to
the current year. The formula for determining the century pivot year is as follows:

current.year – (100 – nn)

For example, if the current year is 2000 and nn is 05, the century pivot year is 1905. This means that
two-digit years specified in the range of 05 through 99 stand for 1905 through 1999, and two-digit
years specified in the range of 00 through 04 stand for 2000 through 2004.

CHAIN statement

89

If the current year is 2005 and nn is 05, the century pivot year is 1910. Two-digit years specified in the
range of 10 through 99 stand for 1910 through 1999, and two-digit years specified in the range of 00
through 09 stand for 2000 through 2009.

If the current year is 2001 and nn is 30, the century pivot year is 1931. Two-digit years specified in the
range of 31 through 99 stand for 1931 through 1999, and two-digit years specified in the range of 00
through 30 stand for 2000 through 2030.

CHAIN statement
Use the CHAIN statement to terminate execution of a UniVerse BASIC program and to execute the
value of command. command is an expression that evaluates to any valid UniVerse command. If
command evaluates to the null value, the CHAIN statement fails and the program terminates with a
runtime error message.

Local variables belonging to the current program are lost when you chain from one program to
another. Named and unnamed common variables are retained.

CHAIN differs from the EXECUTE statement or PERFORM statement in that CHAIN does not return
control to the calling program. If a program chains to a proc, any nested calling procs are removed.

Syntax

CHAIN command

PICK, IN2, and REALITY flavors

Unnamed common variables are lost when a chained program is invoked in a PICK, IN2, or
REALITY flavor account. If you want to save the values of variables in unnamed common, use the
KEEP.COMMON keyword to the RUN command at execution.

Example

The following program clears the screen, initializes the common area, and then runs the main
application:

PRINT @(-1)
PRINT "INITIALIZING COMMON, PLEASE WAIT"
GOSUB INIT.COMMON
CHAIN "RUN BP APP.MAIN KEEP.COMMON"

CHANGE function
Use the CHANGE function to replace a substring in expression with another substring. If you do not
specify occurrence, each occurrence of the substring is replaced.

Syntax

CHANGE (expression, substring, replacement [,occurrence [,begin]])

occurrence specifies the number of occurrences of substring to replace. To change all occurrences,
specify occurrence as a number less than 1.

begin specifies the first occurrence to replace. If begin is omitted or less than 1, it defaults to 1.

Chapter 1: Statements and functions

90

If substring is an empty string, the value of expression is returned. If replacement is an empty string, all
occurrences of substring are removed.

If expression evaluates to the null value, null is returned. If substring, replacement, occurrence, or begin
evaluates to the null value, the CHANGE function fails and the program terminates with a run-time
error message.

The CHANGE function behaves like the EREPLACE function except when substring evaluates to an
empty string.

Example

A = "AAABBBCCCDDDBBB"
PRINT CHANGE (A,"BBB","ZZZ")
PRINT CHANGE (A,"","ZZZ")
PRINT CHANGE (A,"BBB","")

This is the program output:

AAAZZZCCCDDDZZZ
AAABBBCCCDDDBBB
AAACCCDDD

CHAR function
Use the CHAR function to generate an ASCII character from the numeric value of expression.

If expression evaluates to the null value, null is returned. If expression evaluates to 128, CHAR(128) is
returned, not the null value. CHAR(128) is the equivalent of the system variable @NULL.STR.

The CHAR function is the inverse of the SEQ function.

If NLS mode is enabled, and if expression evaluates to a number from 129 through 247, the CHAR
function generates Unicode characters from x0081 through x00F7. These values correspond to the
equivalent ISO 8859-1 (Latin 1) multibyte characters. The evaluation of numbers from 0 through 127,
128, and 248 through 255 remains the same whether NLS is enabled or not.

The UNICHAR function is the recommended method for generating Unicode characters. For more
information, see the NLS Guide.

Note: In order to run programs using the CHAR function in NLS mode, you must first recompile
them in NLS mode.

Syntax

CHAR (expression)

Example

X = CHAR(38)
Y = CHAR(32)
PRINT X:Y:X

CHAR(38) is an ampersand (&). CHAR(32) is a space. This is the program output:

& &

CHARS function

91

CHARS function
Use the CHARS function to generate a dynamic array of ASCII characters from the decimal numeric
value of each element of dynamic.array.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

If any element in the dynamic array is the null value, null is returned for that element. If any element
in the dynamic array evaluates to 128, CHAR(128) is returned, not the null value. CHAR(128) is the
equivalent of the system variable @NULL.STR.

If NLS mode is enabled, and if any element in the dynamic array evaluates to a number from 129
through 247, the CHARS function generates Unicode characters from x0081 through x00F7. These
values correspond to the equivalent ISO 8859-1 (Latin 1) multibyte characters. The evaluation of
numbers from 0 through 127, 128, and 248 through 255 remains the same whether NLS is enabled or
not.

The UNICHARS function is the recommended method for generating a dynamic array of Unicode
characters. For more information, see the NLS Guide.

Syntax

CHARS (dynamic.array)

CALL -CHARS (return.array, dynamic.array)

CALL !CHARS (return.array, dynamic.array)

Example

X = CHARS(38:@VM:32:@VM:38)
PRINT X

The dynamic array X comprises three elements: CHAR(38) (an ampersand (&)), CHAR(32) (a space),
and another CHAR(38). The program prints a dynamic array of these elements separated by value
marks:

&V V&

CHECKSUM function
Use the CHECKSUM function to return a cyclical redundancy code (a checksum value).

If string is the null value, null is returned.

Syntax

CHECKSUM (string)

Example

A = "THIS IS A RECORD TO BE SENT VIA SOME PROTOCOL"
REC = A:@FM:CHECKSUM(A)
PRINT REC

This is the program output:

Chapter 1: Statements and functions

92

THIS IS A RECORD TO BE SENT VIA SOME PROTOCOLF30949

CLEAR statement
Use the CLEAR statement at the beginning of a program to set all assigned and unassigned values of
variables outside of the common area of the program to 0. This procedure avoids run-time errors for
unassigned variables. If you use the CLEAR statement later in the program, any values assigned to
noncommon variables (including arrays) are lost.

Use the COMMON option to reset the values of all the variables in the unnamed common area to 0.
Variables outside the common area or in the named common area are unaffected.

Syntax

CLEAR [COMMON]

Example

A=100
PRINT "The value of A before the CLEAR statement:"
PRINT A
CLEAR
PRINT "The value of A after the CLEAR statement:"
PRINT A
PRINT
*
COMMON B,C,D
D="HI"
PRINT "The values of B, C, and D"
PRINT B,C,D
CLEAR COMMON
PRINT B,C,D

This is the program output:

The value of A before the CLEAR statement: 100
The value of A after the CLEAR statement: 0
The values of B, C, and D
0 0 HI
0 0 0

CLEARCOMMON
The UniVerse BASIC CLEARCOMMON command sets all variables in a named common area to zero. If
you do not specify common.label, CLEARCOMMON sets all variables specified in the unnamed common
area to zero.

Syntax

CLEARCOMMON [/common.label/]

Examples

In the following example, the program statement sets to zero all variables named in COM_1:

CLEARCOMMON /COM_1/

CLEARDATA statement

93

In the next example, the program statement sets to zero all variables held in common areas if the
variable INITIALIZE.COMMON is true:

IF INITIALIZE.COMMON THEN CLEAR COMMON

CLEARDATA statement
Use the CLEARDATA statement to flush all data that has been loaded in the input stack by the DATA
statement. No expressions or spaces are allowed with this statement. Use the CLEARDATA statement
when an error is detected, to prevent data placed in the input stack from being used incorrectly.

Syntax

CLEARDATA

Example

The following program is invoked from a paragraph. A list of file names and record IDs is passed to
it from the paragraph with DATA statements. If a file cannot be opened, the CLEARDATA statement
clears the data stack since the DATA statements would no longer be valid to the program.

TEN:
 INPUT FILENAME
 IF FILENAME="END" THEN STOP
 OPEN FILENAME TO FILE ELSE
 PRINT "CAN'T OPEN FILE ":FILENAME
 PRINT "PLEASE ENTER NEW FILENAME "
 CLEARDATA
 GOTO TEN:
 END
 TWENTY:
 INPUT RECORD
 READ REC FROM FILE,RECORD ELSE GOTO TEN:
 PRINT REC<1>
 GOTO TEN:
TEST.FILE.
 0 records listed.

CLEARFILE statement
Use the CLEARFILE statement to delete all records in an open dictionary or data file. You cannot use
this statement to delete the file itself. Each file to be cleared must be specified in a separate CLEARFILE
statement.

Syntax

CLEARFILE [file.variable] [ON ERROR statements] [LOCKED statements]

file.variable specifies an open file. If file.variable is not specified, the default file is assumed (for more
information on default files, see the OPEN statement).

The CLEARFILE statement fails and the program terminates with a runtime error message if:

▪ The file is neither accessible nor open.

▪ file.variable evaluates to the null value.

Chapter 1: Statements and functions

94

▪ A distributed file contains a part file that cannot be accessed, but the CLEARFILE statement clears
those part files still available.

▪ A transaction is active. That is, you cannot execute this statement between a BEGIN TRANSACTION
statement (or TRANSACTION START statement and the COMMIT statement (or TRANSACTION
START statement) or ROLLBACK statement that ends the transaction.

The ON ERROR clause

The ON ERROR clause is optional in the CLEARFILE statement. The ON ERROR clause lets you specify
an alternative for program termination when a fatal error is encountered during processing of the
CLEARFILE statement.

If a fatal error occurs and the ON ERROR clause was not specified or was ignored, the following occurs:

▪ An error message appears.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number. If a
CLEARFILE statement is used when any portion of a file is locked, the program waits until the file is
released. The ON ERROR clause is not supported if the CLEARFILE statement is within a transaction.

The LOCKED clause

The LOCKED clause is optional, but recommended.

The LOCKED clause handles a condition caused by a conflicting lock (set by another user) that
prevents the CLEARFILE statement from processing. The LOCKED clause is executed if one of the
following conflicting locks exists:

▪ Exclusive file lock

▪ Intent file lock

▪ Shared file lock

▪ Update record lock

▪ Shared record lock

If the CLEARFILE statement does not include a LOCKED clause, and a conflicting lock exists, the
program pauses until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the terminal number of the
user who owns the conflicting lock.

Example

OPEN "","TEST.FILE" ELSE PRINT "NOT OPEN"
EXECUTE "LIST TEST.FILE"
CLEARFILE
CHAIN "LIST TEST.FILE"

This is the program output:

LIST TEST.FILE 11:37:45am 03-22-94 PAGE 1
TEST.FILE
ONE
TWO
THREE

CLEARPROMPTS statement

95

3 records listed.
LIST TEST.FILE 11:37:46am 03-22-94 PAGE 1
TEST.FILE.
0 records listed.

CLEARPROMPTS statement
Use the CLEARPROMPTS statement to clear the value of the inline prompt. Once a value is entered
for an in-line prompt, the prompt continues to have that value until a CLEARPROMPTS statement is
executed, unless the in-line prompt control option A is specified. CLEARPROMPTS clears all values that
have been entered for inline prompts.

Syntax

CLEARPROMPTS

CALL !CLEAR.PROMPTS

For information about in-line prompts, see the ILPROMPT function, on page 214.

CLEARSELECT statement
Use the CLEARSELECT statement to clear an active select list. This statement is normally used when
one or more select lists have been generated but are no longer needed. Clearing select lists prevents
remaining select list entries from being used erroneously.

Syntax

CLEARSELECT [ALL | list.number]

Use the keyword ALL to clear all active select lists. Use list.number to specify a numbered select list
to clear. list.number must be a numeric value from 0 through 10. If neither ALL nor list.number is
specified, select list 0 is cleared.

If list.number evaluates to the null value, the CLEARSELECT statement fails and the program
terminates with a run-time error message.

PICK, REALITY, and IN2 flavors

PICK, REALITY, and IN2 flavor accounts store select lists in list variables instead of numbered select
lists. In those accounts, and in programs that use the VAR.SELECT option of the $OPTIONS statement,
the syntax of CLEARSELECT is:

CLEARSELECT [ALL | list.variable]

Example

The following program illustrates the use of CLEARSELECT to clear a partially used select list. The
report is designed to display the first 40-odd hours of lessons. A CLEARSELECT is used so that all the
selected records are not printed. Once the select list is cleared, the READNEXT statement ELSE clause
is executed.

OPEN 'SUN.SPORT' TO FILE ELSE STOP "CAN'T OPEN FILE"
HOURS=0
*

Chapter 1: Statements and functions

96

EXECUTE 'SSELECT SUN.SPORT BY START BY INSTRUCTOR'
*
START:
READNEXT KEY ELSE
PRINT 'FIRST WEEK', HOURS
STOP
END
READ MEMBER FROM FILE,KEY ELSE GOTO START:
HOURS=HOURS+MEMBER<4>
PRINT MEMBER<1>,MEMBER<4>
IF HOURS>40 THEN

CLEARSELECT

GOTO START:
END
GOTO START:
END

This is the program output:

14 records selected to Select List #0
4309 1
6100 4
3452 3
6783 12
5390 9
4439 4
6203 14
FIRST WEEK 47

CLOSE statement
Use the CLOSE statement after opening and processing a file. Any file locks or record locks are
released.

Syntax

CLOSE [file.variable] [ON ERROR statements]

file.variable specifies an open file. If file.variable is not specified, the default file is assumed. If the file
is neither accessible nor open, or if file.variable evaluates to the null value, the CLOSE statement fails
and the program terminates with a run-time error message.

The ON ERROR clause

The ON ERROR clause is optional in the CLOSE statement. The ON ERROR clause lets you specify an
alternative for program termination when a fatal error is encountered during processing of the CLOSE
statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

▪ Any uncommitted transactions begun within the current execution environment roll back.

CLOSESEQ statement

97

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

Example

CLEAR
 OPEN '','EX.BASIC' TO DATA ELSE STOP
 READ A FROM DATA, 'XYZ' ELSE STOP
 A<3>='*'
 WRITE A ON DATA, 'XYZ'
 CLOSE DATA

CLOSESEQ statement
Use the CLOSESEQ statement after opening and processing a file opened for sequential processing.
CLOSESEQ makes the file available to other users.

Syntax

CLOSESEQ file.variable [ON ERROR statements]

file.variable specifies a file previously opened with an OPENSEQ statement. If the file is neither
accessible nor open, the program terminates with a runtime error message. If file.variable is the null
value, the CLOSESEQ statement fails and the program terminates with a run-time error message.

The ON ERROR clause

The ON ERROR clause is optional in the CLOSESEQ statement. The ON ERROR clause lets you specify
an alternative for program termination when a fatal error is encountered during processing of the
CLOSESEQ statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

▪ Any uncommitted transactions begun within the current execution environment roll back.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

Chapter 1: Statements and functions

98

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

Example

In this example, the CLOSESEQ statement closes FILE.E, making it available to other users:

OPENSEQ 'FILE.E', 'RECORD1' TO FILE ELSE ABORT
READSEQ A FROM FILE THEN PRINT A ELSE STOP
CLOSESEQ FILE
END

closeSocket function
Use the closeSocket() function to close a socket connection.

Syntax

closeSocket(socket_handle)

Where socket_handle is the handle to the socket you want to close.

Return codes

The following table describes the status of each return code.

Return code Description

0 Success.
Non-zero See Socket function error return codes, on page 599.

CloseXMLData function
After you finish using an XML data, use CloseXMLData to close the dynamic array variable.

Syntax

Status=CloseXMLData(xml_data_handle)

Parameter

The following table describes each parameter of the syntax.

Parameter Description

xml_data_handle The name of the XML data file handle created by the OpenXMLData() function.

Return values

The return value is one of the following:

XML.SUCCESS: Success.

XML.ERROR: Failed

XML.INVALID.HANDLE2: Invalid xml_data_handle

COL1 function

99

Example

The following example illustrates use of the CloseXMLData function:

status = CloseXMLData(STUDENT_XML)

COL1 function
Use the COL1 function after the execution of a FIELD function to return the numeric value for the
character position that immediately precedes the selected substring. Although the COL1 function
takes no arguments, parentheses are required to identify it as a function.

The value obtained from COL1 is local to the program or subroutine executing the FIELD function.
Before entering a subroutine, the current value of COL1 in the main program is saved. The value of
COL1 in the subroutine is initialized as 0. When control is returned to the calling program, the saved
value of COL1 is restored.

If no FIELD function precedes the COL1 function, a value of 0 is returned. If the delimiter expression
of the FIELD function is an empty string or the null value, or if the string is not found, the COL1
function returns a 0 value.

Syntax

COL1 ()

Examples

The FIELD function in the following example returns the substring CCC. COL1() returns 8, the position
of the delimiter ($) that precedes CCC.

SUBSTRING=FIELD("AAABBBCCC",'$',3)
POS=COL1()
PRINT POS

In the following example, the FIELD function returns a substring of 2 fields with the delimiter (.) that
separates them: 4.5. COL1() returns 6, the position of the delimiter that precedes 4.

SUBSTRING=FIELD("1.2.3.4.5",'.',4,2)
POS=COL1()
PRINT POS

COL2 function
Use the COL2 function after the execution of a FIELD function to return the numeric value for the
character position that immediately follows the selected substring. Although the COL2 function takes
no arguments, parentheses are required to identify it as a function.

The value obtained from COL2 is local to the program or subroutine executing the FIELD function.
Before entering a subroutine, the current value of COL2 in the main program is saved. The value of
COL2 in the subroutine is initialized as 0. When control is returned to the calling program, the saved
value of COL2 is restored.

If no FIELD function precedes the COL2 function, a value of 0 is returned. If the delimiter expression
of the FIELD function is an empty string or the null value, or if the string is not found, the COL2
function returns a 0 value.

Chapter 1: Statements and functions

100

Syntax

COL2 ()

Examples

The FIELD function in the following example returns the substring 111. COL2() returns 4, the position
of the delimiter (#) that follows 111.

SUBSTRING=FIELD("111#222#3","#",1)
P=COL2()
PRINT P

In the following example, the FIELD function returns a substring of two fields with the delimiter (&)
that separates them: 7&8. COL2() returns 5, the position of the delimiter that follows 8.

SUBSTRING=FIELD("&7&8&B&","&",2,2)
S=COL2()
PRINT S

In the next example, FIELD() returns the whole string, because the delimiter (.) is not found. COL2()
returns 6, the position after the last character of the string.

SUBSTRING=FIELD("9*8*7",".",1)
Y=COL2()
PRINT Y

In the next example, FIELD() returns an empty string, because there is no tenth occurrence of the
substring in the string. COL2() returns 0 because the substring was not found.

SUBSTRING=FIELD("9*8*7","*",10)
O=COL2()
PRINT O

COMMAND.EDITOR
The COMMAND.EDITOR command enables or disables the Command Editor in PI/open. The
Command Editor provides you with facilities for simple command line editing and command stack
manipulation.

You can turn on the Command Editor in either insert or overlay mode, and you can specify a prompt to
use in place of the PERFORM colon prompt while command editing is enabled.

Note: If a single character only is expected by the prompt from a PERFORM command or by an
INFO or BASIC INPUT statement, the Command Editor is not enabled for that prompt.

Syntax

COMMAND.EDITOR [{ON | OFF} [INSERT | OVERLAY] [VERBS | ALL] “prompt”}]

COMMAND.EDITOR [OFF]

Parameters

The following table describes each parameter of the syntax.

COMMAND.EDITOR

101

Parameter Description

ON | OFF Enables or disables the Command Editor. If ON, you must specify the other
parameters. If OFF, disables the Command Editor and restores the PERFORM
colon prompt, if you previously used the command editor to define a
different prompt string.

INSERT | OVERLAY Specifies what mode to use - insert or overlay. INSERT is the default setting.
In insert mode, you can edit the command line or manipulate the stack while
at the PERFORM colon prompt.

VERBS | ALL Specifies what type of editing to perform. If VERBS, it enables the editing of
text in answer to a prompt from a PERFORM command. If ALL, it enables the
full editing facilities, including editing of text entered in response to an INFO
or BASIC INPUT statement.

"prompt" Specifies the prompt that you want to replace the PERFORM colon prompt
while the Command Editor is enabled. The prompt string must be enclosed in
single or double quotation marks.

Command Editor line editing functions

When the Command Editor is enabled, an ordinary text character is accepted and displayed on the line
that you are editing. You can use the keybindings supplied for your terminal or use the fundamental
keybindings to execute any line-editing command.

The Command Editor supports the following line editing functions.

Function Description

Backspace The backspace function has no effect if the cursor is already at the beginning
of the line.

In insert mode, the backspace function moves one character position to the
left and deletes the character in the new cursor position. Any text on the line
to the right of the cursor is moved one position to the left with the cursor.

In overlay mode, the backspace function replaces the character to the left of
the cursor with a space. Text to the right of the cursor does not move.

Cursor left Moves the cursor one position to the left unless the cursor is already at the
beginning of the line.

Cursor right Moves the cursor one position to the right unless the cursor is already at the
end of the line.

Next word Moves the cursor to the beginning of the next word or to the end of the
line if there is no next word. Any combination of alphabetic characters is
considered a word. Any nonalphabetic character terminates a word.

Previous word Moves the cursor to the first character of the word that begins to the left of
the current cursor position. It has no effect if the cursor is at the beginning of
the line.

Toggle cursor start/
end of line

Moves the cursor to the beginning or end of the line, depending on the
current cursor position within the line. The cursor always moves to
whichever position is farthest from the current position.

Toggle insert/overlay
mode

Switches between insert and overlay mode.

Insert space Inserts a space at the current cursor position. Any text to the right of the
cursor is moved to the right. Its main use is in overlay mode, in which typing
a space overwrites the current character.

Chapter 1: Statements and functions

102

Function Description

Delete character Deletes the character at the current cursor position. All text to the right of the
cursor is moved to the left. It has no effect if the cursor is at the end of the
line.

Delete word Deletes the text from the current cursor position to the end of the first word
that terminates to the right of that position. It has no effect if the cursor is at
the end of the line.

Delete line Deletes the current line, and places the cursor at the start of the resulting
blank line.

Truncate line Deletes text from the current cursor position to the end of the line. It has no
effect if the cursor is at the end of the line.

Exchange previous
two characters

Swaps the positions of the two characters that immediately precede
the current cursor position. If the cursor is placed on the first or second
character of the line, the function has no effect.

Restore deleted text If a delete word, delete line, or truncate line function has been used, this
function restores the display of the deleted text beginning at the current
cursor position. The cursor is placed immediately after the end of the restore
text. Any text that was to the right of the current cursor position is moved to
the right by the restored text.

If a delete word, delete line, or truncate line function has not yet been used,
this function has no effect.

Refresh Rewrites the current command line on a new display line. It is useful when
the current screen display has been disturbed, for example, by an operator
message.

Convert line to
uppercase

Redisplays the command line with each lowercase alphabetic character
changed to an uppercase character. The cursor is then placed at the end of
the line.

Cancel Discards the line that you are editing and returns you to the PERFORM colon
prompt. This function has no effect if you are editing input to a PERFORM
command prompt or input into an INFO or BASIC INPUT statement.

Stack manipulation functions

The PERFORM command stack retains the last 98 commands numbered from 01, the most recent
command, to 98. The command numbered 00 is the current line. The PERFORM command stack is a
ring. When you cycle through the stack of the 98th command, the first command is then shown.

The following stack manipulation functions enable you to display, and recall commands from your
stack so that you can use the Command Editor's line editing capabilities to edit those commands, if
required, before re-executing them. All of the line editing functions described in the previous section
are available to make changes to commands from your stack.

Re-execution copies the command to the bottom off the stack and places you at the bottom of the
stack, unless if you execute command 01. In this case, no new stack entry is made even though you
edited the command.

Function Description

Cancel When you are manipulating the stack, the Cancel function clears the
command line, repositions to the bottom of the PERFORM command stack,
and returns you to the PERFORM colon prompt. You can use this function
to escape from a Next command or Previous command sequence without
executing a command, and alto to abort Search and Goto commands.

COMMAND.EDITOR

103

Function Description

Cycle up command
stack function

Allows you display your PERFORM command stack one command at a time
starting at the command numbered 01 and displaying the next command in
ascending numerical order each time the function is executed.

Cycle down command
stack function

Allows you to display the PERFORM command stack one command at a time
starting at the command numbered 98 and displaying the next command in
descending numerical order each time the function is executed.

Scroll up command
stack

Displays the previous 20 PERFORM stack commands in ascending numerical
order each time the function is executed. The stack is treated as a ring.
During a consecutive sequence of scroll commands, the current position
within the command stack is recorded, so that you can scroll through the
entire stack. Any command other than a scroll command returns you to the
bottom of the PERFORM command stack.

Scroll down
command stack

Displays 20 PERFORM stack commands in descending numerical order each
time the function is executed. It works similarly to the scroll up command
stack function.

Goto command
number

Prompts you for a command number. If you supply a valid number, the
command is displayed for editing and/or execution. If the supplied number is
invalid, an error message is displayed, and no further action is taken. Use the
Cancel function to exit from the Goto function.

Search command
stack

Prompts you for a search string, and conducts a case-sensitive search of the
PERFORM command stack for a command which contains that string. The
stack is treated as a ring, so that the complete stack is scanned if necessary.
If a match is found, the command containing the search string is displayed
for editing and/or execution. If no match is found, a warning message is
displayed.

If you press only Return in response to the search string prompt, the previous
search string is used again.

Use the Cancel function to exit from the Search function.

Stack commands

The following table provides a summary of stack commands that you might need when editing the
stack.

Command Description

.D[n] Deletes a command or paragraph from the stack. n is the command
number that you want to delete. If n is omitted, command number
01 is deleted by default.

.? Displays a list of the stack commands.

.D[paragraph.name |
command.name]

Deletes a sentence or paragraph from the VOC file. paragraph.name
and command.name are the names of the paragraph or command
to be deleted.

Chapter 1: Statements and functions

104

Command Description

.I[n] [any.text] Inserts a command into any location in the stack. You can insert a
new command into the PERFORM command stack by specifying ? at
the end of the command to be inserted or using the .I command.
Inserting a command into the stack is often used to place a
command within a group of related commands that you might want
to save in the VOC as a paragraph.

If ? is specified at the end of the command to be inserted, the
command is inserted into the stack as command number 01.

n is the command stack number that you want the inserted text
to become. If n is omitted, any.text is inserted into the stack as
command number 01 by default. A space must appear between the
command stack number and the text that you want to insert.

Commands already in the stack with a number equal to or greater
than the number inserted have their number increased by one.
All commands in the stack with numbers lower than the number
inserted retain their original numbers.

The .I command is often used with the .S command to place
several stack commands into a paragraph in the VOC.

.L [paragraph.name |
command.name]

Lists a paragraph or sentence from the VOC. paragraph.name and
command.name are the record IDs of the paragraph or command in
the VOC to be displayed.

.R[n]

or

.R[paragraph.name |
sentence.name]

Recalls or repositions to a command number 01 or paragraph. n is
the stack number of the command that you want to recall. If you
omit n, command number 01 is the default.

The command .R and .R1 do not change the order of commands in
the stack. Stack command number 01 is not rewritten.

Additionally, the .R command can be used to place a sentence or
group of commands from a stored paragraph into the stack using
the second syntax listed.

.S name [s# [e#]] Saves the command or paragraph in the VOC as a sentence or
paragraph. name is the name you are assigning to the command
or group of commands that you want to save. If you only save one
line, it is saved as a sentence, not as a paragraph. The command
line number that you want to start with is s#, and the command line
number you want to end with is e#.

COMMIT statement
Use the COMMIT statement to commit all file I/O changes made during a transaction. The WORK
keyword is provided for compatibility with SQL syntax conventions; it is ignored by the compiler.

Syntax

COMMIT [WORK] [THEN statements] [ELSE statements]

A transaction includes all statements between a BEGIN TRANSACTION statement and the COMMIT
statement or ROLLBACK statement that ends the transaction. Either a COMMIT or a ROLLBACK
statement ends the current transaction.

The COMMIT statement can either succeed or fail.

COMMON statement

105

When a subtransaction commits, it makes the results of its database operations accessible to its
parent transaction. The subtransaction commits to the database only if all of its predecessors up to
the top-level transaction are committed.

If a top-level transaction succeeds, all changes to files made during the active transaction are
committed to disk.

If a subtransaction fails, all its changes are rolled back and do not affect the parent transaction. If the
top-level transaction fails, none of the changes made during the active transaction are committed,
and the database remains unaffected by the failed transaction. This ensures that the database is
maintained in a consistent state.

If the COMMIT statement succeeds, the THEN statements are executed; any ELSE statements are
ignored. If COMMIT fails, any ELSE statements are executed. After the THEN or the ELSE statements are
executed, control is transferred to the statement following the next END TRANSACTION statement.

All locks obtained during a transaction remain in effect for the duration of the active transaction;
they are not released by a RELEASE statement, WRITE statements, WRITEV statement, or MATWRITE
statements that are part of the transaction. The parent transaction adopts the acquired or promoted
locks. If a subtransaction rolls back, any locks that have been acquired or promoted within that
transaction are demoted or released.

The COMMIT statement that ends the top-level transaction releases locks set during that transaction.
Locks obtained outside the transaction are not affected by the COMMIT statement.

If no transaction is active, the COMMIT statement generates a runtime warning, and the ELSE
statements are executed.

Example

This example begins a transaction that applies locks to rec1 and rec2. If no errors occur, the COMMIT
statement ensures that the changes to rec1 and rec2 are written to the file. The locks on rec1 and rec2
are released, and control is transferred to the statement following the END TRANSACTION statement.

BEGIN TRANSACTION
 READU data1 FROM file1,rec1 ELSE ROLLBACK
 READU data2 FROM file2,rec2, ELSE ROLLBACK
 .
 .
 .
 WRITE new.data1 ON file1,rec1 ELSE ROLLBACK
 WRITE new.data2 ON file2,rec2 ELSE ROLLBACK
 COMMIT WORK
 END TRANSACTION

The update record lock on rec1 is not released on completion of the first WRITE statements but on
completion of the COMMIT statement.

COMMON statement
Use the COMMON statement to provide a storage area for variables. Variables in the common area are
accessible to main programs and external subroutines. Corresponding variables can have different
names in the main program and in external subroutines, but they must be defined in the same order.
The COMMON statement must precede any reference to the variables it names.

Syntax

COM[MON] [/name/] variable [,variable …]

Chapter 1: Statements and functions

106

A common area can be either named or unnamed. An unnamed common area is lost when the
program completes its execution and control returns to the UniVerse command level. A named
common area remains available for as long as the user remains in the UniVerse environment.

The common area name can be of any length, but only the first 31 characters are significant.

Arrays can be dimensioned and named with a COMMON statement. They can be redimensioned
later with a DIMENSION statement, but the COMMON statement must appear before the DIMENSION
statement. When an array is dimensioned in a subroutine, it takes on the dimensions of the array in
the main program regardless of the dimensions stated in the COMMON statement. For a description of
dimensioning array variables in a subroutine, see the CALL statement, on page 84.

When programs share a common area, use the $INCLUDE statement to define the common area in
each program.

Example

Program:

COMMON NAME, ADDRESS (15, 6), PHONE

Subroutine:

COMMON A, B (15, 6), C

In this example the variable pairs NAME and A, ADDRESS and B, PHONE and C are stored in the same
memory location.

COMPARE function
Use the COMPARE function to compare two strings and return a numeric value indicating the result.

Syntax

COMPARE (string1, string2 [, justification])

string1, string2 specify the strings to be compared.

justification is either L for left-justified comparison or R for right-justified comparison. (Any other value
causes a run-time warning, and 0 is returned.)

The comparison can be left-justified or right-justified. A right-justified comparison compares numeric
substrings within the specified strings as numbers. The numeric strings must occur at the same
character position in each string. For example, a right-justified comparison of the strings AB100
and AB99 indicates that AB100 is greater than AB99 since 100 is greater than 99. A right-justified
comparison of the strings AC99 and AB100 indicates that AC99 is greater since C is greater than B.

If neither L nor R is specified, the default comparison is left-justified.

The following list shows the values returned:

Value Description

–1 string1 is less than string2.
0 string1 equals string2 or the justification expression is not valid.
1 string1 is greater than string2.

CONVERT function

107

If NLS is enabled, the COMPARE function uses the sorting algorithm and the Collate convention
specified in the NLS.LC.COLLATE file in order to compare the strings. For more information about
conventions, see the NLS Guide.

Examples

In the following example, the strings AB99 and AB100 are compared with the right-justified option and
the result displayed. In this case the result displayed is –1.

PRINT COMPARE('AB99','AB100','R')

An example in NLS mode follows. It compares the strings anilno and anillo, returning the result as 1. It
sets the locale to Spanish and compares the strings again. In this case, the result displayed is –1.

$INCLUDE UNIVERSE.INCLUDE UVNLSLOC.H
x=SETLOCALE(UVLC$ALL, 'OFF')
PRINT COMPARE('anilno', 'anillo', 'L')
x=SETLOCALE(UVLC$ALL, 'ES-SPANISH')
PRINT COMPARE('anilno', 'anillo', 'L')

This is the program output:

1
 -1

The CONTINUE statement is a loop-controlling statement. For syntax details, see the FOR statement,
on page 181 and the LOOP statement, on page 254.

CONVERT function
Use the CONVERT function to return a copy of variable with every occurrence of specified characters
in variable replaced with other specified characters. Every time a character to be converted appears in
variable, it is replaced by the replacement character.

Syntax

CONVERT (expression1, expression2, variable)

expression1 specifies a list of characters to be converted. expression2 specifies the corresponding
replacement characters. The first character of expression2 replaces all instances of the first character
of expression1, the second character of expression2 replaces all instances of the second character of
expression1, and so on.

If expression2 contains more characters than expression1, the extra characters are ignored. If
expression1 contains more characters than expression2, the characters with no corresponding
expression2 characters are deleted from the result.

If variable is the null value, null is returned. If either expression1 or expression2 is the null value, the
CONVERT function fails and the program terminates with a run-time error message.

The CONVERT function works similarly to the CONVERT statement.

Example

A="NOW IS THE TIME"
PRINT A
A=CONVERT('TI','XY',A)
PRINT A

Chapter 1: Statements and functions

108

A=CONVERT('XY','T',A)
PRINT A

This is the program output:

NOW IS THE TIME
NOW YS XHE XYME
NOW S THE TME

CONVERT statement
Use the CONVERT statement to replace every occurrence of specific characters in a string with other
characters. Every time the character to be converted appears in the string, it is replaced by the
replacement character.

Syntax

CONVERT expression1 TO expression2 IN variable

expression1 specifies a list of characters to be converted. expression2 specifies a list of replacement
characters. The first character of expression2 replaces all instances of the first character of expression1,
the second character of expression2 replaces all instances of the second character of expression1, and
so on.

If expression2 contains more characters than expression1, the extra characters are ignored. If
expression1 contains more characters than expression2, the characters with no corresponding
expression2 characters are deleted from the variable.

If variable is the null value, null is returned. If either expression1 or expression2 evaluates to the null
value, the CONVERT statement fails and the program terminates with a run-time error message.

Example

A="NOW IS THE TIME"
PRINT A
CONVERT 'TI' TO 'XY' IN A
PRINT A
CONVERT 'XY' TO 'T' IN A
PRINT A

This is the program output:

NOW IS THE TIME
NOW YS XHE XYME
NOW S THE TME

COS function
Use the COS function to return the trigonometric cosine of an angle. expression is an angle expressed
as a numeric value in degrees. The COS function is the inverse of the ACOS function.

Values outside the range of 0 to 360 degrees are interpreted as modulo 360. Numbers greater than
1E17 produce a warning message and 0 is returned. If expression evaluates to the null value, null is
returned.

COSH function

109

Syntax

COS (expression)

Example

PRINT "COS(45) = " : COS(45)
END

This is the program output:

COS(45) = 0.7071

COSH function
Use the COSH function to return the hyperbolic cosine of expression. expression must be a numeric
value.

If expression evaluates to the null value, null is returned.

Syntax

COSH (expression)

Example

PRINT "COSH(2) = ":COSH(2)

This is the program output:

COSH(2) = 1.0006

COUNT function
Use the COUNT function to return the number of times a substring is repeated in a string value.

Syntax

COUNT (string, substring)

string is an expression that evaluates to the string value to be searched. substring is an expression that
evaluates to the substring to be counted. substring can be a character string, a constant, or a variable.

If substring does not appear in string, a 0 value is returned. If substring is an empty string, the number
of characters in string is returned. If string is the null value, null is returned. If substring is the null
value, the COUNT function fails and the program terminates with a run-time error message.

By default, each character in string is matched to substring only once. Therefore, when substring is
longer than one character and a match is found, the search continues with the character following the
matched substring. No part of the matched string is recounted toward another match. For example,
the following statement counts two occurrences of substring TT and assigns the value 2 to variable C:

C = COUNT ('TTTT', 'TT')

Chapter 1: Statements and functions

110

PICK, IN2, and REALITY flavors

In PICK, IN2, and REALITY flavors, the COUNT function continues the search with the next character
regardless of whether it is part of the matched string. For example, the following statement counts
three occurrences of substring TT:

C = COUNT ('TTTT', 'TT')

Use the COUNT.OVLP option of the $OPTIONS statement to get this behavior in IDEAL and
INFORMATION flavor accounts.

Example

A=COUNT('ABCAGHDALL','A')
PRINT "A= ",A
*
Z='S#FF##G#JJJJ#'
Q=COUNT(Z,'#')
PRINT "Q= ",Q
*
Y=COUNT('11111111','11')
PRINT "Y= ",Y

This is the program output:

A= 3
Q= 5
Y= 4

COUNTS function
Use the COUNTS function to count the number of times a substring is repeated in each element of a
dynamic array. The result is a new dynamic array whose elements are the counts corresponding to the
elements in dynamic.array.

Syntax

COUNTS (dynamic.array, substring)

CALL -COUNTS (return.array, dynamic.array, substring)

CALL !COUNTS (return.array, dynamic.array, substring)

dynamic.array specifies the dynamic array whose elements are to be searched.

substring is an expression that evaluates to the substring to be counted. substring can be a character
string, a constant, or a variable.

Each character in an element is matched to substring only once. Therefore, when substring is longer
than one character and a match is found, the search continues with the character following the
matched substring. No part of the matched element is recounted toward another match.

If substring does not appear in an element, a 0 value is returned. If substring is an empty string, the
number of characters in the element is returned. If substring is the null value, the COUNTS function
fails and the program terminates with a runtime error message.

If any element in dynamic.array is the null value, null is returned.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

CREATE statement

111

PICK, IN2, and REALITY flavors

In PICK, IN2, and REALITY flavors, the COUNTS function continues the search with the next character
regardless of whether it is part of the matched string. Use the COUNT.OVLP option of the $OPTIONS
statement to get this behavior in IDEAL and INFORMATION flavor accounts.

Example

ARRAY="A":@VM:"AA":@SM:"AAAAA"
PRINT COUNTS(ARRAY, "A")
PRINT COUNTS(ARRAY, "AA")

This is the program output:

1V2S5
 0V1S2

CREATE statement
Use the CREATE statement after an OPENSEQ statement to create a record in a type 1 or type
19 UniVerse file or to create a UNIX or DOS file. CREATE creates the record or file if the OPENSEQ
statement fails. An OPENSEQ statement for the specified file.variable must be executed before the
CREATE statement to associate the path or record ID of the file to be created with the file.variable. If
file.variable is the null value, the CREATE statement fails and the program terminates with a runtime
error message.

Use the CREATE statement when OPENSEQ cannot find a record or file to open and the next operation
is to be a NOBUF statement, READSEQ statement, or READBLK statement. You need not use the
CREATE statement if the first file operation is a WRITESEQ statement, since WRITESEQ creates the
record or file if it does not exist.

If the record or file is created, the THEN statements are executed, and the ELSE statements are
ignored. If no THEN statements are specified, program execution continues with the next statement.

If the record or file is not created, the ELSE statements are executed; any THEN statements are
ignored.

Syntax

CREATE file.variable {THEN statements [ELSE statements] | ELSE
statements}

File buffering

Normally UniVerse uses buffering for sequential input and output operations. Use the NOBUF
statement after an OPENSEQ statement to turn off buffering and cause all writes to the file to be
performed immediately. For more information about file buffering, see the NOBUF statement.

Example

In the following example, RECORD4 does not yet exist. When OPENSEQ fails to open RECORD4 to the
file variable FILE, the CREATE statement creates RECORD4 in the type 1 file FILE.E and opens it to the
file variable FILE.

OPENSEQ 'FILE.E', 'RECORD4' TO FILE
 ELSE CREATE FILE ELSE ABORT
 WEOFSEQ FILE

Chapter 1: Statements and functions

112

 WRITESEQ 'HELLO, UNIVERSE' TO FILE ELSE STOP

createCertificate function
The createCertificate() function generates a certificate. The certificate can either be a self-
signed certificate as a root CA that can then be used later to sign other certificates, or it can be a CA
signed certificate. The generated certificate conforms to X509V3 standard.

Syntax

createCertificate(action, req, signKey, keyPass, CAcert, days,
extensions, certOut, signAlg)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

action 1 - Creating a self-signed root certificate (SSL_CERT_SELF_SIGN)

2 - Creating an intermediate CA certificate (SSL_CERT_CA_SIGN)

3 - Creating a server/client certificate (SSL_CERT_LEAF_SIGN)
req A string containing the certificate signing request file name.
signKey A string containing the private key file name.
keyPass A string containing the pass phrase to protect the private key.
CAcert A string containing the CA certificate.
days The number of days the certificate is valid for. The default is 365 days.
extensions A string containing extension specifications.
certOut A string containing the generated certificate file.
signAlg Allows users to specify a signing digest algorithm. The value can

beany digest algorithm supported by OpenSSL. For example, MD5,
SHA1,SHA224, SHA256, SHA384, SHA512 or SHA3 related algorithms.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.
1 Cannot read certificate request file.
2 Cannot read the key file.
3 Cannot read the CA certificate file.
4 Cannot generate the certificate.

As input, a certificate request file must be specified by req. Three actions can be chosen:

▪ Creating a self-signed root certificate

▪ Creating an intermediate CA certificate

▪ Creating a server/client certificate

createCertRequest function

113

For self-signed root certificates, a key file must be specified by signKey. For the other two actions, a
CA certificate file must be specified by CAcert, along with the CA private key specified by signKey. The
output certificate file is specified by certOut. The format for these files should all be in PEM format.

The difference between intermediate CA certificates and server/client certificates is that the
intermediate CA certificate can be used to sign other certificates, while a server/client certificate
cannot be used to sign other certificates.

The days parameter specifies the number of days the generated certificate is valid. The certificate is
valid starting from the current date until the number of days specified expires. If an invalid days value
is provided (0 or negative) the default value of 365 (one year) will be used.

Note: This function is provided mainly for the purpose of enabling application development and
testing. As such, the certificate generated contains only a minimum amount of information and
does not allow all permissible extensions specified by the X509 standard that are supported by
many other vendors. You can use XAdmin. It is recommended that you implement a complete PKI
solution partnered with a reputed PKI solution vendor.

createCertRequest function
The createCertRequest() function generates a PKCS #10 certificate request from a private key in
PKCS #8 form and a set of user specified data. The request can be sent to a CA or used as a parameter
to createCertificate() to obtain an X.509 public key certificate.

Syntax

createCertRequest(key, inFormat, keyLoc, algorithm, digest, passPhrase,
subjectData, outFile, outFormat)

The private key and its format, type, algorithm, and pass phrase are specified the same.

The certificate request will typically contain the information described in the following table.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

key A string containing the key or name of the file storing the key.
inFormat The key format.

1 - PEM (SSL_FMT_PEM)

2 - DER (SSL_FMT_DER)
keyLoc 1 - Put the key into string privKey/pubKey (SSL_LOC_STRING).

2 - Put the key into a file (SSL_LOC_FILE).
algorithm Flag

1- RSA key (SSL_KEY_RSA)

2- DSA key (SSL_KEY_DSA)

Chapter 1: Statements and functions

114

Parameter Description

digest 1 - MD5 (SSL_DIGEST_MD5)

2 - SHA1 (SSL_DIGEST_SHA1)

3 - SHA224 (SSL_DIGEST_SHA224)

4 - SHA256 (SSL_DIGEST_SHA256)

5 - SHA384 (SSL_DIGEST_SHA384)

6 - SHA512 (SSL_DIGEST_SHA512)

7 - SHA512-224 (SSL_DIGEST_SHA512_224)

8 - SHA512-256 (SSL_DIGEST_SHA512_256)

9 - SHA3-224 (SSL_DIGEST_SHA3_224)

10 - SHA3-256 (SSL_DIGEST_SHA3_256)

11 - SHA3-384 (SSL_DIGEST_SHA3_384)

12 - SHA3-512 (SSL_DIGEST_SHA3_512)
passPhrase A string storing the passPhrase to protect the private key.
subjectData The requester’s identification information.
outFile A string containing the path name of the file where the certificate

request is stored. By convention, this file should have a .req as its
extension.

outFormat The generated certificate format.

1 - PEM (SSL_FMT_PEM)

2 - DER (SSL_FMT_DER)

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.
1 Private key file cannot be opened.
2 Unrecognized key or certificate format.
3 Unrecognized key type.
4 Unrecognized encryption algorithm.
5 Unrecognized key (corrupted key or algorithm mismatch).
6 Invalid pass phrase.
7 Invalid subject data (illegal format or unrecognized attribute, and so forth).
8 Invalid digest algorithm.
9 Output file cannot be created.
99 Cert request cannot be generated.

The request can be sent to a CA or used as a parameter to createCertificate() to obtain an X.509
public key certificate.

The private key and its format, type, algorithm and pass phrase are specified the same.

The certificate signing request typically contains the information described in the following table.

createRequest function

115

Item Description

Version Defaults to 0.
Subject The certificate holder’s identification data. This includes country,

state/province, locality (city), organization, unit, common name, email
address, and so on.

Public key The key’s algorithm (RSA or DSA) and value.
Signature The requester’s signature, (signed by the private key).

The subject data must be provided by the requester through the dynamic array, subjectData. It
contains @FM separated attributes in the form of “attri=value”.

The commonly used subjectData attributes are described in the following table.

Item Description Example

C Country C=US
ST State ST=Colorado
L Locality L=Denver
O Organization O=MyCompany
OU Organization Unit OU=Sales
CN Common Name CN=service@mycompany.com
Email Email Address Email=john.doe@mycompany.com

Be aware that since the purpose of a certificate is to associate the certificate’s bearer with his or
her identity, in order for the outside party to verify the identity of the certificate’s holder, some
recognizable characteristics should be built between the holder and verifier. For example, it is a
general practice that a server’s certificate uses its DNS name (such as myServer.com) as its common
name (CN).

Digest specifies what algorithm is going to be used to generate a Message Authentication Code (MAC)
which will then be signed with the provided private key as a digital signature as part of the request.
Currently only two algorithms, MD5 and SHA1, are supported. SHA1 is recommended.

Note: For a DSA request, SHA1 will always be used.

For more information on certificates, see the references for X.509 and PKCS #10, and PKCS # 12.

createRequest function
The createRequest function creates an HTTP request and returns a handle to the request.

Syntax

createRequest(URL, http_method, request_handle)

URL is a string containing the URL for a resource on a web server. An accepted URL must follow
the specified syntax defined in RFC 1738. The general format is: http://<host>:<port>/<path>?
<searchpart>. The host can be either a name string or IP address. The port is the port number to
connect to, which usually defaults to 80 and is often omitted, along with the preceding colon. The
path tells the web server which file you want, and, if omitted, means “home page” for the system. The
searchpart can be used to send additional information to a web server.

http_method is a string which indicates the method to be performed on the resource. See the table
below for the available (case-sensitive) methods.

Chapter 1: Statements and functions

116

request_handle is a handle to the request object.

The following table describes the available methods for http_method.

Method Description

GET Retrieves whatever information, in the form of an entity, identified by the
Request-URI. If the Request-URI refers to a data-producing process, it is the
produced data which shall be returned as the entity in the response and not
the source text of the process, unless that text happens to be the output of the
process.

POST [:<MIME-type>] For this method, it can also have an optional MIME-type to
indicate the content type of the data the request intends to send. If no MIME-
type is given, the default content type will be “application/x-www-form-
urlencoded.” Currently, only “multipart/form-data” is internally supported, as
described in function addRequestParameter() and submitRequest(), although
other “multipart/*” data can also be sent if the user can assemble it on his/
her own. (The multipart/form-data format itself is thoroughly described in RFC
2388).

HEAD The HEAD method is identical to GET except that the server MUST NOT return
a message-body in the response. The metainformation contained in the HTTP
headers in response to a HEAD request SHOULD be identical to the information
sent in response to a GET request. This method can be used for obtaining
metainformation about the entity implied by the request without transferring
the entity-body itself. This method is often used for testing hypertext links for
validity, accessibility, and recent modification.

OPTIONS The OPTIONS method represents a request for information about the
communication options available on the request/response chain identified by
the Request-URI. This method allows the client to determine the options and/or
requirements associated with a resource, or the capabilities of a server, without
implying a resource action or initiating a resource retrieval. HTTP 1.1 and later.

DELETE The DELETE method requests that the origin server delete the resource
identified by the Request-URI. HTTP 1.1 and later.

TRACE The TRACE method is used to invoke a remote, application-layer loop- back of
the request message. HTTP 1.1 and later.

PUT The PUT method requests that the enclosed entity be stored under the supplied
Request-URI. HTTP 1.1 and later but not supported.

CONNECT /* HTTP/1.1 and later but not supported */

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid URL (Syntactically).
2 Invalid method (For HTTP 1.0, only GET/POST/HEAD)

createSecureRequest function
The createSecureRequest function behaves exactly the same as the createRequest()
function, except for the fourth parameter, a handle to a security context, which is used to associate the

createSecureRequest function

117

security context with the request. If the URL does not start with “https” then the parameter is ignored.
If the URL starts with “https” but an invalid context handle or no handle is provided, the function will
abort and return with an error status.

Syntax

createSecureRequest(URL, http_method, request_handle, security_context)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

URL A string containing the URL for a resource on a web server. An accepted URL
must follow the specified syntax defined in RFC 2818. The general format is:
https://<host>:<port>/<path>?<searchpart>.

The host can be either a name string or IP address. The port is the port number
to connect to, which usually defaults to 443 and is often omitted, along with
the preceding colon. The path tells the web server which file you want, and, if
omitted, means “home page” for the system. The searchpart can be used to
send additional information to a web server.

http_method A string which indicates the method to be performed on the resource. See the
table below for the available (case-sensitive) methods.

request_handle A handle to the request object.
securityContext A handle to the security context.

The following table describes the available methods for http_method.

Method Description

GET Retrieves whatever information, in the form of an entity, identified by the
Request-URI. If the Request-URI refers to a data-producing process, it is the
produced data which shall be returned as the entity in the response and not
the source text of the process, unless that text happens to be the output of the
process.

POST [:<MIME-type>] For this method, it can also have an optional MIME-type to
indicate the content type of the data the request intends to send. If no MIME-
type is given, the default content type will be “application/x-www-form-
urlencoded”. Currently, only “multipart/form-data” is internally supported, as
described in function addRequestParameter() and submitRequest(), although
other “multipart/* data can also be sent if the user can assemble it on his/her
own. (The multipart/form-data format itself is thoroughly described in RFC
2388).

HEAD The HEAD method is identical to GET except that the server MUST NOT return
a message-body in the response. The metainformation contained in the HTTP
headers in response to a HEAD request SHOULD be identical to the information
sent in response to a GET request. This method can be used for obtaining
metainformation about the entity implied by the request without transferring
the entity-body itself. This method is often used for testing hypertext links for
validity, accessibility, and recent modification.

Chapter 1: Statements and functions

118

Method Description

OPTIONS The OPTIONS method represents a request for information about the
communication options available on the request/response chain identified by
the Request-URI. This method allows the client to determine the options and/or
requirements associated with a resource, or the capabilities of a server, without
implying a resource action or initiating a resource retrieval. HTTP 1.1 and later.

DELETE The DELETE method requests that the origin server delete the resource
identified by the Request-URI. HTTP 1.1 and later.

TRACE The TRACE method is used to invoke a remote, application-layer loop- back of
the request message. HTTP 1.1 and later.

PUT The PUT method requests that the enclosed entity be stored under the supplied
Request-URI. HTTP 1.1 and later but not supported.

CONNECT /* HTTP/1.1 and later but not supported */

Note: Prior to UniVerse 11.3.2, the colon (:) character in a BASIC CallHTTP request would be
encoded to '%3A'. This could cause failures when connecting to certain sites. The default behavior
now is to not encode the colon character.If there is a requirement to encode the colon character,
the environment variable COLON_ENCODES can be set.

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid URL (Syntactically).
2 Invalid method (For HTTP 1.0, only GET/POST/HEAD)

Note: If URL does include a searchpart, it must be in its encoded format (space is converted
into +, and other non-alphanumeric characters are converted into %HH format. See
addRequestParameter() for more details). However, host and path are allowed to have these
“unsafe” characters. UniVerse BASIC will encode them before communicating with the web server.

createSecurityContext function
The createSecurityContext() function creates a security context and returns a handle to the
context.

Syntax

createSecurityContext(context, “protocol version:[rule],...”)

A security context is a data structure that holds all aspects of security characteristics that the
application intends to associate with a secured connection. Specifically, the following information can
be held for each context:

▪ Protocol version

▪ Sender’s certificate to be sent to the peer

▪ Sender’s private key for signature and key exchange

▪ Issuer’s certificate or certificate chain to be used to verify incoming certificate

createSecurityContext function

119

▪ Certificate verification depth, strength and other rules

▪ Certificate Revocation List

▪ Flag to perform client authentication (useful for server socket only)

▪ Context ID and time stamp

For any given connection, not all of the information is required.

A version (SSL version 2 or 3 or TLS version 1) can be associated with a security context. It specifies
what protocol or protocols are allowed for an SSL connection using the security context record. The
version string is a list of version specifications separated by commas. Each version specification
contains a protocol version and an optional rule, separated by a colon.

Currently there are six supported protocol versions: SSLv2, SSLv3, TLSv1, TLSv1.1, TLSv1.2 and
TLSv1.3, listed in order of security strength. For all practical purposes, SSLv2 should never be used. To
comply with the latest regulations, only TLSv.1.2 and TLSv.1.3 should be used.

If the version contains only one protocol version without a rule, it means the minimal protocol
allowed. For example, createSecurityContext(myctx, "TLSv1”) means that the allowed
protocols are TLSv1, TLSv1.1, TLSv1.2 and TLSv1.3. If no version is provided (for example, a null string
is specified), the default version will be SSLv3, TLSv1, TLSv1.1, TLSv1.2 and TLSv1.3.

Rule example 1

In this example, SSLv3, TLSv1.1 and TLSv1.2 are allowed:

createSecurityContext(myctx, "SSLv3:min,TLSv1:no,TLSv1.2:max")

Rule example 2

In this example, only TLSv1.1 is allowed:

createSecurityContext(myctx, "TLSv1.1:only")

Note that the actual protocols allowed during an SSL session are determined at runtime based on the
versions specified by the createSecurityContext() function and the SSL_PROTOCOLS value
defined in the uvconfig (UniVerse) or udtconfig (UniData) file. Only protocol strings that are
specified by both the Basic API and the configuration files are considered.

For example, if the SSL_PROTOCOLS parameter contains “TLSv1.1,TLSv1.2”, the actual protocols
allowed during negotiation are TLSv1.1 and TLSv1.2, if the SCR created in rule example1 (above) is
used.

In rule example 2 (above), the actual protocol allowed is “TLSv1.1”.

For secure socket connections and socket APIs, openSecureSocket() or
initSecureServerSocket() must be called to associate a security context with a connection by a
client or a server, respectively.

For secure HTTP connection (https), you must supply a valid context handle with the
createSecureRequest() function.

All aspects of a security context can be changed by the APIs described in the following table.

Parameters

Parameter Description

context The security context handle.

Chapter 1: Statements and functions

120

Parameter Description

protocol version A string with the following values:

SSLv2

SSLv3

TLSv1

TLSv1.1 (UniVerse 11.2.5 or later and UniData 8.1 or later)

TLSv1.2 (UniVerse 11.2.5 or later and UniData 8.1 or later)

TLSv1.3 (UniVerse 11.3.2 or later and UniData 8.2 or later)
rule Defines the minimum and maximum protocol value. Available rule

options are:

Min - The minimum version, from the specified version to the highest
version.

Max - The maximum version, from the lowest version to the specified
version.

No - Do not use the specified version.

Only - Use only the specified version.

Return code status

Return code Status

0 Success.
1 Security context could not be created.
2 Invalid version.

CRT statement
Use the CRT statement to print data on the screen, regardless of whether a PRINTER ON statement has
been executed. The syntax for print.list is the same as for a PRINT statement.

Syntax

CRT [print.list]

print.list can contain any BASIC expression. The elements of the list can be numeric or character
strings, variables, constants, or literal strings; the null value, however, cannot be output. The list can
consist of a single expression or a series of expressions separated by commas (,) or colons (:) for
output formatting. If no print.list is designated, a blank line is output.

Expressions separated by commas are printed at preset tab positions. You can use multiple commas
together to cause multiple tabulation between expressions.

Expressions separated by colons are concatenated. That is, the expression following the colon is
printed immediately after the expression preceding the colon. To print a list without a LINEFEED and
RETURN, end the print.list with a colon (:).

The CRT statement works similarly to the DISPLAY statement, on page 137.

DATA statement

121

If NLS is enabled, the CRT statement uses the terminal map in order to print. For more information
about maps and devices, see the NLS Guide.

Example

CRT "This can be used to print something on the"
CRT "terminal while"
CRT "the PRINTER ON statement is in effect."

The program output on the terminal is:

This can be used to print something on the
terminal while
the PRINTER ON statement is in effect.

DATA statement
Use the DATA statement to place values in an input stack. These values can be used as responses to
INPUT statements executed later in the program or in a subroutine (see the INPUT statement). The
values can also serve as responses to UniVerse commands that request input.

Syntax

DATA expression [,expression …]

Expressions used in DATA statements can be numeric or character string data. The null value cannot
be stored in the input stack. If expression evaluates to null, the DATA statement fails and the program
terminates with a runtime error message.

Put a comma at the end of each line of a DATA statement to indicate that more data expressions
follow on the next line.

The order in which expressions are specified in the DATA statement is the order in which the values
are accessed by subsequent INPUT statements: first-in, first-out. When all DATA values have been
exhausted, the INPUT statement prompts the user for a response at the terminal.

The DATA statement must be executed before an INPUT statement that is to use expression for input.

You can store up to 512 characters in a data stack.

You can list the current data in the stack from your program by accessing the @DATA.PENDING
variable with the statement:

PRINT @DATA.PENDING

Example

In the following example, the INPUT NBR statement uses the first value placed in the input stack by
the DATA statement, 33, as the value of NBR. The INPUT DESCR statement uses the second value, 50,
as the value of DESCR. The INPUT PRICE statement uses the third value, 21, as the value of PRICE.

X=33; Y=50; Z=21
DATA X,Y,Z
X=Y+Z
*
INPUT NBR
INPUT DESCR
INPUT PRICE

Chapter 1: Statements and functions

122

INPUT QTY
PRINT NBR,DESCR,PRICE,QTY

This is the program output:

?33
 ?50
 ?21
 ?2
 33 50 21 2

The value of NBR is the value of X when the DATA statement is executed, not the current value of X
(namely, Y+Z). The INPUT QTY statement has no corresponding value in the input stack, so it prompts
the user for input.

DATE function
Use the DATE function to return the numeric value of the internal system date. Although the DATE
function takes no arguments, parentheses are required to identify it as a function.

Syntax

DATE ()

The internal format for the date is based on a reference date of December 31, 1967, which is day 0. All
dates thereafter are positive numbers representing the number of days elapsed since day 0. All dates
before day 0 are negative numbers representing the number of days before day 0. For example:

Date Internal representation

December 10, 1967 -21
November 15, 1967 -46
February 15, 1968 46
January 1, 1985 6575

Example

PRINT DATE()
PRINT OCONV(DATE(),"D2/")

This is the program output:

9116
12/15/92

DATETIMEL function
Use the DATETIMEL function to return the local date and time in microseconds in a human readable
format. Note that @TZ will be used to derive the local time and date from the UTC datetime value.

Note: This function is supported on Linux and Solaris platforms only.

DATETIMEZ function

123

Syntax

DATETIMEL ()

Example

PRINT DATETIMEL()

This is the program output:

2019-11-20 01:55:10.666919

DATETIMEZ function
Use the DATETIMEZ function to return the UTC date and time in microseconds in a human readable
format.

Note: This function is supported on Linux and Solaris platforms only.

Syntax

DATETIMEZ ()

Example

PRINT DATETIMEZ()

This is the program output:

2019-11-20 08:55:10.666927

DBTOXML function
To create an XML document from the UniVerse database using UniVerse BASIC, use the DBTOXML
function.

Syntax

DBTOXML(xml_document, doc_location, u2xmap_file, u2xmap_location,
condition, status)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xml_document The name of the XML document to create.

Chapter 1: Statements and functions

124

Parameter Description

doc_flag A flag defining the type of xml_document. Valid values are:

▪ XML.FROM.DOM - xml_document is a DOM handle.

▪ XML.FROM.FILE - xml_document is a file name.

▪ XML.FROM.STRING - xml_document is a string located within the UniVerse
BASIC program..

u2xmap_file The name of the U2XMAP file to use to produce the XML document.
u2xmap_location A flag indicating if the mapping file is the U2XMAP file itself or a string located

within the UniVerse BASIC program. Valid values are:

▪ XMAP.FROM.FILE - the mapping rules are contained in a U2XMAP file.

▪ XMAP.FROM.STRING - u2xmapping_rules is the name of the variable
containing the mapping rules.

condition The conditions to use when selecting data for the XML document.
Status The return code.

Example

The following example illustrates the use of DBTOXML:

*DBTOXML("myXMlFile",XML.FROM.FILE,"myMapFile",XML.FROM.FILE,STATUS)

DCOUNT function
Use the DCOUNT function to return the number of delimited fields in a data string.

Syntax

DCOUNT (string, delimiter)

string is an expression that evaluates to the data string to be searched.

delimiter is an expression that evaluates to the delimiter separating the fields to be counted. delimiter
can be a character string of 0, 1, or more characters.

DCOUNT differs from the COUNT function in that it returns the number of values separated by
delimiters rather than the number of occurrences of a character string. Two consecutive delimiters in
string are counted as one field. If delimiter evaluates to an empty string, a count of 1 plus the number
of characters in the string is returned. If string evaluates to an empty string, 0 is returned.

If string evaluates to the null value, null is returned. If delimiter evaluates to the null value, the
DCOUNT function fails and the program terminates with a run-time error message.

PICK, IN2, and REALITY flavors

In PICK, IN2, and REALITY flavors, the DCOUNT function continues the search with the next character
regardless of whether it is part of the matched delimiter string. Use the COUNT.OVLP option of the
$OPTIONS statement to get this behavior in IDEAL and INFORMATION flavor accounts.

Example

REC="88.9.B.7"
Q=DCOUNT(REC,'.')
PRINT "Q= ",Q

DEACTIVATEKEY statement

125

REC=34:@VM:55:@VM:88:@VM:"FF":@VM:99:@VM:"PP"
R=DCOUNT(REC,@VM)
PRINT "R= ",R

This is the program output:

Q= 4
R= 6

DEACTIVATEKEY statement
Use the DEACTIVATEKEY command to deactivate one or more encryption keys. This command is
useful to deactivate keys to make your system more secure.

Syntax

DEACTIVATEKEY <key.id>, <password> [ON <hostname>]

Parameters

The following table describes each parameter of the syntax.

Parameter Description

key.id The key ID to deactivate.
password The password corresponding to key.id.
ON hostname The name of the remote host on which you want to deactivate the encryption

key.

Note: You can deactivate only keys with password protection with this command. Keys that do not
have password protection are automatically activated and cannot be deactivated.

Use the STATUS function after an DEACTIVATEKEY statement is executed to determine the result of
the operation, as follows:

Value Description

0 Operation successful.
1 Key is already activated. This applies to a single key, not a wallet operation.
2 Operation failed. This applies to a single key, not a wallet operation.
3 Invalid key or wallet ID or password.
4 No access to wallet.
5 Invalid key ID or password in a wallet.
6 No access to one of the keys in the wallet.
9 Other error.

DEBUG statement
Use the DEBUG statement to invoke RAID, the interactive UniVerse BASIC debugger. The DEBUG
statement takes no arguments. When this statement is encountered, program execution stops and the
double colon (::) prompt appears, waiting for a RAID command. The following table summarizes the
RAID commands.

Chapter 1: Statements and functions

126

Syntax

DEBUG

Command Action

line Displays the specified line of the source code.
/[string] Searches the source code for string.
B Set a RAID breakpoint.
C Continue program execution.
D Delete a RAID breakpoint.
G Go to a specified line or address and continue program execution.
H Display statistics for the program.
I Display and execute the next object code instruction.
L Print the next line to be executed.
M Set watchpoints.
Q Quit RAID.
R Run the program.
S Step through the UniVerse BASIC source code.
T Display the call stack trace.
V Enter verbose mode for the M command.
V* Print the compiler version that generated the object code.
W Display the current window.
X Display the current object code instruction and address.
X* Display local run machine registers and variables.
Z Display the next 10 lines of source code.
$ Turn on instruction counting.
Turn on program timing.
+ Increment the current line or address.
- Decrement the current line or address.
. Display the last object code instruction executed.
variable/ Print the value of variable.
variable!string Change the value of variable to string.

DEFFUN statement
Use the DEFFUN statement to define a user-written function. You must declare a user-defined function
before you can use it in a program. The DEFFUN statement provides the compiler with information
such as the function name and the number and type of arguments. You can define a user-written
function only once in a program. A subsequent DEFFUN statement for an already defined user-written
function causes a fatal error.

Syntax

DEFFUN function [([MAT] argument [, [MAT] argument …])]
 [CALLING call.ID]

DEL statement

127

function is the name of the user-written function.

arguments supply up to 254 arguments in the DEFFUN statement. To pass an array, you must precede
the array name with the keyword MAT. An extra argument is hidden so that the user-defined function
can use it to return a value. An extra argument is retained by the user-written function so that a value
is returned by a RETURN (value) statement (for more information see the RETURN (value) statement,
on page 335). If the RETURN (value) statement specifies no value, an empty string is returned. The
extra argument is reported by the MAP and MAKE.MAPE.FILE commands.

call.ID is an expression that evaluates to the name by which the function is called if it is not the same
as the function name. It can be a quoted string (the call ID itself) or a variable that evaluates to the call
ID. If you do not use the CALLING clause, the user-defined function is presumed to be defined in the
VOC file and cataloged without any prefix.

Examples

The following example defines a user-written function called MYFUNC with the arguments or formal
parameters A, B, and C:

FUNCTION MYFUNC(A, B, C)
Z = ...
RETURN (Z)
END

The next example declares the function MYFUNC. It uses the function with the statement T = MYFUNC
(X, Y, Z). The actual parameters held in X, Y, and Z are referenced by the formal parameters A, B, and C,
so the value assigned to T can be calculated.

DEFFUN MYFUNC(X, Y, Z)
T = MYFUNC(X, Y, Z)
END

DEL statement
Use the DEL statement to delete a field, value, or subvalue from a dynamic array. The DEL statement
works similarly to the DELETE function.

Syntax

DEL dynamic.array < field# [,value# [,subvalue#]] >

dynamic.array is an expression that evaluates to a dynamic array. If dynamic.array evaluates to the
null value, null is returned.

field# is an expression that evaluates to the field in dynamic.array. value# is an expression that
evaluates to the value in the field. subvalue# is an expression that evaluates to the subvalue in
the value. These expressions are called delimiter expressions. The numeric values of the delimiter
expressions specify which field, value, or subvalue to delete. The entire position is deleted, including
its delimiter characters.

value# and subvalue# are optional. If they are equal to 0, the entire field is deleted. If subvalue# is
equal to 0 and value# and field# are greater than 0, the specified value in the specified field is deleted.
If all three delimiter expressions are greater than 0, only the specified subvalue is deleted.

If any delimiter expression is the null value, the DEL statement fails and the program terminates with a
run-time error message.

Chapter 1: Statements and functions

128

If a higher-level delimiter expression has a value of 0 when a lower-level delimiter expression is greater
than 0, the 0 delimiter is treated as if it were equal to 1. The delimiter expressions are, from highest to
lowest: field, value, and subvalue.

If the DEL statement references a subelement of a higher element whose value is the null value, the
dynamic array is unchanged. Similarly, if all delimiter expressions are 0, the original string is returned.

Examples

In the following examples a field mark is shown by F, a value mark is shown by V, and a subvalue mark
is shown by S.

The first example deletes field 1 and sets Q to VAL1VSUBV1SSUBV2FFSUBV3SSUBV4:

R="FLD1":@FM:"VAL1":@VM:"SUBV1":@SM:"SUBV2":@FM:@FM:"SUBV3":@SM:"SUBV4"
Q=R
DEL Q<1,0,0>
PRINT Q

The next example deletes the first subvalue in field 4 and sets the value of Q to
FLD1FVAL1VSUBV1SSUBV2FFSUBV4:

Q=R
 DEL Q<4,1,1>

The next example deletes the second value in field 2 and sets the value of Q to
FLD1FVAL1FFSUBV3SSUBV4:

Q=R
 DEL Q<2,2,0>

The next example deletes field 3 entirely and sets the value of Q to
FLD1FVAL1VSUBV1SSUBV2FSUBV3SSUBV4:

Q=R
 DEL Q<3,0,0>

The next example deletes the second subvalue in field 4 and sets the value of Q to
FLD1FVAL1VSUBV1SSUBV2FFSUBV3:

Q=R
 DEL Q<4,1,2>

DELETE function
Use the DELETE function to erase the data contents of a specified field, value, or subvalue and its
corresponding delimiter from a dynamic array. The DELETE function returns the contents of the
dynamic array with the specified data removed without changing the actual value of the dynamic
array.

Syntax

DELETE (dynamic.array, field#[,value#[,subvalue#]])

dynamic.array is an expression that evaluates to the array in which the field, value, or subvalue to be
deleted can be found. If dynamic.array evaluates to the null value, null is returned.

DELETE function

129

field# is an expression that evaluates to the field in the dynamic array; value# is an expression that
evaluates to the value in the field; subvalue# is an expression that evaluates to the subvalue in the
value. The numeric values of the delimiter expressions specify which field, value, or subvalue to delete.
The entire position is deleted, including its delimiting characters.

value# and subvalue# are optional. If they are equal to 0, the entire field is deleted. If subvalue# is
equal to 0 and value# and field# are greater than 0, the specified value in the specified field is deleted.
If all three delimiter expressions are greater than 0, only the specified subvalue is deleted.

If any delimiter expression is the null value, the DELETE function fails and the program terminates
with a run-time error message.

If a higher-level delimiter expression has a value of 0 when a lower-level delimiter is greater than 0,
the 0 delimiter is treated as if it were equal to 1. The delimiter expressions are, from highest to lowest:
field, value, and subvalue.

If the DELETE function references a subelement of a higher element whose value is the null value, the
dynamic array is unchanged. Similarly, if all delimiter expressions are 0, the original string is returned.

Examples

In the following examples a field mark is shown by F, a value mark is shown by V, and a subvalue mark
is shown by S.

The first example deletes field 1 and sets Q to VAL1VSUBV1SSUBV2FFSUBV3SSUBV4:

R="FLD1":@FM:"VAL1":@VM:"SUBV1":@SM:"SUBV2":@FM:@FM:"SUBV3":@SM:"SUBV4"
Q=DELETE (R,1)
PRINT Q

The next example deletes the first subvalue in field 4 and sets the value of Q to
FLD1FVAL1VSUBV1SSUBV2FFSUBV4:

R="FLD1":@FM:"VAL1":@VM:"SUBV1":@SM:"SUBV2":@FM:@FM:"SUBV3":@SM:"SUBV4"
Q=DELETE (R,4,1,1)
PRINT Q

The next example deletes the second value in field 2 and sets the value of Q to
FLD1FVAL1FFSUBV3SSUBV4:

R="FLD1":@FM:"VAL1":@VM:"SUBV1":@SM:"SUBV2":@FM:@FM:"SUBV3":@SM:"SUBV4"
Q=DELETE (R,2,2)
PRINT Q

The next example deletes field 3 entirely and sets the value of Q to
FLD1FVAL1VSUBV1SSUBV2FSUBV3SSUBV4:

Q=DELETE (R,3,0,0)
PRINT Q

The next example deletes the second subvalue in field 4 and sets the value of Q to
FLD1FVAL1VSUBV1SSUBV2FFSUBV3:

R="FLD1":@FM:"VAL1":@VM:"SUBV1":@SM:"SUBV2":@FM:@FM:"SUBV3":@SM:"SUBV4"
Q=DELETE (R,4,1,2)
PRINT Q

Chapter 1: Statements and functions

130

DELETE statements
Use the DELETE statements to delete a record from a UniVerse file. If you specify a file variable, the file
must be open when the DELETE statement is encountered.

Syntax

DELETE [file.variable ,] record.ID [ON ERROR statements]
[LOCKED statements]
[THEN statements] [ELSE statements]

DELETEU [file.variable ,] record.ID [ON ERROR statements]
[LOCKED statements]
 [THEN statements] [ELSE statements]

file.variable is a file variable from a previous OPEN statement.

record.ID is an expression that evaluates to the record ID of the record to be deleted.

If the file does not exist or is not open, the program terminates and a runtime error results. If you do
not specify a file variable, the most recently opened default file is used (see the OPEN statement for
more information on default files). If you specify both a file variable and a record ID, you must use a
comma to separate them.

If the file is an SQL table, the effective user of the program must have SQL DELETE privilege to delete
records in the file. For information about the effective user of a program, see the AUTHORIZATION
statement, on page 74.

The record is deleted, and any THEN statements are executed. If the deletion fails, the ELSE
statements are executed; any THEN statements are ignored.

If a record is locked, it is not deleted, and an error message is produced. The ELSE statements are not
executed.

If either file.variable or record.ID evaluates to the null value, the DELETE statement fails and the
program terminates with a run-time error message.

The DELETEU statement

Use the DELETEU statement to delete a record without releasing the update record lock set by a
previous READU statement (see the READ statements, on page 309.

The file must have been previously opened with an OPEN statement. If a file variable was specified in
the OPEN statement, it can be used in the DELETEU statement. You must place a comma between the
file variable and the record ID expression. If no file variable is specified in the DELETEU statement, the
statement applies to the default file. See the OPEN statement, on page 283 for a description of the
default file.

The ON ERROR clause

The ON ERROR clause is optional in the DELETE statement. Its syntax is the same as that of the ELSE
clause. The ON ERROR clause lets you specify an alternative for program termination when a fatal
error is encountered during processing of the DELETE statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

DELETE statements

131

▪ Any uncommitted transactions begun within the current execution environment roll back.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function, on page 388 is the error
number.

The LOCKED clause

The LOCKED clause is optional, but recommended.

The LOCKED clause handles a condition caused by a conflicting lock (set by another user) that
prevents the DELETE statement from processing. The LOCKED clause is executed if one of the
following conflicting locks exists:

▪ Exclusive file lock

▪ Intent file lock

▪ Shared file lock

▪ Update record lock

▪ Shared record lock

If the DELETE statement does not include a LOCKED clause, and a conflicting lock exists, the program
pauses until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the terminal number of the
user who owns the conflicting lock.

Releasing the record lock

A record lock held by a DELETEU statement can be released explicitly with a RELEASE statement or
implicitly with WRITE statements, WRITEV statement, MATWRITE statements, or DELETE statements.
The record lock is released when you return to the UniVerse prompt.

Examples

OPEN "","MLIST" TO MALIST ELSE STOP
 PRINT "FILE BEFORE DELETE STATEMENT:"
 EXECUTE "COUNT MLIST"
 PRINT
 DELETE MALIST, "JONES"
 PRINT "FILE AFTER DELETE STATMENT:"
 EXECUTE "LIST MLIST"

This is the program output:

FILE BEFORE DELETE STATEMENT:

 3 records listed.

 FILE AFTER DELETE STATMENT:

Chapter 1: Statements and functions

132

 2 records listed.

In the following example, the data portion of the SUBSIDIARIES files is opened to the file variable
SUBS. If the file cannot be opened an appropriate message is printed. The record MADRID is read and
then deleted from the file. An update record lock had been set and is maintained by the DELETEU
statement.

OPEN "","SUBSIDIARIES" TO SUBS
 READU REC FROM SUBS, 'MADRID'
 ELSE STOP 'Sorry, cannot open Subsidiaries file'
 DELETEU SUBS, "MADRID”
ELSE STOP 'Sorry, cannot delete Subsidiaries file'

DELETELIST statement
Use the DELETELIST statement to delete a select list saved in the &SAVEDLISTS& file.

Syntax

DELETELIST listname

listname can evaluate to the form:

record.ID

or:

record.IDaccount.name

record.ID is the name of a select list in the &SAVEDLISTS& file. If you specify account.name, the
&SAVEDLISTS& file of the specified account is used instead of the local &SAVEDLISTS& file.

If listname evaluates to the null value, the DELETELIST statement fails and the program terminates
with a run-time error message.

Use the DELETEU statement to maintain an update record lock while performing DELETE statements.

DESCRINFO function
The DESCRINFO function returns requested information (key) about a variable.

Set the key value to 1 to obtain information about the type of variable. Set the key value to 2 to obtain
the reuse flag of the variable. Any other value is invalid, and will result in the program exiting.

Syntax

DESCRINFO(key, variable)

If the key value is 1, the return type indicates the following type of variable:

Return value Type

0 unassigned variable
1 integer
2 numeric
3 string

DIGEST function

133

Return value Type

4 file
5 array
6 subroutine
7 sequential file
8 GCI descriptor
9 NULL value
10 ODBC descriptor

Example

The following example illustrates the DESCRINFO function.

A=1
B="DENVER"
C=10.7

VAL1 = DESCRINFO(1,A)
PRINT VAL1

VAL2 = DESCRINFO(1,B)
PRINT VAL2

VAL3 = DESCRINFO(1,C)
PRINT VAL3

This program returns the following results:

1
3
2

DIGEST function
The DIGEST() function generates a message digest of supplied data. A message digest is the result of
a one-way hash function (digest algorithm) performed on the message. Message digest has the unique
properties that a slight change in the input will result in a significant difference in the resulting digest.
Therefore, the probability of two different messages resulting in the same digest (collision) is very
unlikely. It is also virtually impossible to reverse to the original message from a digest. Message digest
is widely used for digital signatures and other purposes.

The desired digest algorithm is specified in algorithm. Data and its location are specified by data and
dataLoc, respectively. The arrived digest will be put into a dynamic array in result. Since digest is short
and has a fixed length, it is always put into a string and no file option is provided. The result can be in
either binary or hex format.

Note: DIGEST data is arbitrary binary data and may contain UniVerse delimiters. If you do not
want the data to contain delimiters, use the ENCODE() function to perform BASE64 encoding.

Syntax

DIGEST(algorithm, data, dataLoc, result)

Chapter 1: Statements and functions

134

Parameters

The following table describes each parameter of the syntax.

Parameter Description

algorithm A string containing the digest algorithm name (uppercase or lowercase).
UniVerse 11.3.2+ supports the following algorithms:

▪ MD4

▪ MD5

▪ SHA

▪ SHA1

▪ SHA224

▪ SHA256

▪ SHA384

▪ SHA512

▪ SHA512-224

▪ SHA512-226

▪ SHA3-224

▪ SHA3-256

▪ SHA3-384

▪ SHA3-512

Versions prior to 11.2.4 support MD2, MDC2, and RMD160. These
algorithms are no longer supported in later versions.

data Data or the name of the file containing the data to be digested.
dataLoc 1 - Data in a string (SSL_LOC_STRING)

2 - Data in a file (SSL_LOC_FILE)
result A string to store the digest result.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.
1 Unsupported digest algorithm.
2 The data file cannot be read.
3 Message digest cannot be obtained.
4 Invalid parameters.

DIMENSION statement
Use the DIMENSION statement to define the dimensions of an array variable before referencing the
array in the program. For a matrix (a two-dimensional array), use the DIMENSION statement to set the
maximum number of rows and columns available for the elements of the array. For a vector (a one-
dimensional array), use the DIMENSION statement to set the maximum value of the subscript (the
maximum elements) in the array.

DIMENSION statement

135

Syntax

DIM[ENSION] matrix (rows, columns) [, matrix (rows, columns) …]

DIM[ENSION] vector (subscript) [, vector (subscript) …]

matrix and vector can be any valid variable name. The maximum dimension can be any valid numeric
expression. When specifying the two dimensions of a matrix, you must use a comma to separate the
row and column expressions. These expressions are called indices.

You can use a single DIMENSION statement to define multiple arrays. If you define more than one array
with a DIMENSION statement, you must use commas to separate the array definitions.

The DIMENSION statement declares only the name and size of the array. It does not assign values
to the elements of the array. Assignment of values to the elements is done with the MAT statement,
MATPARSE statement, MATREAD statements, MATREADU statement, and assignment statements.

The DIMENSION statement in an IDEAL or INFORMATION flavor account is executed at run time. The
advantage of the way UniVerse handles this statement is that the amount of memory allocated is not
determined until the DIM statement is executed. This means that arrays can be redimensioned at run
time.

When redimensioning an array, you can change the maximum number of elements, rows, columns,
or any combination thereof. You can even change the dimensionality of an array (that is, from a one-
dimensional to a two-dimensional array or vice versa).

The values of the array elements are affected by redimensioning as follows:

▪ Common elements (those with the same indices) are preserved.

▪ New elements (those that were not indexed in the original array) are initialized as unassigned.

▪ Abandoned elements (those that can no longer be referenced in the altered array) are lost, and the
memory space is returned to the operating system.

The DIMENSION statement fails if there is not enough memory available for the array. When this
happens, the INMAT function is set to a value of 1.

An array variable that is passed to a subroutine in its entirety as an argument in a CALL statement
cannot be redimensioned in the subroutine. Each array in a subroutine must be dimensioned once.
The dimensions declared in the subroutine DIMENSION statement are ignored, however, when an
array is passed to the subroutine as an argument (for more information, see the CALL statement, on
page 84).

PICK, IN2, and REALITY flavors

In PICK, IN2, and REALITY flavor accounts, arrays are created at compile time, not run time. Arrays
are not redimensionable, and they do not have a zero element. To get the same characteristics in an
INFORMATION or IDEAL flavor account, use the STATIC.DIM option of the $OPTIONS statement.

Examples

DIM ARRAY(2,2)
 ARRAY(1,1)="KK"
 ARRAY(1,2)="GG"
 ARRAY(2,1)="MM"
 ARRAY(2,2)="NN"

In the next example warning messages are printed for the unassigned elements in the matrix. The
elements are assigned empty strings as their values.

DIM ARRAY(2,3)

Chapter 1: Statements and functions

136

 *
 PRINT
 FOR X=1 TO 2
 FOR Y=1 TO 3
 PRINT "ARRAY(":X:",":Y:")", ARRAY(X,Y)
 NEXT Y
 NEXT X
 DIM S(3,2)
 S(1,1)=1
 S(1,2)=2
 S(2,1)=3
 S(2,2)=4
 S(3,1)=5
 S(3,2)=6

In the next example the common elements are preserved. Those elements that cannot be referenced
in the new matrix (S(3,1), S(3,2)) are lost.

DIM S(2,2)
 *
 PRINT
 FOR X=1 TO 2
 FOR Y=1 TO 2
 PRINT "S(":X:",":Y:")", S(X,Y)
 NEXT Y
 NEXT X

This is the program output:

ARRAY(1,1) KK
 ARRAY(1,2) GG
 ARRAY(1,3) Program 'DYNAMIC.DIMENSION':
 Line 12, Variable previously undefined, empty string used.

 ARRAY(2,1) MM
 ARRAY(2,2) NN
 ARRAY(2,3) Program 'DYNAMIC.DIMENSION':
 Line 12, Variable previously undefined, empty string used.

 S(1,1) 1
 S(1,2) 2
 S(2,1) 3
 S(2,2) 4

DISABLEDEC statement
Use the DISABLEDEC command to turn off decryption on a field or fields you specify.

Note: You cannot disable encryption on a file with WHOLERECORD encryption.

Syntax

DISABLEDEC <filename> [, <multilevel-filename>], {ALL |<field_list>}
[ON ERROR <statements>]

Parameters

The following table describes each parameter of the syntax.

DISPLAY statement

137

Parameter Description

filename The name of the file on which you want to disable decryption.
ALL If you specify ALL, UniVerse will disable decryption on all encrypted fields of this

file.
field_list A comma-separated list of fields for which you want to disable decryption. Do

not enter spaces between the field names.
ON ERROR
statements

If you specify ON ERROR statements and an error occurs, UniVerse executes the
statements following the ON ERROR clause. Otherwise, UniVerse executes the
next statement.

Use the STATUS function after an DISABLEDEC statement is executed to determine the result of the
operation, as follows:

Value Description

0 Success.
1 Already disabled.
2 General failure.
3 Not an encrypted file.
4 Cannot disable WHOLERECORD encrypted file
5 Not an encrypted field.
6 No disablement information found.
7 Not a valid field in the file.

DISPLAY statement
Use the DISPLAY statement to print data on the screen, regardless of whether a PRINTER ON
statement has been executed. The syntax for print.list is the same as for PRINT statement.

Syntax

DISPLAY [print.list]

The elements of the list can be numeric or character strings, variables, constants, or literal strings;
the null value, however, cannot be output. The list can consist of a single expression or a series of
expressions separated by commas (,) or colons (:) for output formatting. If no print.list is designated, a
blank line is output.

Expressions separated by commas are printed at preset tab positions. You can use multiple commas
together to cause multiple tabulation between expressions.

Expressions separated by colons are concatenated. That is, the expression following the colon is
printed immediately after the expression preceding the colon. To print a list without a LINEFEED and
RETURN, end the print list with a colon (:).

The DISPLAY statement works similarly to the CRT statement, on page 120.

Example

DISPLAY "This can be used to print something on the"
DISPLAY "terminal while"
DISPLAY "the PRINTER ON statement is in effect."

Chapter 1: Statements and functions

138

The program output on the terminal is:

This can be used to print something on the
terminal while
the PRINTER ON statement is in effect.

DIV function
Use the DIV function to calculate the value of the quotient after dividend is divided by divisor.

The dividend and divisor expressions can evaluate to any numeric value. The only exception is that
divisor cannot be 0. If either dividend or divisor evaluates to the null value, null is returned.

Syntax

DIV (dividend, divisor)

Example

X=100; Y=25
Z = DIV (X,Y)
PRINT Z

This is the program output:

4

DIVS function
Use the DIVS function to create a dynamic array containing the result of the element-by-element
division of two dynamic arrays.

Syntax

DIVS (array1, array2)

CALL -DIVS (return.array, array1, array2)

CALL !DIVS (return.array, array1, array2)

Each element of array1 is divided by the corresponding element of array2 with the result being
returned in the corresponding element of a new dynamic array. If elements of array1 have no
corresponding elements in array2, array2 is padded with ones and the array1 elements are returned. If
an element of array2 has no corresponding element in array1, 0 is returned. If an element of array2 is
0, a run-time error message is printed and a 0 is returned. If either element of a corresponding pair is
the null value, null is returned.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Example

A=10:@VM:15:@VM:9:@SM:4
B=2:@VM:5:@VM:9:@VM:2
PRINT DIVS(A,B)

This is the program output:

DOWNCASE function

139

5V3V1S4V0

DOWNCASE function
Use the DOWNCASE function to change all uppercase letters in expression to lowercase. If expression
evaluates to the null value, null is returned.

Syntax

DOWNCASE (expression)

DOWNCASE is equivalent to OCONV("MCL").

If NLS is enabled, the DOWNCASE function uses the conventions specified by the Ctype category for
the Lowercase field of the NLS.LC.CTYPE file to change the letters in expression. For more information
about the NLS.LC.CTYPE file, see the NLS Guide.

Example

A="DOWN CASE DOES THIS: "
PRINT A:DOWNCASE(A)
B="Down Case Does This: "
PRINT B:DOWNCASE(B)

This is the program output:

DOWN CASE DOES THIS: down case does this:
Down Case Does This: down case does this:

DQUOTE function
Use the DQUOTE function to enclose an expression in double quotation marks. If expression evaluates
to the null value, null is returned (without quotation marks).

Syntax

DQUOTE (expression)

Example

PRINT DQUOTE(12 + 5) : " IS THE ANSWER."
END

This is the program output:

"17" IS THE ANSWER.

DTX function
Use the DTX function to convert a decimal integer to its hexadecimal equivalent.

size indicates the minimum size which the hexadecimal character string should have. This field is
supplemented with zeros if appropriate.

Chapter 1: Statements and functions

140

If number evaluates to the null value, null is returned. If size is the null value, the DTX function fails and
the program terminates with a runtime error message.

Syntax

DTX (number [,size])

Example

X = 25
 Y = DTX (X)
 PRINT Y
 Y = DTX (X,4)
 PRINT Y
 END

This is the program output:

19
 0019

EBCDIC function
Use the EBCDIC function to convert each character of expression from its ASCII representation value
to its EBCDIC representation value. The EBCDIC and ASCII function perform complementary
operations. Data that is not represented in ASCII code produces undefined results.

If expression evaluates to the null value, the EBCDIC function fails and the program terminates with a
runtime error message.

Syntax

EBCDIC (expression)

Example

X = 'ABC 123'
 Y = EBCDIC(X)
 PRINT "ASCII", "EBCDIC", " X "
 PRINT "------", "-----", "---"
 FOR I = 1 TO LEN (X)
 PRINT SEQ(X[I,1]) , SEQ(Y[I,1]),X[I,1]
 NEXT I

This is the program output:

ASCII EBCDIC X
------ ----- ---
65 193 A
66 194 B
67 195 C
32 64
49 241 1
50 242 2
51 243 3

ECHO statement

141

ECHO statement
Use the ECHO statement to control the display of input characters on the screen.

Syntax

ECHO {ON | OFF | expression}

If ECHO ON is specified, subsequent input characters are displayed, or echoed, on the screen. If ECHO
OFF is specified, subsequent input characters are assigned to the INPUT statement variables but are
not displayed on the screen.

The ability to turn off character display is useful when the keyboard is to be used for cursor movement
or for entering password information. If expression evaluates to true, ECHO is turned ON. If expression
evaluates to false, ECHO is turned OFF. If expression evaluates to the null value, it is treated as false,
and ECHO is turned OFF.

Example

PROMPT ""
 ECHO OFF
 PRINT "ENTER YOUR PASSWORD"
 INPUT PWORD
 ECHO ON

This is the program output:

ENTER YOUR PASSWORD

ENABLEDEC statement
Use the ENABLEDEC command to activate decryption on a file or fields you specify.

Syntax

ENABLEDEC <filename> [, <multilevel-filename>], { ALL |<field_list>}
[ON ERROR <statements>]

Parameters

The following table describes each parameter of the syntax.

Parameter Description

filename The name of the file on which you want to enable decryption.
ALL If you specify ALL, UniVerse enables decryption on all encrypted fields of this

file.
field_list A comma-separated list of fields for which you want to enable decryption. Do

not enter spaces between the field names.
ON ERROR
statements

If you specify ON ERROR statements and an error occurs, UniVerse executes the
statements following the ON ERROR clause. Otherwise, UniVerse executes the
next statement.

Use the STATUS function after an ENABLEDEC statement is executed to determine the result of the
operation, as follows:

Chapter 1: Statements and functions

142

Value Description

0 Success.
1 Already enabled/disabled.
2 DISABLEDEC error.
3 Not an encrypted file.
4 Cannot disable WHOLERECORD encrypted file.
5 Not an encrypted field.
6 No disablement information found.
7 Not a valid field in the file.

ENCODE function
The ENCODE() function performs data encoding on input data.

The function can perform either encoding or decoding, as specified by action. The data can either be in
the dynamic array, data, or in a file whose name is specified in data, determined by dataLoc.

Syntax

ENCODE(algorithm, action, data, dataLoc, result, resultLoc)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

algorithm A string containing the encode method name. The three valid values are:

▪ SSL_BASE64 - Base64 encoding of data on one line.

▪ SSL_BASE64_ONELINE - Base64 encoding of data on one line.

▪ URLENCODE - Performs URL encoding or decoding on the data passed to
the function according to standard RFC 3986.

action 1 - Encode (SSL_ENCODE)

2 - Decode (SSL_DECODE)
data Data or the name of the file containing the data to be encoded or decoded.
dataLoc 1 - Data in a string (SSL_LOC_STRING)

2 - Data in a file (SSL_LOC_FILE)
result Encoded or decoded data or the name of the file storing the processed data.
resultLoc 1 - Result in a string (SSL_LOC_STRING)

2 - Result in a file (SSL_LOC_FILE)

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.
1 Unsupported algorithm.

ENCRYPT function

143

Return code Status

2 Invalid parameters (invalid data or result location type, and so forth.).
3 The data cannot be read.
4 The data cannot be encoded or decoded.

Base 64 encoding is designed to represent arbitrary sequences of octets that do not need to be
humanly readable. A 64-character subset of US-ASCII is used, enabling 6-bits to be represented per
printable character. The subset has the important property that it is represented identically in all
versions of ISO646, including US-ASCII, and all characters in the subset are also represented identically
in all versions of EBCDIC. The encoding process represents 24-bit groups of input bits as output strings
of 4 encoded characters.

There are two BASE64 encoding modes, default and one-line. In default mode, the encoded output
stream must be represented in lines of no more than 76 characters each. All line breaks must be
ignored by the decoding process. All other characters not found in the 64-character subset should
trigger a warning by the decoding process. In one-line mode, the data is a continuous stream of the
allowed ASCII characters without any line breaks.

URL encoding performs encoding or decoding on the data passed to the function according to the
RFC 3986 standard. This algorithm changes all characters that need to be encoded to the “percent-
escaped” form, such as changing “=” to “%3D” when encoding the data, then back to ASCII characters
when decoding.

ENCRYPT function
The ENCRYPT() function performs symmetric encryption operations. Various block and stream
symmetric ciphers can be called through this function.

Syntax

ENCRYPT (algorithm, action, data, dataLoc,key, keyLoc, keyAction, salt,
IV, result, resultLoc)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

algorithm A string containing the cipher name.

Chapter 1: Statements and functions

144

Parameter Description

action 1 - Encrypt (SSL_ENCRYPT)

2 - Base64 encode after encryption (SSL_ENCRYPT_ENCODE)

3 - Decrypt (SSL_DECRYPT)

4 - Base64 decode before decryption (SSL_DECODE_DECRYPT)

5 - One-line Base64 encode after encryption (SSL_ENCRYPT_ENCODE_A)

6 - One-line Base64 decode before decryption (SSL_DECODE_DECRYPT_A)

11 - NOPAD encryption (SSL_ENCRYPT_NOPAD)

12 - NOPAD Base64 encode after encryption (SSL_ENCRYPT_ ENCODE_NOPAD)

13 - NOPAD Decryption (SSL_DECRYPT_NOPAD)

14- NOPAD Base64 decode before decryption (SSL_DECODE_DECRYPT_NOPAD)

15 - NOPAD one-line Base64 encode after encryption
(SSL_ENCRYPT_ENCODE_A_NOPAD)

16 - NOPAD one-line Base64 decode before decryption
(SSL_DECODE_DECRYPT_A_NOPAD)

data Data or the name of the file containing the data to be processed.
dataLoc 1 - Data in a string (SSL_LOC_STRING)

2 - Data in a file (SSL_LOC_FILE)
key The actual key (password) or file name containing the key.
keyLoc 1 - Key in a string (SSL_LOC_STRING)

2 - Key in file (SSL_LOC_FILE)

ENCRYPT function

145

Parameter Description

keyAction 1 - Use actual key (SSL_KEY_ACTUAL)

2 - Derive key from pass phrase (SSL_KEY_DERIVE)

3 - Use actual key compatible with OpenSSL (SSL_KEY_ACTUAL_OPENSSL) or
(SSL_KEY_ACTUAL_COMPAT)

4 - Derive key from pass phrase using MD5 algorithm (SSL_KEY_DRIVE_MD5)

5 - Derive key from pass phrase using SHA1 algorithm (SSL_KEY_DERIVE_SHA1)

6 - Derive key from pass phrase using MD2 algorithm (SSL_KEY_DERIVE_MD2)

7 - Unavailable

8 - Derive key from pass phrase using RM0160 algorithm
(SSL_KEY_DERIVE_RM0160)

9 - Derive key from pass phrasing using SHA algorithm (SSL_KEY_DERIVE_SHA)

10 - Derive key from pass phrasing using SHA224 algorithm
(SSL_KEY_DERIVE_SHA224)

11 - Derive key from pass phrasing using SHA256 algorithm
(SSL_KEY_DERIVE_SHA256)

12 - Derive key from pass phrasing using SHA384 algorithm
(SSL_KEY_DERIVE_SHA384)

13 - Derive key from pass phrasing using SHA512 algorithm
(SSL_KEY_DERIVE_SHA512)

Note: keyAction 1 and 2 can be used to exchange encrypted data between
UniVerse and UniData systems. However, if you want to exchange encrypted
data between UniData or UniVerse and third party products such as OpenSSL-
based programs, Java programs, or Microsoft.Net programs, you should use
keyActions 3-13.

Salt A string containing the Salt value.

You can specify nosalt in this parameter to perform encryption in nosalt mode.
In this mode, the ENCRYPT() function will not prepend magic data and salt to
encrypted data, or will not check for it in decryption.

Note: If you use the literal string "nosalt" as the salt value, it mimics the -nosalt
option for OpenSSL. It is not meant to exchange encrypted data with other third-
party products, such as Java, .NET, or PHP.

IV A string containing IV.
result The result buffer or the name of the file storing the result.
resultLoc 1 - Result in a string (SSL_LOC_STRING)

2 - Result in a file (SSL_LOC_FILE)

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid cipher.
2 Invalid parameters (location/action value is out of range, and so forth).

Chapter 1: Statements and functions

146

Return code Status

3 The data cannot be read.
4 The key cannot be derived.
5 Base 64 encoding/decoding error.
6 Encryption/decryption error.

If you specify the KeyAction value as 3 (SSL_KEY_ACTUAL_OPENSSL), the key string and IV string
must be in hexadecimal format with correct length for the algorithm you specify. You can exchange
encrypted data with third-party products.

If you specify the KeyAction value as 2 (SSL_KEY_ACTUAL), a specific salt and algorithm will be used to
derive the actual key and IV. The result cannot be exchanged with third-party products.

Ciphers are specified by algorithm and are not case sensitive. Base64 encoding and decoding can be
specified with the action parameter. If encoding is specified, the encrypted data is Base64 encoded
before being entered into result. If decoding is specified, the data is Base64 decoded before being
encrypted. The data and its location are specified by data and dataLoc, respectively. Key can be
explicitly specified or read from a file, or, alternatively, derived on the fly, specified by keyAction, in
which case the key string is used as a pass phrase to derive the actual key. The encrypted or decrypted
data is put into the dynamic array result, or a file, as specified by resultLoc.

Salt is used to provide more security against certain kinds of cryptanalysis attacks, such as dictionary
attacks. If an empty salt is supplied, an internally generated salt will be used in deriving the key. Salt
is ignored when action is set to decrypt. IV (Initialization Vector) is used to provide additional security
to some block ciphers. It does not need to be secret but should be fresh, meaning different for each
encrypted data. If an actual key is supplied, IV is generally needed. However if the encryption key is
to be derived from a pass phrase, IV is generated automatically. Both salt and IV must be provided in
hexadecimal format.

You have two ways to supply key and IV to the ENCRYPT() function. You can supply the actual key and
IV, or you can supply a seed (also called a password) and optionally a salt, then let U2 derive the actual
key and IV. When you do the latter, you have multiple options to tell U2 how to derive the key and IV,
some of which will allow you to exchange encrypted data between UniVerse and third-party products.

Note: Some ciphers are more secure than others. Due to the amount of terminology regarding
cryptography in general and SSL in particular, interested readers can refer to the following
publications. Applied Cryptography, by Bruce Schneier
Internet Cryptography, by Richard E. Smith
SSL and TLS: Designing and Building Secure Systems, by Eric Rescorla

The following ciphers are supported. All cipher names are not case sensitive.

Note: Due to export restrictions, all ciphers may not be available for a specific distribution.

56-bit key DES algorithms

Algorithm Description

des-cbc DES in CBC mode
des Alias for des-cbc
des-cfb DES in CFB mode
des-ofb DES in OFB mode
des-ecb DES in ECB mode

ENCRYPT function

147

112-bit key DES algorithms

Algorithm Description

des-ede-cbc Two key triple DES EDE in CBC mode
des-ede Alias for des-ede-cbc
des-ede-cfb Two key triple DES EDE in CFB mode
des-ede-ofb Two key triple DES EDE in OFB mode

128-bit key AES algorithms

Algorithm Description

aes-128-cbc Alias for aes-128
aes-128-ecb Alias for aes-128

168-bit key DES algorithms

Algorithm Description

des-ede3-cbc Three key triple DES EDE in CBC mode
des-ede3 Alias for des-ede3-cbc
des3 Alias for des-ede3-cbc
des-ede3-cfb Three key triple DES EDE in CFB mode
des-ede3-ofb Three key triple DES EDE in OFB mode

192-bit AES algorithms

Algorithm Description

aes-192-cbc Alias for aes-192
aes-192-ecb Alias for aes-192

256-bit AES algorithms

Algorithm Description

aes-256-cbc Alias for aes-256
aes-256-ecb Alias for aes-256

RC2 algorithms

Algorithm Description

rc2-cbc 128-bit RC2 in CBC mode
rc2 Alias for rc2-cbc
rc2-cfb 128-bit RC2 in CBC mode
rc2-ecb 128-bit RC2 in ECB mode
rc2-ofb 128-bit RC2 in OFB mode
rc2-64-cbc 64-bit RC2 in CBC mode
rc2-40-cbc 40-bit RC2 in CBC mode

Chapter 1: Statements and functions

148

RC4 algorithms

Algorithm Description

rc4 128-bit RC4
rc4-40 40-bit RC4

Blowfish algorithms (variable key size, typically 128 bits)

Algorithm Description

bf BF
bf-cbc BF in CBC mode
bf-cfb BF in CFB mode
bf-ecb BF in ECB mode
bf-ofb BF in OFB mode

CAST algorithms (variable key size, typically 128 bits)

Algorithm Description

cast CAST
cast-cbc CAST in CBC mode
cast5-cbc CAST5 in CBC mode
cast5-cfb CAST5 in CFB mode
cast5-ecb CAST5 in ECB mode
cast5-ofb CAST5 in OFB mode

END statement
Use the END statement to terminate a BASIC program or a section of an IF statement, READ
statements, or OPEN statement.

Syntax

END

An END statement is the last statement in a UniVerse BASIC program; it indicates the logical end of
the program. When an END statement that is not associated with an IF, READ, or OPEN statement is
encountered, execution of the program terminates. You can use comments after the END statement.

You can also use the END statement with conditional statements in the body of a program. In this case
END indicates the end of a multistatement conditional clause.

INFORMATION and REALITY flavors

In INFORMATION and REALITY flavors a warning message is printed if there is no final END statement.
The END.WARN option of the $OPTIONS statement prints the warning message in IDEAL, IN2, PICK,
and PIOPEN flavors under the same conditions.

Example

A="YES"
 IF A="YES" THEN

END CASE statement

149

 PRINT "THESE TWO LINES WILL PRINT ONLY"
 PRINT "WHEN THE VALUE OF 'A' IS 'YES'."
 END
 *
 PRINT
 PRINT "THIS IS THE END OF THE PROGRAM"
 END ; * END IS THE LAST STATEMENT EXECUTED

This is the program output:

THESE TWO LINES WILL PRINT ONLY
WHEN THE VALUE OF 'A' IS 'YES'.

THIS IS THE END OF THE PROGRAM

END CASE statement
Use the END CASE statement to end a set of CASE statements.

END TRANSACTION statement
Use the END TRANSACTION statement to specify where processing is to continue after a transaction
ends.

ENTER statement
Use the ENTER statement to transfer program control from the calling program to an external
subroutine without returning to the calling program. The subroutine must have been compiled and
cataloged.

Syntax

ENTER subroutine

variable = 'subroutine'
ENTER @variable

The ENTER statement is similar to the CALL statement, except that with the ENTER statement,
program flow does not return from the entered program to the calling program (see the CALL
statement, on page 84). The ENTER statement also does not accept arguments.

In the PIOPEN flavor, the ENTER statement is a synonym for the CALL statement. It takes arguments
and returns control to the calling program.

External subroutines can be entered directly or indirectly. To enter a subroutine indirectly, assign
the name of the cataloged subroutine to a variable or to an element of an array. Use the name of this
variable or array element, prefixed with an at sign (@), as the operand of the ENTER statement.

If subroutine evaluates to the null value, the ENTER statement fails and the program terminates with a
runtime error message.

Example

The following program transfers control to the cataloged program PROGRAM2:

Chapter 1: Statements and functions

150

ENTER PROGRAM2

EOF(ARG.) function
Use the EOF(ARG.) function to check if the command line argument pointer is past the last
command line argument. ARG. is part of the syntax of the EOF(ARG.) function and must be specified.
EOF(ARG.) returns 1 (true) if the pointer is past the last command line argument, otherwise it returns 0
(false).

The arg# argument of the GET(ARG.) statement and the SEEK(ARG.) statement affect the value of the
EOF(ARG.) function.

Syntax

EOF(ARG.)

EQS function
Use the EQS function to test if elements of one dynamic array are equal to the elements of another
dynamic array.

Syntax

EQS (array1, array2)

CALL -EQS (return.array, array1, array2)

CALL !EQS (return.array, array1, array2)

Each element of array1 is compared with the corresponding element of array2. If the two elements
are equal, a 1 is returned in the corresponding element of a dynamic array. If the two elements are
not equal, a 0 is returned. If an element of one dynamic array has no corresponding element in the
other dynamic array, a 0 is returned. If either element of a corresponding pair is the null value, null is
returned for that element.

If you use the subroutine syntax, the resulting dynamic array returns as return.array.

Example

A=1:@VM:45:@SM:3:@VM:"one"
 B=0:@VM:45:@VM:1
 PRINT EQS(A,B)

This is the program output:

0V1S0V0

EQUATE statement
In an EQUATE statement, symbol represents the value of expression or string. You can use the two
interchangeably in the program. When the program is compiled, each occurrence of symbol is
replaced by the value of expression or string. The value is compiled as object code and does not have
to be reassigned each time the program is executed.

You can define multiple symbols in a single EQUATE statement. symbol cannot be a number.

EQUATE statement

151

You can define symbol only once. Any subsequent EQUATE state generates a compiler error because
the compiler interprets the symbol before the statement is parsed.

If you use TO as a connector, the object can be any UniVerse BASIC expression. If you use LIT or
LITERALLY as a connector, the object must be a literal string.

RAID does not recognize EQUATE symbols. You must use the object value in RAID sessions.

There is no limit on the number of EQUATE statements allowed by the UniVerse BASIC compiler,
except that of memory.

If symbol is the same as the name of a BASIC function, the function is disabled in the program. If a
statement exists with the same name as a disabled function, the statement is also disabled.

Syntax

EQU[ATE] symbol TO expression [,symbol TO expression …]

EQU[ATE] symbol LIT[ERALLY] string [,symbol LIT string …]

Examples

In the following example, A is made equivalent to the string JANE:

JANE="HI"
 EQUATE A TO "JANE"
 PRINT A

Next, B is made equivalent to the variable JANE:

JANE="HI"
 EQUATE A TO "JANE"
 EQUATE B LIT "JANE"
 PRINT "A IS EQUAL TO ":A
 PRINT "B IS EQUAL TO ":B

This is the program output:

A IS EQUAL TO JANE
 B IS EQUAL TO HI

In the next example COST is made equivalent to the value of the expression PRICE*QUANTITY:

EQUATE COST LIT "PRICE * QUANTITY"
 PRICE=3;QUANTITY=7
 PRINT "THE TOTAL COST IS $": COST

This is the program output:

THE TOTAL COST IS $21

The next example shows an EQUATE statement with multiple symbols:

EQUATE C TO "5",
 D TO "7",
 E LIT "IF C=5 THEN PRINT 'YES'"
 PRINT "C+D=": C+D
 E

This is the program output:

C+D=12

Chapter 1: Statements and functions

152

 YES

EREPLACE function
Use the EREPLACE function to replace substring in expression with another substring. If you do not
specify occurrence, each occurrence of substring is replaced.

Syntax

EREPLACE (expression, substring, replacement [,occurrence [,begin]])

occurrence specifies the number of occurrences of substring to replace. To replace all occurrences,
specify occurrence as a number less than 1.

begin specifies the first occurrence to replace. If begin is omitted or less than 1, it defaults to 1.

If substring is an empty string, replacement is prefixed to expression. If replacement is an empty string,
all occurrences of substring are removed.

If expression evaluates to the null value, null is returned. If substring, replacement, occurrence, or begin
evaluates to the null value, the EREPLACE function fails and the program terminates with a run-time
error message.

The EREPLACE function behaves like the CHANGE function except when substring evaluates to an
empty string.

Example

A = "AAABBBCCCDDDBBB"
 PRINT EREPLACE (A,"BBB","ZZZ")
 PRINT EREPLACE (A,"","ZZZ")
 PRINT EREPLACE (A,"BBB","")

This is the program output:

AAAZZZCCCDDDZZZ
 ZZZAAABBBCCCDDDBBB
 AAACCCDDD

ERRMSG statement
Use the ERRMSG statement to print a formatted error message from the ERRMSG file.

message.ID is an expression evaluating to the record ID of a message to be printed on the screen.
Additional expressions are evaluated as arguments that can be included in the error message.

If message.ID evaluates to the null value, the default error message is printed:

Message ID is NULL: undefined error

Syntax

ERRMSG message.ID [,message.ID …]

EXCHANGE function

153

A standard Pick ERRMSG file is supplied with UniVerse. Users can construct a local ERRMSG file
using the following syntax in the records. Each field must start with one of these codes shown in the
following table:

Code Action

A[(n)] Display next argument left-justified; n specifies field length.
D Display system date.
E [string] Display record ID of message in brackets; string displayed after ID.
H [string] Display string.
L [(n)] Output a newline; n specifies number of newlines.
R [(n)] Display next argument right-justified; n specifies field length.
S [(n)] Output n blank spaces from beginning of line.
T Display system time.

Example

>ED ERRMSG
17 lines long.
 ----: P0001: HBEGINNING OF ERROR MESSAGE
 0002: L
 0003: HFILE NAMED "
 0004: A

0005: H" NOT FOUND.
 0006: L
 0007: H END OF MESSAGE
 Bottom at line 7
 ----: QOPEN 'SUN.SPORT' TO test
 THEN PRINT "File Opened" ELSE ERRMSG "1", "SUN.SPORT"

This is the program output:

BEGINNING OF ERROR MESSAGE
 FILE NAMED "SUN.SPORT" NOT FOUND.
 END OF MESSAGE

EXCHANGE function
Use the EXCHANGE function to replace one character with another or to delete all occurrences of the
specified character.

Syntax

EXCHANGE (string, xx, yy)

string is an expression evaluating to the string whose characters are to be replaced or deleted. If string
evaluates to the null value, null is returned.

xx is an expression evaluating to the character to be replaced, in hexadecimal notation.

yy is an expression evaluating to the replacement character, also in hexadecimal notation.

Chapter 1: Statements and functions

154

If yy is FF, all occurrences of xx are deleted. If xx or yy consist of fewer than two characters, no
conversion is done. If xx or yy is the null value, the EXCHANGE function fails and the program
terminates with a run-time error message.

Note: 0x80 is treated as @NULL.STR, not as @NULL.

If NLS is enabled, EXCHANGE uses only the first two bytes of xx and yy in order to evaluate the
characters. Note how the EXCHANGE function evaluates the following characters:

Bytes... Evaluated as...

00 through FF 00 through FF
00 through FA Unicode characters 0000 through FA
FB through FE System delimiters

For more information about character values, see the NLS Guide.

Example

In the following example, 41 is the hexadecimal value for the character A and 2E is the hexadecimal
value for the period character (.):

PRINT EXCHANGE('ABABC','41','2E')

This is the program output:

.B.BC

EXECUTE statement
Use the EXECUTE statement to execute UniVerse commands from within the BASIC program and then
return execution to the statement following the EXECUTE statement.

Syntax

EXECUTE commands [CAPTURING variable] [PASSLIST [dynamic.array]]
 [RTNLIST [variable]] [{SETTING | RETURNING} variable]
EXECUTE commands [,IN < expression] [,OUT > variable]
 [,SELECT[(list)]< dynamic.array] [,SELECT[(list)] > variable]
 ,PASSLIST [(dynamic.array)]] [,STATUS > variable]
EXECUTE commands [,//IN. < expression] [,//OUT. > variable]
 [,//SELECT.[(list)] < dynamic.array] [,//SELECT.[(list)]
> variable]
 [,//PASSLIST.[(dynamic.array)]] [,//STATUS. > variable]

EXECUTE creates a new environment for the executed command. This new environment is initialized
with the values of the current prompt, current printer state, Break key counter, the values of inline
prompts, KEYEDITs, KEYTRAPs, and KEYEXITs. If any of these values change in the new environment,
the changes are not passed back to the calling environment. In the new environment, stacked
@variables are either initialized to 0 or set to reflect the new environment. Nonstacked @variables are
shared between the EXECUTE and calling environments.

commands can be sentences, paragraphs, verbs, procs, menus, or BASIC programs. You can specify
multiple commands in the EXECUTE statement in the same way they are specified in a UniVerse
paragraph. Each command or line must be separated by a field mark (ASCII CHAR 254).

EXECUTE statement

155

The EXECUTE statement has two main syntaxes. The first syntax requires options to be separated by
spaces. The second and third syntaxes require options to be separated by commas. In the third syntax,
the "//" preceding the keywords and the periods following them are optional; the compiler ignores
these marks. Except for the slashes and periods, the second and third syntaxes are the same.

In the first syntax the CAPTURING clause assigns the output of the executed commands to variable.
The PASSLIST clause passes the current active select list or expression to the commands for use as
select list 0. The RTNLIST option assigns select list 0, created by the commands, to variable. If you do
not specify variable, the RTNLIST clause is ignored. Using the SETTING or RETURNING clause causes
the @SYSTEM.RETURN.CODE of the last executed command to be placed in variable.

In the second syntax the executed commands use the value of expression in the IN clause as input.
When the IN clause is used, the DATA queue is passed back to the calling program, otherwise data is
shared between environments. The OUT clause assigns the output of the commands to variable. The
SELECT clauses let you supply the select list stored in expression as a select list to the commands, or
to assign a select list created by the commands to variable. If list is not specified, select list 0 is used.
The PASSLIST clause passes the currently active select list to the commands. If you do not specify list,
select list 0 in the current program’s environment is passed as select list 0 in the executed command’s
environment. The STATUS clause puts the @SYSTEM.RETURN.CODE of the last executed command in
variable.

The EXECUTE statement fails and the program terminates with a run-time error message if:

▪ dynamic.array or expression in the IN clause evaluates to the null value.

▪ The command expression evaluates to the null value.

In transactions you can use only the following UniVerse commands and SQL statements with
EXECUTE:

▪ CHECK.SUM

▪ INSERT

▪ SEARCH

▪ SSELECT

▪ COUNT

▪ LIST

▪ SELECT (RetrieVe)

▪ STAT

▪ DELETE (SQL)

▪ LIST.ITEM

▪ SELECT (SQL)

▪ SUM

▪ DISPLAY

▪ LIST.LABEL

▪ SORT

▪ UPDATE

▪ ESEARCH

▪ RUN

▪ SORT.ITEM

Chapter 1: Statements and functions

156

INFORMATION flavor

In INFORMATION flavor accounts, the EXECUTE statement without any options is the same as the
PERFORM statement. In this case executed commands keep the same environment as the BASIC
program that called them. Use the EXEC.EQ.PERF option of the $OPTIONS statement to cause
EXECUTE to behave like PERFORM in other flavors.

$OPTIONS PIOPEN.EXECUTE option

Use the PIOPEN.EXECUTE option to make the EXECUTE statement work similarly to the way it works
on PI/open systems. The PIOPEN.EXECUTE option lets you use all syntaxes of the EXECUTE statement
without creating a new environment for the executed command.

Executed commands keep the same environment as the BASIC program that called them. Unnamed
common variables, @variables, and in-line prompts retain their values, and the DATA stack remain
active. Select lists also remain active unless they are passed back to the calling program by the
RTNLIST clause. If retained values change, the new values are passed back to the calling program.

Output from the CAPTURING clause does not include the trailing field mark, which the standard
CAPTURING clause does.

Example

The following example performs a nested SELECT, demonstrating the use of the CAPTURING, RTNLIST,
and PASSLIST keywords:

CMD = "SELECT VOC WITH TYPE = V"
 EXECUTE CMD RTNLIST VERBLIST1
 CMD = "SELECT VOC WITH NAME LIKE ...LIST..."
 EXECUTE CMD PASSLIST VERBLIST1 RTNLIST VERBLIST2
 CMD = "LIST VOC NAME"
 EXECUTE CMD CAPTURING RERUN PASSLIST VERBLIST2
 PRINT RERUN

The program first selects all VOC entries that define verbs, passing the select list to the variable
VERBLIST1. Next, it selects from VERBLIST1 all verbs whose names contain the string LIST and passes
the new select list to VERBLIST2. The list in VERBLIST2 is passed to the LIST command, whose output
is captured in the variable RERUN, which is then printed.

EXIT statement
Use the EXIT statement to quit execution of a FOR...NEXT loop or a LOOP...REPEAT loop and branch to
the statement following the NEXT or REPEAT statement of the loop. The EXIT statement quits exactly
one loop. When loops are nested and the EXIT statement is executed in an inner loop, the outer loop
remains in control.

Syntax

EXIT

Example

COUNT = 0
 LOOP
 WHILE COUNT < 100 DO
 INNER = 0
 LOOP

EXP function

157

 WHILE INNER < 100 DO
 COUNT += 1
 INNER += 1
 IF INNER = 50 THEN EXIT
 REPEAT
 PRINT "COUNT = ":COUNT
 REPEAT

This is the program output:

COUNT = 50
 COUNT = 100

EXP function
Use the EXP function to return the value of "e" raised to the power designated by expression. The
value of "e" is approximately 2.71828. expression must evaluate to a numeric value.

Syntax

EXP (expression)

If expression is too large or small, a warning message is printed and 0 is returned. If expression
evaluates to the null value, null is returned.

The formula used by the EXP function to perform the calculations is

value of EXP function = 2.71828**(expression)

Example

X=5
 PRINT EXP(X-1)

This is the program output:

54.5982

EXTRACT function
Use the EXTRACT function to access the data contents of a specified field, value, or subvalue from a
dynamic array. You can use either syntax shown to extract data. The first syntax uses the EXTRACT
keyword, the second uses angle brackets.

Syntax

EXTRACT (dynamic.array, field#[,value# [,subvalue#]])

variable < field# [,value# [,subvalue#]] >

dynamic.array is an expression that evaluates to the array in which the field, value, or subvalue to be
extracted is to be found. If dynamic.array evaluates to the null value, null is returned.

field# specifies the field in the dynamic array; value# specifies the value in the field; subvalue# specifies
the subvalue in the value. These arguments are called delimiter expressions. The numeric values of the

Chapter 1: Statements and functions

158

delimiter expressions determine whether a field, a value, or a subvalue is to be extracted. value# and
subvalue# are optional.

Angle brackets used as an EXTRACT function appear on the right side of an assignment statement.
Angle brackets on the left side of the assignment statement indicate that a REPLACE function is to be
performed (for examples, see the REPLACE function, on page 331).

The second syntax uses angle brackets to extract data from dynamic arrays. variable specifies
the dynamic array containing the data to be extracted. field#, value#, and subvalue# are delimiter
expressions.

Here are the five outcomes that can result from the different uses of delimiter expressions:

Case Result

Case 1: If field#, value#, and subvalue# are omitted or evaluate to 0, an empty string is
returned.

Case 2: If value# and subvalue# are omitted or evaluate to 0, the entire field is extracted.
Case 3: If subvalue# is omitted or specified as 0 and value# and field# evaluate to

nonzero, the entire specified value in the specified field is extracted.
Case 4: If field#, value#, and subvalue# are all specified and are all nonzero, the

specified subvalue is extracted.
Case 5: If field#, value#, or subvalue# evaluates to the null value, the EXTRACT function

fails and the program terminates with a run-time error message.

If a higher-level delimiter expression has a value of 0 when a lower-level delimiter is greater than 0, a 1
is assumed. The delimiter expressions are from highest to lowest: field, value, and subvalue.

If the EXTRACT function references a subelement of an element whose value is the null value, null is
returned.

Example

In the following example a field mark is shown by F, a value mark is shown by V, and a subvalue mark
is shown by S:

 VAR=1:@FM:4:@VM:9:@SM:3:@SM:5:@FM:1:@VM:0:@SM:7:@SM:3
 Z=EXTRACT(VAR,1,0,0)
 PRINT Z
 *
 Z=VAR<1,1,1>
 PRINT Z
 *
 Z=EXTRACT(VAR,2,1,1)
 PRINT Z
 *
 Z=VAR<3,2,3>
 PRINT Z
 *
 Z=EXTRACT(VAR,10,0,0)
 PRINT Z
 *
 Z=EXTRACT(VAR,2,2,0)
 PRINT Z
 *

This is the program output:

1
 1

FADD function

159

 4
 3

 9S3S5

FADD function
Use the FADD function to perform floating-point addition on two numeric values. If either number
evaluates to the null value, null is returned. If either number1 or number2 evaluates to the null value,
null is returned. return.array equates to number1 plus number2.

This function is provided for compatibility with existing software. You can also use the + operator to
perform floating-point addition.

Syntax

CALL !FADD (return.array, number1, number2)

Example

PRINT FADD(.234,.567)

This is the program output:

0.801

FDIV function
Use the FDIV function to perform floating-point division on two numeric values. number1 is divided
by number2. return.array equates to number1 divided by number2. If number2 is 0, a runtime error
message is produced and a 0 is returned for the function. If either number evaluates to the null value,
null is returned.

This function is provided for compatibility with existing software. You can also use the / operator to
perform floating-point division.

Syntax

FDIV (number1, number2)

CALL !FDIV (return.array, number1, number2)

Example

PRINT FDIV(.234,.567)

This is the program output:

0.4127

FFIX function
Use the FFIX function to convert a floating-point number to a numeric string with fixed precision. If
number evaluates to the null value, null is returned.

Chapter 1: Statements and functions

160

This function is provided for compatibility with existing software.

Syntax

FFIX (number)

FFLT function
Use the FFLT function to round a number to a string with a precision of 13. The number also converts
to scientific notation when required for precision. If number evaluates to the null value, null is
returned.

Syntax

FFLT (number)

FIELD function
Use the FIELD function to return one or more substrings located between specified delimiters in
string.

Syntax

FIELD (string, delimiter, occurrence [,num.substr])

delimiter evaluates to any character, including field mark, value mark, and subvalue marks. It delimits
the start and end of the substring. If delimiter evaluates to more than one character, only the first
character is used. Delimiters are not returned with the substring.

occurrence specifies which occurrence of the delimiter is to be used as a terminator. If occurrence is
less than 1, 1 is assumed.

num.substr specifies the number of delimited substrings to return. If the value of num.substr is an
empty string or less than 1, 1 is assumed. When more than one substring is returned, delimiters are
returned along with the successive substrings.

If either delimiter or occurrence is not in the string, an empty string is returned, unless occurrence
specifies 1. If occurrence is 1 and delimiter is not found, the entire string is returned. If delimiter is an
empty string, the entire string is returned.

If string evaluates to the null value, null is returned. If string contains CHAR(128) (that is, @NULL.STR),
it is treated like any other character in a string. If delimiter, occurrence, or num.substr evaluate to the
null value, the FIELD function fails and the program terminates with a run-time error message.

The FIELD function works identically to the GROUP function.

Examples

D=FIELD("###DHHH#KK","#",4)
 PRINT "D= ",D

The variable D is set to DHHH because the data between the third and fourth occurrence of the
delimiter # is DHHH.

REC="ACADABA"
 E=FIELD(REC,"A",2)

FIELDS function

161

 PRINT "E= ",E

The variable E is set to "C".

VAR="?"
 Z=FIELD("A.1234$$$$&&",VAR,3)
 PRINT "Z= ",Z

Z is set to an empty string since "?" does not appear in the string.

Q=FIELD("+1+2+3ABAC","+",2,2)
 PRINT "Q= ",Q

Q is set to "1+2" since two successive fields were specified to be returned after the second occurrence
of "+".

This is the program output:

D= DHHH
E= C
Z=
Q= 1+2

FIELDS function
Use the FIELDS function to return a dynamic array of substrings located between specified delimiters
in each element of dynamic.array.

Syntax

FIELDS (dynamic.array, delimiter, occurrence [,num.substr])

CALL -FIELDS (return.array, dynamic.array, delimiter, occurrence,
num.substr)

CALL !FIELDS (return.array, dynamic.array, delimiter, occurrence,
num.substr)

delimiter evaluates to any character, excluding value and subvalue characters. It marks the start and
end of the substring. If delimiter evaluates to more than one character, the first character is used.

occurrence specifies which occurrence of the delimiter is to be used as a terminator. If occurrence is
less than 1, 1 is assumed.

num.substr specifies the number of delimited substrings to return. If the value of num.substr is an
empty string or less than 1, 1 is assumed. In this case delimiters are returned along with the successive
substrings. If delimiter or occurrence does not exist in the string, an empty string is returned, unless
occurrence specifies 1. If occurrence is 1 and the specified delimiter is not found, the entire element is
returned. If occurrence is 1 and delimiter is an empty string, an empty string is returned.

If dynamic.array is the null value, null is returned. If any element in dynamic.array is the null value,
null is returned for that element. If delimiter, occurrence, or num.substr evaluates to the null value, the
FIELDS function fails and the program terminates with a runtime error message.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Chapter 1: Statements and functions

162

Example

 A="000-P-0":@VM:"-H--O-":@SM:"N-I-T":@VM:"BC":@SM:"-L-"
 PRINT FIELDS(A,"-",2)

This is the program output:

PVHSIVSL

FIELDSTORE function
Use the FIELDSTORE function to modify character strings by inserting, deleting, or replacing fields
separated by specified delimiters.

Syntax

FIELDSTORE (string, delimiter, start, n, new.string)

string is an expression that evaluates to the character string to be modified.

delimiter evaluates to any single ASCII character, including field, value, and subvalue marks.

start evaluates to a number specifying the starting field position. Modification begins at the field
specified by start. If start is greater than the number of fields in string, the required number of empty
fields is generated before the FIELDSTORE function is executed.

n specifies the number of fields of new.string to insert in string. n determines how the FIELDSTORE
operation is executed. If n is positive, n fields in string are replaced with the first n fields of new.string.
If n is negative, n fields in string are replaced with all the fields in new.string. If n is 0, all the fields in
new.string are inserted in string before the field specified by start.

If string evaluates to the null value, null is returned. If delimiter, start, n, or new.string is null, the
FIELDSTORE function fails and the program terminates with a runtime error message.

Example

Q='1#2#3#4#5'
 *
 TEST1=FIELDSTORE(Q,"#",2,2,"A#B")
 PRINT "TEST1= ",TEST1
 *
 TEST2=FIELDSTORE(Q,"#",2,-2,"A#B")
 PRINT "TEST2= ",TEST2
 *
 TEST3=FIELDSTORE(Q,"#",2,0,"A#B")
 PRINT "TEST3= ",TEST3
 *
 TEST4=FIELDSTORE(Q,"#",1,4,"A#B#C#D")
 PRINT "TEST4= ",TEST4
 *
 TEST5=FIELDSTORE(Q,"#",7,3,"A#B#C#D")
 PRINT "TEST5= ",TEST5

This is the program output:

TEST1= 1#A#B#4#5
 TEST2= 1#A#B#4#5
 TEST3= 1#A#B#2#3#4#5
 TEST4= A#B#C#D#5

FILEINFO function

163

 TEST5= 1#2#3#4#5##A#B#C

FILEINFO function
Use the FILEINFO function to return information about the specified file’s configuration, such as the
specified file’s parameters, its modulus and load, its operating system file name, and its VOC name.
The information returned depends on the file type and the value of the key.

Syntax

FILEINFO (file.variable , key)

file.variable is the file variable of an open file.

key is a number that indicates the particular information required. These key numbers are described in
the Keys and Values Supplied to the FILEINFO Function table.

If the first argument is not a file variable, all keys except 0 return an empty string. A warning message
is also displayed. A fatal error results if an invalid key is supplied.

Equate names for keys

An insert file of equate names is provided to let you use mnemonics rather than key numbers. The
insert file, called FILEINFO.INS.IBAS, is located in the INCLUDE directory in the UV account directory. It
is referenced in PIOPEN flavor accounts through a VOC file pointer called SYSCOM. Use the $INCLUDE
statement to insert this file if you want to use equate names, as shown in the example. The following
table lists the symbolic name, value, and description:

Symbolic Name Value Description

FINFO$IS.FILEVAR 0 1 if file.variable is a valid file variable; 0 otherwise.
FINFO$VOCNAME 1 VOC name of the file.
FINFO$PATHNAME 2 Path name of the file.
FINFO$TYPE 3 File type as follows:

1 Static hashed

3 Dynamic hashed

4 Type 1

5 Sequential

7 Distributed and Multivolume
FINFO$HASHALG 4 Hashing algorithm: 2 for GENERAL, 3 for SEQ.NUM.
FINFO$MODULUS 5 Current modulus.
FINFO$MINMODULUS 6 Minimum modulus.
FINFO$GROUPSIZE 7 Group size, in 1-KB units.
FINFO$LARGERECORDSIZE 8 Large record size.
FINFO$MERGELOAD 9 Merge load parameter.
FINFO$SPLITLOAD 10 Split load parameter.
FINFO$CURRENTLOAD 11 Current loading of the file (%).
FINFO$NODENAME 12 Empty string, if the file resides on the local system,

otherwise the name of the node where the file resides.
FINFO$IS.AKFILE 13 1 if secondary indexes exist on the file; 0 otherwise.

Chapter 1: Statements and functions

164

Symbolic Name Value Description

FINFO$CURRENTLINE 14 Current line number.
FINFO$PARTNUM 15 For a distributed file, returns list of currently open part

numbers.
FINFO$STATUS 16 For a distributed file, returns list of status codes showing

whether the last I/O operation succeeded or failed for
each part. A value of –1 indicates the corresponding part
file is not open.

FINFO$RECOVERYTYPE 17 1 if the file is marked as recoverable, 0 if it is not. Returns
an empty string if recoverability is not supported on the
file type (such as type 1 and type 19 files).

FINFO$RECOVERYID 18 Always returns an empty string.
FINFO$IS.FIXED.MODULUS 19 Always returns 0.
FINFO$NLSMAP 20 If NLS is enabled, the file map name, otherwise an empty

string. If the map name is the default specified in the
uvconfig file, the returned string is the map name
followed by the name of the configurable parameter in
parentheses.

FINFO$ENCRYPTION 22 Returns a dynamic array containing the following
information:

▪ For a file encrypted with the WHOLERECORD option:
-1@VM<key_id>@VM<algorithm>

▪ For a file encrypted at the field level:
<location>@VM<key_id>@VM
<algorithm>@VM<field_name>[@FM
<location>...@VM<field_name>]

▪ Returns an empty string if the file is not encrypted.
FINFO$REPSTATUS 24 Return values can be:

0 – The file is not published, subscribed, or subwriteable.

1 – The file is being published.

2 – The file is being subscribed.

3 – The file is subwriteable.

Note: If U2 Data Replication is not running, this function
returns 0 for any file used with this function.

Value returned by the STATUS function

If the function executes successfully, the value returned by the STATUS function is 0. If the function
fails to execute, STATUS returns a nonzero value. The following table lists the key, file type, and
returned value for key:

Key Dynamic Directory Distributed Sequential

0 1 = file open

0 = file closed

1 = file open

0 = file closed

Dynamic array of
codes:

1 = file open

0 = file closed

1 = file open

0 = file closed

1 VOC name VOC name VOC name VOC name

FILEINFO function

165

Key Dynamic Directory Distributed Sequential

2 File’s path name Path name of file Dynamic array of
complete path
names in VOC record
order (path name
as used in VOC for
unavailable files)

File’s path name

3 3 4 7 5
4 2 = GENERAL

3 = SEQ.NUM

Empty string Dynamic array of
codes:

2 = GENERAL

3 = SEQ.NUM

Empty string

5 Current

modulus

1 Dynamic array of the
current modulus of
each part file

6 Minimum

modulus

Empty string Dynamic array of the
minimum modulus
of each part file

Empty string

7 Group size in disk
records

Empty string Dynamic array of the
group size of each
part file

Empty string

8 Large record size Empty string Dynamic array of the
large record size of
each part file

Empty string

9 Merge load value Empty string Dynamic array of
the merge load % of
each part file

Empty string

10 Split load value Empty string Dynamic array of the
split load value of
each part file

Note: The values
returned for
distributed files are
dynamic arrays with
the appropriate
value for each part
file. The individual
values depend on the
file type of the part
file. For example,
if the part file is a
hashed file, some
values, such as
minimum modulus,
have an empty value
in the dynamic array
for that part file.

Empty string

11 Current load value Empty string Dynamic array of the
current load value of
each part file 1

Empty string

Chapter 1: Statements and functions

166

Key Dynamic Directory Distributed Sequential

12 Local file: empty
string

Remote file: node
name

Empty string Dynamic array
of values where
value is:

Local file = empty
string

Remote file = node
name

Empty string

13 1 = indexes

2 = no indexes

0 1 = common indexes
present

2 = none present

Empty string

15 Empty string Empty string Dynamic array of
codes in VOC record
order. Code is: empty
string if part file not
open; part number if
file is open.

Empty string

16 Empty string Empty string Dynamic array of
codes in VOC record
order for each part
file:

 0 = I/O operation OK

–1 = part file
unavailable

>0 = error code

Empty string

Note: The first time that an I/O operation fails for a part file in a distributed file, the FILEINFO
function returns an error code for that part file. For any subsequent I/O operations on the
distributed file with the same unavailable part file, the FILEINFO function returns –1.

NLS mode

The FILEINFO function determines the map name of a file by using the value of FINFO$NLSMAP. NLS
uses the insert file called FILEINFO.H. For more information about maps, see the NLS Guide.

Examples

In the following example, the file containing the key equate names is inserted with the $INCLUDE
statement. The file FILMS is opened and its file type displayed.

$INCLUDE SYSCOM FILEINFO.INS.IBAS
 OPEN '','FILMS' TO FILMS
 ELSE STOP 'CANT OPEN FILE'
 PRINT FILEINFO(FILMS,FINFO$TYPE)

In the next example, the file FILMS is opened and its file type displayed by specifying the numeric key:

OPEN '','FILMS' TO FILMS
 ELSE STOP 'CANT OPEN FILE'
 PRINT FILEINFO(FILMS,3)

FILELOCK statement

167

FILELOCK statement
Use the FILELOCK statement to acquire a lock on an entire file. This prevents other users from
updating the file until the program releases it. A FILELOCK statement that does not specify lock.type is
equivalent to obtaining an update record lock on every record of the file.

Syntax

FILELOCK [file.variable] [, lock.type]
[ON ERROR statements] [LOCKED statements]

file.variable specifies an open file. If file.variable is not specified, the default file is assumed (for more
information on default files, see the OPEN statement, on page 283). If the file is neither accessible
nor open, the program terminates with a runtime error message. If file.variable evaluates to the null
value, the FILELOCK statement fails and the program terminates with a runtime error message.

lock.type is an expression that evaluates to one of the following keywords:

▪ SHARED (to request an FS lock)

▪ INTENT (to request an IX lock)

▪ EXCLUSIVE (to request an FX lock)The ON ERROR clause

The ON ERROR clause is optional in the FILELOCK statement. The ON ERROR clause lets you specify
an alternative for program termination when a fatal error is encountered during processing of the
FILELOCK statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

▪ Any uncommitted transactions begun within the current execution environment roll back.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number. If a
FILELOCK statement is used when any portion of a file is locked, the program waits until the file is
released.

The LOCKED clause

The LOCKED clause is optional, but recommended. The LOCKED clause handles a condition caused
by a conflicting lock (set by another user) that prevents the FILELOCK statement from processing. The
LOCKED clause is executed if one of the following conflicting locks exists:

Chapter 1: Statements and functions

168

This requested lock... Conflicts with...

Shared file lock Exclusive file lock

Intent file lock

Update record lock
Intent file lock Exclusive file lock

Intent file lock

Shared file lock

Update record lock
Exclusive file lock Exclusive file lock

Intent file lock

Shared file lock

Update record lock

Shared record lock

If the FILELOCK statement does not include a LOCKED clause and a conflicting lock exists, the program
pauses until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the terminal number of the
user who owns the conflicting lock.

Releasing locks

A shared, intent, or exclusive file lock can be released by a FILEUNLOCK statement, RELEASE
statement, or STOP statement.

Locks acquired or promoted within a transaction are not released when previous statements are
processed.

Examples

OPEN '','SUN.MEMBER' TO DATA ELSE STOP "CAN'T OPEN FILE"
 FILELOCK DATA LOCKED STOP 'FILE IS ALREADY LOCKED'
 FILEUNLOCK DATA
 OPEN '','SUN.MEMBER' ELSE STOP "CAN'T OPEN FILE"
 FILELOCK LOCKED STOP 'FILE IS ALREADY LOCKED'
 PRINT "The file is locked."
 FILEUNLOCK

This is the program output:

The file is locked.

The following example acquires an intent file lock:

FILELOCK fvar, "INTENT" LOCKED
 owner = STATUS()
 PRINT "File already locked by":owner
 STOP
 END

FILEUNLOCK statement

169

FILEUNLOCK statement
Use the FILEUNLOCK statement to release a file lock set by the FILELOCK statement.

Syntax

FILEUNLOCK [file.variable] [ON ERROR statements]

file.variable specifies a file previously locked with a FILELOCK statement. If file.variable is not specified,
the default file with the FILELOCK statement is assumed (for more information on default files, see the
OPEN statement, on page 283). If file.variable evaluates to the null value, the FILEUNLOCK statement
fails and the program terminates with a run-time error message.

The FILEUNLOCK statement releases only file locks set with the FILELOCK statement. Update record
locks must be released with one of the other unlocking statements (for example, WRITE, WRITEV, and
so on).

The ON ERROR clause

The ON ERROR clause is optional in the FILEUNLOCK statement. The ON ERROR clause lets you specify
an alternative for program termination when a fatal error is encountered during processing of the
FILEUNLOCK statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

▪ Any uncommitted transactions begun within the current execution environment roll back.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number. The
ON ERROR clause is not supported if the FILEUNLOCK statement is within a transaction.

Example

In the following example, the first FILEUNLOCK statement unlocks the default file. The second
FILEUNLOCK statement unlocks the file variable FILE.

OPEN '','SUN.MEMBER' ELSE STOP "CAN'T OPEN SUN.MEMBER"
 FILELOCK
 .
 .
 .
 FILEUNLOCK
 OPEN 'EX.BASIC' TO FILE ELSE STOP
 FILELOCK FILE
 .
 .
 .

Chapter 1: Statements and functions

170

 FILEUNLOCK FILE

FIND statement
Use the FIND statement to locate an element in dynamic.array. The field, value, and subvalue
positions of element are put in the variables fmc, vmc, and smc respectively.

Syntax

FINDelement IN dynamic.array [,occurrence] SETTING fmc [,vmc [,smc]]
 {THEN statements [ELSE statements] | ELSE statements}

element evaluates to a character string. FIND succeeds only if the string matches an element in its
entirety. If element is found in dynamic.array, any THEN statements are executed. If element is not
found, or if dynamic.array evaluates to the null value, fmc, vmc, and smc are unchanged, and the ELSE
statements are executed.

If occurrence is unspecified, it defaults to 1. If occurrence is the null value, the FIND statement fails and
the program terminates with a runtime error message.

Example

 A="THIS":@FM:"IS":@FM:"A":@FM:"DYNAMIC":@FM:"ARRAY"
 FIND "IS" IN A SETTING FM,VM,SM ELSE ABORT
 PRINT "FM=",FM
 PRINT "VM=",VM
 PRINT "SM=",SM

This is the program output:

FM= 2
VM= 1
SM= 1

FINDSTR statement
Use the FINDSTR statement to locate substring in dynamic.array. The field, value, and subvalue
positions of substring are placed in the variables fmc, vmc, and smc respectively.

Syntax

FINDSTRsubstring IN dynamic.array [,occurrence]
SETTING fmc [,vmc [,smc]]
 {THEN statements [ELSE statements] | ELSE statements}

FINDSTR succeeds if it finds substring as part of any element in dynamic array. If substring is found
in dynamic.array, any THEN statements are executed. If substring is not found, or if dynamic.array
evaluates to the null value, fmc, vmc, and smc are unchanged, and the ELSE statements are executed.

If occurrence is unspecified, it defaults to 1. If occurrence is the null value, FINDSTR fails and the
program terminates with a runtime error message.

FIX function

171

Example

 A="THIS":@FM:"IS":@FM:"A":@FM:"DYNAMIC":@FM:"ARRAY"
 FINDSTR "IS" IN A SETTING FM,VM,SM ELSE ABORT
 PRINT "FM=",FM
 PRINT "VM=",VM
 PRINT "SM=",SM

This is the program output:

FM=1
 VM=1
 SM=1

FIX function
Use the FIX function to convert a numeric value to a floating-point number with a specified precision.
FIX lets you control the accuracy of computation by eliminating excess or unreliable data from
numeric results. For example, a bank application that computes the interest accrual for customer
accounts does not need to deal with credits expressed in fractions of cents. An engineering application
needs to throw away digits that are beyond the accepted reliability of computations.

Syntax

FIX (number [,precision [,mode]])

number is an expression that evaluates to the numeric value to be converted.

precision is an expression that evaluates to the number of digits of precision in the floating-point
number. If you do not specify precision, the precision specified by the PRECISION statement is used.
The default precision is 4.

mode is a flag that specifies how excess digits are handled. If mode is either 0 or not specified, excess
digits are rounded off. If mode is anything other than 0, excess digits are truncated.

If number evaluates to the null value, null is returned.

Examples

The following example calculates a value to the default precision of 4:

REAL.VALUE = 37.73629273
 PRINT FIX (REAL.VALUE)

This is the program output:

37.7363

The next example calculates the same value to two digits of precision. The first result is rounded off,
the second is truncated:

PRINT FIX (REAL.VALUE, 2)
 PRINT FIX (REAL.VALUE, 2, 1)

This is the program output:

37.74

Chapter 1: Statements and functions

172

 37.73

FLUSH statement
The FLUSH statement causes all the buffers for a sequential I/O file to be written immediately.
Normally, sequential I/O uses UNIX "stdio" buffering for input/output operations, and writes are not
performed immediately.

Syntax

FLUSH file.variable {THEN statements [ELSE statements] | ELSE
statements}

file.variable specifies a file previously opened for sequential processing. If file.variable evaluates to the
null value, the FLUSH statement fails and the program terminates with a run-time error message.

After the buffer is written to the file, the THEN statements are executed, and the ELSE statements are
ignored. If THEN statements are not present, program execution continues with the next statement.

If the file cannot be written to or does not exist, the ELSE statements are executed; any THEN
statements are ignored.

See the OPENSEQ statement, on page 289 and WRITESEQ statement, on page 464 for more
information on sequential file processing.

Example

OPENSEQ 'FILE.E', 'RECORD1' TO FILE THEN
 PRINT "'FILE.E' OPENED FOR SEQUENTIAL PROCESSING"
 END ELSE STOP
 WEOFSEQ FILE
 *
 WRITESEQ 'NEW LINE' ON FILE THEN
 FLUSH FILE THEN
 PRINT "BUFFER FLUSHED"
 END ELSE PRINT "NOT FLUSHED"
 ELSE ABORT
 *
 CLOSESEQ FILE
 END

FMT function
Use the FMT function or a format expression to format data for output. Any BASIC expression can be
formatted for output by following it with a format expression.

Syntax

FMT (expression, format)expressionformat

expression evaluates to the numeric or string value to be formatted.

format is an expression that evaluates to a string of formatting codes. The syntax of the format
expression is:

[width] [fill] justification [edit] [mask]

FMT function

173

The format expression specifies the width of the output field, the placement of background or fill
characters, line justification, editing specifications, and format masking.

If expression evaluates to the null value, null is returned. If format evaluates to null, the FMT function
and the format operation fail.

width is an integer that specifies the size of the output field in which the value is to be justified. If you
specify mask, you need not specify width. If you do not specify mask, width is required.

fill specifies the character to be used to pad entries when filling out the output field. fill is specified as
a single character. The default fill character is a space. If you want to use a numeric character or the
letter L, R, T, or Q as a fill character, you must enclose it in single quotation marks.

justification is required in one of the following forms.

Decimal notation:

Value Description

L Left justification - Break on field length.
R Right justification - Break on field length.
T Text justification - Left justify and break on space.
U Left justification – Break on field length.
C Center justification –Break on field length

Exponential notation:

Value Description

Q Right justification - Break on field length.
QR Right justification - Break on field length.
QL Left justification

edit can be any of the following:

Value Description

n[m] Used with L, R, or T justification, n is the number of digits to display to the
right of the decimal point, and m descales the value by m minus the current
precision. Each can be a number from 0 through 9. You must specify n in order
to specify m. If you do not specify m, m = 0 is assumed. If you do not specify n, n
= m = 0 is assumed. Remember to account for the precision when you specify m.
The default precision is 4.

If you specify 0 for n, the value is rounded to the nearest integer. If the
formatted value has fewer decimal places than n, output is padded with zeros
to the nth decimal place. If the formatted value has more decimal places than n,
the value is rounded to the nth decimal place.

If you specify 0 for m, the value is descaled by the current precision (0 - current
precision).

nEm Used with Q, QR, or QL justification, n is the number of fractional digits, and m
specifies the exponent. Each can be a number from 0 through 9.

n.m Used with Q, QR, or QL justification, n is the number of digits preceding the
decimal point, and m the number of fractional digits. Each can be a number
from 0 through 9.

$ Prefixes a dollar sign to the value.
F Prefixes a franc sign to the value.
, Inserts commas after every thousand.

Chapter 1: Statements and functions

174

Value Description

Z Suppresses leading zeros. Returns an empty string if the value is 0. When used
with the Q format, only the trailing fractional zeros are suppressed, and a 0
exponent is suppressed.

E Surrounds negative numbers with angle brackets (< >).
C Appends cr to negative numbers.
D Appends db to positive numbers.
B Appends db to negative numbers.
N Suppresses a minus sign on negative numbers.
M Appends a minus sign to negative numbers.
T Truncates instead of rounding.
Y In NLS mode, prefixes the yen/yuan character to the value, that is, the Unicode

value 00A5. Returns a status code of 2 if you use Y with the MR or ML code. If
NLS is disabled or if the Monetary category is not used, Y prefixes the byte value
0xA5.

Note: The E, M, C, D and N options define numeric representations for monetary use, using
prefixes or suffixes. In NLS mode, these options override the Numeric and Monetary categories.

mask lets literals be intermixed with numerics in the formatted output field. The mask can include any
combination of literals and the following three special format mask characters:

Character Description

#n Data is displayed in a field of n fill characters. A blank is the default fill character.
It is used if the format string does not specify a fill character after the width
parameter.

%n Data is displayed in a field of n zeros.
*n Data is displayed in a field of n asterisks.

If you want to use numeric characters or any of the special characters as literals, you must escape the
character with a backslash (\).

A #, %, or * character followed by digits causes the background fill character to be repeated n times.
Other characters followed by digits cause those characters to appear in the output data n times.

mask can be enclosed in parentheses () for clarity. If mask contains parentheses, you must include the
whole mask in another set of parentheses. For example:

((###) ###-####)

You must specify either width or mask in the FMT function. You can specify both in the same function.
When you specify width, the string is formatted according to the following rules:

If string is smaller than width n, it is padded with fill characters.

If string is larger than width n, a text mark (CHAR(251)) is inserted every nth character and each field is
padded with the fill character to width.

The STATUS function reflects the result of edit as follows:

Value Description

0 The edit code is successful.
1 The string expression is invalid.
2 The edit code is invalid.

FMTDP function

175

See the STATUS function, on page 388 for more information.

REALITY flavor

In REALITY flavor accounts, you can use conversion codes in format expressions.

Examples

Format expressions Formatted value

Z=FMT("236986","R##-##-##") Z= 23-69-86
X="555666898"

X=FMT(X,"20*R2$,")

X= *****$555,666,898.00

Y="DAVID"

Y=FMT(Y,"10.L")

Y= DAVID.....

V="24500"

V=FMT(V,"10R2$Z")

V= $24500.00

R=FMT(77777,"R#10") R= 77777
B="0.12345678E1"

B=FMT(B,"9*Q")

B= *1.2346E0

PRINT 233779 "R" 233779
PRINT 233779 "R0" 233779
PRINT 233779 "R00" 2337790000
PRINT 233779 "R2" 233779.00
PRINT 233779 "R20" 2337790000.00
PRINT 233779 "R24" 233779.00
PRINT 233779 "R26" 2337.79
PRINT 2337.79 "R" 2337.79
PRINT 2337.79 "R0" 2338
PRINT 2337.79 "R00" 23377900
PRINT 2337.79 "R2" 2337.79
PRINT 2337.79 "R20" 23377900.00
PRINT 2337.79 "R24" 2337.79
PRINT 2337.79 "R26" 23.38

FMTDP function
In NLS mode, use the FMTDP function to format data for output in display positions rather than
character lengths.

Syntax

FMTDP (expression, format [, mapname])

expression evaluates to the numeric or string value to be formatted. Any unmappable characters in
expression are assumed to have a display length of 1.

Chapter 1: Statements and functions

176

format is an expression that evaluates to a string of formatting codes. The syntax of the format
expression is:

[width] [fill] justification [edit] [mask]

The format expression specifies the width of the output field, the placement of background or fill
characters, line justification, editing specifications, and format masking. For complete syntax details,
see the FMT function, on page 172.

If format has a display length greater than 1, and there is only one display position left to fill, FMTDP
enters the extra fill character. The returned string can occupy more display positions than you
intended.

mapname is the name of an installed map. If mapname is not installed, the display positions of the
characters in expression are used. If any unmappable characters exist in expression, the display
length is 1, that is, the unmapped character displays as a single unmappable character. If mapname
is omitted, the map associated with the channel activated by the PRINTER ON statement is used;
otherwise, the map associated with the terminal channel (or print channel 0) is used.

You can also specify mapname as CRT, AUX, LPTR, and OS. These use the maps associated with
the terminal, auxiliary printer, print channel 0, or the operating system, respectively. If you specify
mapname as NONE, the string is not mapped.

If you execute FMTDP when NLS is disabled, the behavior is the same as for FMT. For more information
about display length, see the UniVerse NLS Guide.

FMTS function
Use the FMTS function to format elements of dynamic.array for output. Each element of the array is
acted upon independently and is returned as an element in a new dynamic array.

Syntax

FMTS (dynamic.array, format)

CALL -FMTS (return.array, dynamic.array, format)

CALL !FMTS (return.array, dynamic.array, format)

format is an expression that evaluates to a string of formatting codes. The syntax of the format
expression is:

[width] [background] justification [edit] [mask]

The format expression specifies the width of the output field, the placement of background or fill
characters, line justification, editing specifications, and format masking. For complete syntax details,
see the FMT function, on page 172.

If dynamic.array evaluates to the null value, null is returned. If format evaluates to null, the FMTS
function fails and the program terminates with a runtime error message.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

FMTSDP function
In NLS mode, use the FMTSDP function to format elements of dynamic.array for output in display
positions rather than character lengths. Each element of the array is acted upon independently and
is returned as an element in a new dynamic array. Any unmappable characters in dynamic.array are
assumed to have a display length of 1.

FMUL function

177

Syntax

FMTSDP (dynamic.array, format [, mapname])

format is an expression that evaluates to a string of formatting codes. The syntax of the format
expression is:

[width] [background] justification [edit] [mask]

The format expression specifies the width of the output field, the placement of background or fill
characters, line justification, editing specifications, and format masking. For complete syntax details,
see the FMT function, on page 172.

If format has a display length greater than 1, and there is only one display position left to fill, FMTSDP
enters the extra fill character. The returned string can occupy more display positions than you intend.

mapname is the name of an installed map. If mapname is not installed, the display positions of the
characters in dynamic.array are used. If any unmappable characters exist in dynamic.array, the display
length is 1, that is, the unmapped character displays as a single unmappable character. If mapname
is omitted, the map associated with the channel activated by the PRINTER ON statement is used;
otherwise, the map associated with the terminal channel (or print channel 0) is used.

You can also specify mapname as CRT, AUX, LPTR, and OS. These use the maps associated with
the terminal, auxiliary printer, print channel 0, or the operating system, respectively. If you specify
mapname as NONE, the string is not mapped.

If dynamic.array evaluates to the null value, null is returned. If format evaluates to null, the FMTSDP
function fails and the program terminates with a run-time error message.

Note: If you execute FMTSDP when NLS is disabled, the behavior is the same as for FMTS function.

For more information about display length, see the UniVerse NLS Guide.

FMUL function
Use the FMUL function to perform floating-point multiplication on two numeric values. If either
number evaluates to the null value, null is returned. return.array equates to number1 multiplied by
number2.

This function is provided for compatibility with existing software. You can also use the * operator to
perform floating-point multiplication.

Syntax

FMUL (number1, number2)

CALL !FMUL (return.array, number1, number2)

Example

PRINT FMUL(.234,.567)

This is the program output:

0.1327

Chapter 1: Statements and functions

178

FOLD function
Use the FOLD function to divide a string into a number of substrings separated by field marks.

Syntax

FOLD (string, length)

CALL !FOLD (subdivided.string, string, length)

string is separated into substrings of length less than or equal to length. string is separated on blanks,
if possible, otherwise it is separated into substrings of the specified length.

subdivided.string contains the result of the FOLD operation.

If string evaluates to the null value, null is returned. If length is less than 1, an empty string is returned.
If length is the null value, the FOLD function fails and the program terminates with a runtime error
message.

Examples

PRINT FOLD("THIS IS A FOLDED STRING.",5)

This is the program output:

THISFIS AFFOLDEFDFSTRINFG.

In the following example, the blanks are taken as substring delimiters, and as no substring exceeds the
specified length of six characters, the output would be:

REDFMORANGEFMYELLOWFMGREENFMBLUEFMINDIGOFMVIOLET

The field mark replaces the space in the string:

A="RED ORANGE YELLOW GREEN BLUE INDIGO VIOLET"
 CALL !FOLD (RESULT,A,6)
 PRINT RESULT

FOLDDP function
In NLS mode, use the FOLDDP function to divide a string into a number of substrings separated by
field marks. The division is in display positions rather than character lengths.

Syntax

FOLDDP (string, length [, mapname])

string is separated into substrings of display length less than or equal to length. string is separated on
blanks, if possible, otherwise it is separated into substrings of the specified length.

If string evaluates to the null value, null is returned. If length is less than 1, an empty string is returned.
If length is the null value, the FOLDDP function fails and the program terminates with a run-time error
message.

If you execute FOLDDP when NLS is disabled, the behavior is the same as for the FOLD function. For
more information about display length, see the UniVerse NLS Guide.

FOOTING statement

179

FOOTING statement
Use the FOOTING statement to specify the text and format of the footing to print at the bottom of each
page of output.

The ON clause specifies the logical print channel to use for output. print.channel is an expression that
evaluates to a number from –1 through 255. If you do not use the ON clause, logical print channel 0 is
used, which prints to the user’s terminal if PRINTER OFF is set (see the PRINTER statement, on page
301). Logical print channel –1 prints the data on the screen, regardless of whether a PRINTER ON
statement has been executed.

Syntax

FOOTING [ON print.channel] footing

footing is an expression that evaluates to the footing text and the control characters that specify the
footing’s format. You can use the following format control characters, enclosed in single quotation
marks, in the footing expression:

Control character Description

C[n] Prints footing line centered in a field of n blanks. If n is not specified, centers the
line on the page.

D Prints current date formatted as dd mmm yyyy.
G Inserts gaps to format footings.
I Resets page number, time, and date for PIOPEN flavor only.
Q Allows the use of the] ^ and \ characters.
R[n] Inserts the record ID left-justified in a field of n blanks.
S Left-justified, inserted page number.
T Prints current time and date formatted as dd mmm yyyy hh:mm:ss. Time is in 12-

hour format with “am” or “pm” appended.
\ Prints current time and date formatted as dd mmm yyyy hh:mm:ss. Time is in

12-hour format with “am” or “pm” appended. Do not put the backslash inside
single quotation marks.

L Starts a new line.
] Starts a new line. Do not put the right bracket inside single quotation marks.
P[n] Prints current page number right-justified in a field of n blanks. The default

value for n is 4.
^ Prints current page number right-justified in a field of n blanks. The default

value for n is 4. Do not put the caret (^) inside single quotation marks.
N Suppresses automatic paging.

Two single quotation marks (' ') print one single quotation mark in footing text.

When the program is executed, the format control characters produce the specified results. You can
specify multiple options in a single set of quotation marks.

If either print.channel or footing evaluates to the null value, the FOOTING statement fails and the
program terminates with a runtime error message.

Pagination begins with page 1 and increments automatically on generation of each new page or upon
encountering the $PAGE statement.

Chapter 1: Statements and functions

180

Output to a terminal or printer is paged automatically. Use the N option in either a HEADING
statement or a FOOTING statement to turn off automatic paging.

Using] ^ and \ in footings

The characters] ^ and \ are control characters in headings and footings. To use these characters as
normal characters, you must use the Q option and enclose the control character in double or single
quotation marks. You only need to specify Q once in any heading or footing, but it must appear before
any occurrence of the characters] ^ and \.

Formatting the footing text

The control character G (for gap) can be used to add blanks to text in footings to bring the width of a
line up to device width. If G is specified once in a line, blanks are added to that part of the line to bring
the line up to the device width. If G is specified at more than one point in a line, the blank characters
are distributed as evenly as possible to those points.

See the following examples, in which the vertical bars represent the left and right margins:

Specification Result

"Hello there" |Hello there |
"'G'Hello there" | Hello there|
"'G'Hello there'G'" | Hello there |
"Hello'G'there" |Hello there|
"'G'Hello'G'there'G'" | Hello there |

The minimum gap size is 0 blanks. If a line is wider than the device width even when all the gaps are 0,
the line wraps, and all gaps remain 0.

If NLS is enabled, FOOTING calculates gaps using varying display positions rather than character
lengths. For more information about display length, see the UniVerse NLS Guide.

Left-justified inserted page number

The control character S (for sequence number) is left-justified at the point where the S appears in the
line. Only one character space is reserved for the number. If the number of digits exceeds 1, any text to
the right is shifted right by the number of extra characters required.

For example, the statement:

FOOTING "This is page 'S' of 100000"

results in footings such as:

This is page 3 of 100000
 This is page 333 of 100000
 This is page 3333 of 100000

INFORMATION flavor

Page number field:

In an INFORMATION flavor account the default width of the page number field is the length of the
page number. Use the n argument to P to set the field width of the page number. You can also include
multiple P characters to specify the width of the page field, or you can include spaces in the text that
immediately precedes a P option. For example, 'PPP' prints the page number right-justified in a field of
three blanks.

FOR statement

181

Note: In all other flavors, 'PPP' prints three identical page numbers, each in the default field of
four.

Date format:

In an INFORMATION flavor account the default date format is mm-dd-yy, and the default time format is
24-hour style.

In PICK, IN2, REALITY, and IDEAL flavor accounts, use the HEADER.DATE option of the $OPTIONS
statement to cause HEADING statement, FOOTING statement, and $PAGE statement to behave as they
do in INFORMATION flavor accounts.

PIOPEN flavor

Right-Justified Overwriting Page Number:

The control character P (for page) is right-justified at the point at which the P appears in the line. Only
one character space is reserved for the number. If the number of digits exceeds 1, literal characters to
the left of the initial position are overwritten. Normally you must enter a number of spaces to the left
of the P to allow for the maximum page number to appear without overwriting other literal characters.
For example, the statement:

FOOTING "This is page 'P' of 100000"

results in footings such as:

This is page 3 of 100000
 This is pag333 of 100000
 This is pa3333 of 100000

Resetting the page number and the date:

The control character I (for initialize) resets the page number to 1, and resets the date.

FOR statement
Use the FOR statement to create a FOR…NEXT program loop. A program loop is a series of statements
that execute repeatedly until the specified number of repetitions have been performed or until
specified conditions are met.

Syntax

FOR variable = start TO end [STEP increment]
 [loop.statements]
 [CONTINUE | EXIT]
{WHILE | UNTIL} expression]
 [loop.statements]
 [CONTINUE | EXIT]
 NEXT [variable]

variable is assigned the value of start, which is the initial value of the counter. end is the end value of
the counter.

The loop.statements that follow the FOR clause execute until the NEXT statement is encountered. Then
the counter is adjusted by the amount specified by the STEP clause.

Chapter 1: Statements and functions

182

At this point a check is performed on the value of the counter. If it is less than or equal to end, program
execution branches back to the statement following the FOR clause and the process repeats. If it is
greater than end, execution continues with the statement following the NEXT statement.

The WHILE condition specifies that as long as the WHILE expression evaluates to true, the loop
continues to execute. When the WHILE expression evaluates to false, the loop ends, and program
execution continues with the statement following the NEXT statement. If a WHILE or UNTIL expression
evaluates to the null value, the condition is false.

The UNTIL condition specifies that the loop continues to execute only as long as the UNTIL expression
evaluates to false. When the UNTIL expression evaluates to true, the loop ends and program execution
continues with the statement following the NEXT statement.

expression can also contain a conditional statement. As expression you can use any statement that
takes a THEN or an ELSE clause, but without the THEN or ELSE clause. When the conditional statement
would execute the ELSE clause, expression evaluates to false; when the conditional statement would
execute the THEN clause, expression evaluates to true. The LOCKED clause is not supported in this
context.

You can use multiple WHILE and UNTIL clauses in a FOR…NEXT loop.

Use the CONTINUE statement within FOR…NEXT to transfer control to the next iteration of the loop,
from any point in the loop.

Use the EXIT statement within FOR…NEXT to terminate the loop from any point within the loop.

If STEP is not specified, increment is assumed to be 1. If increment is negative, the end value of the
counter is less than the initial value. Each time the loop is processed, the counter is decreased by the
amount specified in the STEP clause. Execution continues to loop until the counter is less than end.

The body of the loop is skipped if start is greater than end, and increment is not negative. If start, end,
or increment evaluates to the null value, the FOR statement fails and the program terminates with a
runtime error message.

Nested loops

You can nest FOR…NEXT loops. That is, you can put a FOR…NEXT loop inside another FOR…NEXT
loop. When loops are nested, each loop must have a unique variable name as its counter. The NEXT
statement for the inside loop must appear before the NEXT statement for the outside loop.

If you omit the variables in the NEXT statement, the NEXT statement corresponds to the most recent
FOR statement. If a NEXT statement is encountered without a previous FOR statement, an error occurs
during compilation.

INFORMATION flavor

In an INFORMATION flavor account the FOR variable is checked to see if it exceeds end before
increment is added to it. That means that the value of the FOR variable does not exceed end at the
termination of the loop. In IDEAL, PICK, IN2, and REALITY flavors the increment is made before the
bound checking. In this case it is possible for variable to exceed end. Use the FOR.INCR.BEF option of
the $OPTIONS statement to get IDEAL flavor behavior in an INFORMATION flavor account.

Examples

In the following example, the loop is executed 100 times or until control is transferred by one of the
statements in the loop:

FOR VAR=1 TO 100
 NEXT VAR

Here are more examples of FOR…NEXT loops:

FOR statement

183

Source code Program output

FOR X=1 TO 10

PRINT "X= ",X

NEXT X

X= 1

X= 2

X= 3

X= 4

X= 5

X= 6

X= 7

X= 8

X= 9

X= 10
FOR TEST=1 TO 10 STEP 2

PRINT "TEST= ":TEST

NEXT TEST

TEST= 1

TEST= 3

TEST= 5

TEST= 7

TEST= 9
FOR SUB=50 TO 20 STEP -10

PRINT 'VALUE IS ',SUB

NEXT

VALUE IS 50

VALUE IS 40

VALUE IS 30

VALUE IS 20
FOR A=1 TO 4

FOR B=1 TO A

PRINT "A:B= ",A:B

NEXT B

NEXT A

A:B= 11

A:B= 21

A:B= 22

A:B= 31

A:B= 32

A:B= 33

A:B= 41

A:B= 42

A:B= 43

A:B= 44
PRINT 'LOOP 1 :'

SUM=0

FOR A=1 TO 10 UNTIL SUM>20

SUM=SUM+A*A

PRINT "SUM= ",SUM

NEXT

LOOP 1 :

SUM= 1

SUM= 5

SUM= 14

SUM= 30

Chapter 1: Statements and functions

184

Source code Program output

PRINT 'LOOP 2 :'

*

Y=15

Z=0

FOR X=1 TO 20 WHILE Z<Y

Z=Z+X

PRINT "Z= ",Z

NEXT X

LOOP 2 :

Z= 1

Z=3

Z= 6

Z= 10

Z= 15

FORMLIST statement
The FORMLIST statement is the same as the SELECT statements.

Syntax

FORMLIST [variable] [TO list.number] [ON ERROR statements]

FSUB function
Use the FSUB function to perform floating-point subtraction on two numeric values. number2 is
subtracted from number1. If either number evaluates to the null value, null is returned. result equates
to number1 minus number2.

This function is provided for compatibility with existing software. You can also use the - operator to
perform floating-point subtraction.

Syntax

FSUB (number1, number2)

CALL !FSUB (result, number1, number2)

Example

PRINT FSUB(.234,.567)

This is the program output:

-0.333

FUNCTION statement
Use the FUNCTION statement to identify a user-written function and to specify the number and names
of the arguments to be passed to it. The FUNCTION statement must be the first noncomment line in
the user-written function. A user-written function can contain only one FUNCTION statement.

FUNCTION statement

185

Syntax

FUNCTION [name] [([MAT] variable [, [MAT] variable …])]

name is specified for documentation purposes; it need not be the same as the function name or the
name used to reference the function in the calling program. name can be any valid variable name.

variable is an expression that passes values between the calling programs and the function. variables
are the formal parameters of the user-written function. When actual parameters are specified as
arguments to a user-written function, the actual parameters are referenced by the formal parameters
so that calculations performed in the user-written function use the actual parameters.

Separate variables by commas. Up to 254 variables can be passed to a user-written function. To pass
an array, you must precede the array name with the keyword MAT. When a user-written function
is called, the calling function must specify the same number of variables as are specified in the
FUNCTION statement.

An extra variable is hidden so that the user-written function can use it to return a value. An extra
variable is retained by the user-written function so that a value is returned by the RETURN (value)
statement. This extra variable is reported by the MAP and MAKE.MAP.FILE commands. If you use the
RETURN statement in a user-written function and you do not specify a value to return, an empty string
is returned by default.

The program that calls a user-written function must contain a DEFFUN statement that defines the
user-written function before it uses it. The user-written function must be cataloged in either a local
catalog or the system catalog, or it must be a record in the same object file as the calling program.

If the user-defined function recursively calls itself within the function, a DEFFUN statement must
precede it in the user-written function.

Examples

The following user-defined function SHORT compares the length of two arguments and returns the
shorter:

FUNCTION SHORT(A,B)
 AL = LEN(A)
 BL = LEN(B)
 IF AL < BL THEN RESULT = A ELSE RESULT = B
 RETURN(RESULT)

The following example defines a function called MYFUNC with the arguments or formal parameters
A, B, and C. It is followed by an example of the DEFFUN statement declaring and using the MYFUNC
function. The actual parameters held in X, Y, and Z are referenced by the formal parameters A, B, and C
so that the value assigned to T can be calculated.

FUNCTION MYFUNC(A, B, C)
 Z = ...
 RETURN (Z)
 .
 .
 .
 END

 DEFFUN MYFUNC(X, Y, Z)
 T = MYFUNC(X, Y, Z)
 END

Chapter 1: Statements and functions

186

GCDISTANCE function
The GCDISTANCE function calculates the great-circle distance (in meters) between two points on the
surface of Earth.

Note: This function is supported for Linux and Solaris only.

Syntax

GCDISTANCE (lat1,lon1,lat2,lon2)

Parameters

Parameter Description

lat1 Latitude of the first point.
lon1 Longitude of the first point.
lat2 Latitude of the second point.
lon2 Longitude of the second point.

Example

PRINT GCDISTANCE(39.7, -105, 38.9, 121.6)

This function returns:

10073112.4749

generateKey function
The generateKey() function generates a public key cryptography key pair and encrypts the
private key. You should then put it into an external key file protected by the provided pass phrase.
The protected private key can later be used by UniData and UniVerse SSL sessions (through
setPrivateKey()) to secure communication. The public key will not be encrypted.

Syntax

generateKey(privKey, pubKey, format, keyLoc, algorithm, keyLength,
passPhrase, paramFile)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

privKey A string storing the generated private key or name of the file storing the
generated private key.

pubKey A string storing the generated public key or name of the file storing the
generated public key.

format 1 - PEM(SSL_FMT_PEM)

2 - DER (SSL_FMT_DER)

generateKey function

187

Parameter Description

keyLoc 1 - Put the key into string privKey/pubKey. (SSL_LOC_STRING)

2 - Put the key into a file. (SSL_LOC_FILE)
algorithm Flag

1- RSA key (SSL_KEY_RSA)

2- DSA key (SSL_KEY_DSA)
keyLength Number of bits for the generated key. Between 512 and 16384.
passPhrase A string storing the passPhrase to protect the private key.
paramFile A parameter file needed by DSA key generation.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.
1 Key pair cannot be generated.
2 Unrecognized key file format.
3 Unrecognized encryption algorithm.
4 Unrecognized key type or invalid key length (must be between 512 and

16384).
5 Empty pass phrase.
6 Invalid DSA parameter file.
7 Random number generator cannot be seeded properly.
8 Private key cannot be written.

The generated private key will be in PKCS #8 form and is encoded in either PEM or DER format
specified by format. The generated public key is in standard form. If keyLoc is 1 (SSL_LOC_STRING), the
resulting keys are put into dynamic arrays, privKey and pubKey, respectively. Otherwise they are put
into OS level files specified by privKey and pubKey.

This function can generate two types of keys, RSA and DSA, specified by algorithm. The key length is
determined by keyLength and must be in the range of 512 to 16384.

For DSA key generation, paramFile must be specified. If a parameter file is provided through paramFile
and it contains valid parameters, the parameters are used to generate a new key pair. If the specified
file does not exist or does not contain valid parameters, a new group of parameters will be generated
and subsequently used to generate a DSA key pair. The generated parameters are then written to the
specified parameter file. Since DSA parameter generation is time consuming, it is recommended that a
parameter file be used to generate multiple DSA key pairs.

To make sure the private key is protected, a pass phrase must be provided. A one-way hash function
will be used to derive a symmetric key from the pass phrase to encrypt the generated key. When
installing the private key into a security context with the setPrivateKey() function, or generating
a certificate request with the generateCertRequest() function, this pass phrase must be supplied
to gain access to the private key.

Chapter 1: Statements and functions

188

generateKey function
The generateKey() function generates a public key cryptography key pair and encrypts the
private key. You should then put it into an external key file protected by the provided pass phrase.
The protected private key can later be used by UniData and UniVerse SSL sessions (through
setPrivateKey()) to secure communication. The public key will not be encrypted.

Syntax

generateKey(privKey, pubKey, format, keyLoc, algorithm, keyLength,
passPhrase, paramFile)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

privKey A string storing the generated private key or name of the file storing the
generated private key.

pubKey A string storing the generated public key or name of the file storing the
generated public key.

format 1 - PEM(SSL_FMT_PEM)

2 - DER (SSL_FMT_DER)
keyLoc 1 - Put the key into string privKey/pubKey. (SSL_LOC_STRING)

2 - Put the key into a file. (SSL_LOC_FILE)
algorithm Flag

1- RSA key (SSL_KEY_RSA)

2- DSA key (SSL_KEY_DSA)
keyLength Number of bits for the generated key. Between 512 and 16384.
passPhrase A string storing the passPhrase to protect the private key.
paramFile A parameter file needed by DSA key generation.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.
1 Key pair cannot be generated.
2 Unrecognized key file format.
3 Unrecognized encryption algorithm.
4 Unrecognized key type or invalid key length (must be between 512 and

16384).
5 Empty pass phrase.
6 Invalid DSA parameter file.
7 Random number generator cannot be seeded properly.
8 Private key cannot be written.

GES function

189

The generated private key will be in PKCS #8 form and is encoded in either PEM or DER format
specified by format. The generated public key is in standard form. If keyLoc is 1 (SSL_LOC_STRING), the
resulting keys are put into dynamic arrays, privKey and pubKey, respectively. Otherwise they are put
into OS level files specified by privKey and pubKey.

This function can generate two types of keys, RSA and DSA, specified by algorithm. The key length is
determined by keyLength and must be in the range of 512 to 16384.

For DSA key generation, paramFile must be specified. If a parameter file is provided through paramFile
and it contains valid parameters, the parameters are used to generate a new key pair. If the specified
file does not exist or does not contain valid parameters, a new group of parameters will be generated
and subsequently used to generate a DSA key pair. The generated parameters are then written to the
specified parameter file. Since DSA parameter generation is time consuming, it is recommended that a
parameter file be used to generate multiple DSA key pairs.

To make sure the private key is protected, a pass phrase must be provided. A one-way hash function
will be used to derive a symmetric key from the pass phrase to encrypt the generated key. When
installing the private key into a security context with the setPrivateKey() function, or generating
a certificate request with the generateCertRequest() function, this pass phrase must be supplied
to gain access to the private key.

GES function
Use the GES function to test if elements of one dynamic array are greater than or equal to
corresponding elements of another dynamic array.

Syntax

GES (array1, array2)

CALL -GES (return.array, array1, array2)

CALL !GES (return.array, array1, array2)

Each element of array1 is compared with the corresponding element of array2. If the element from
array1 is greater than or equal to the element from array2, a 1 is returned in the corresponding
element of a new dynamic array. If the element from array1 is less than the element from array2, a 0
is returned. If an element of one dynamic array has no corresponding element in the other dynamic
array, the undefined element is evaluated as empty, and the comparison continues.

If either element of a corresponding pair is the null value, null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

GET statements
Use GET statements to read a block of data from an input stream associated with a device, such
as a serial line or terminal. The device must be opened with the OPENDEV statement or OPENSEQ
statement. Once the device has been opened, the GET statements read data from the device. The GET
statements do not perform any pre- or postprocessing of the data stream, nor do they control local
echo characteristics. These aspects of terminal control are handled either by the application or by the
device driver. The behavior of certain devices can be managed through the TTYSET/TTYGET interface.

Syntax

GET[X] read.var[, length] [SETTING read.count] FROM device
[UNTIL eop.char.list] [RETURNING last.char.read]

Chapter 1: Statements and functions

190

 [WAITING seconds] [THEN statements] [ELSE statements]

Note: The WAITING clause is not supported on Windows NT.

Use the GETX statement to return the characters in ASCII hexadecimal format. For example, the
sequence of 8-bit character “abcde” is returned as the character string “6162636465”. However, the
value returned in the last.char.read variable is in standard ASCII character form.

read.var is the variable into which the characters read from device are stored. If no data is read,
read.var is set to the empty string.

length is the expression evaluating to the number of characters read from the data stream; if length
and timeout are not specified, the default length is 1. If length is not specified, but an eop.char.list
value is included, no length limit is imposed on the input.

read.count is the variable that records the actual count of characters read and stored in read.var. This
may differ from length when a timeout condition occurs or when a recognized end-of-packet character
is detected.

device is a valid file variable resulting from a successful OPENDEV or OPENSEQ statement. This is the
handle to the I/O device that supplies the data stream for the operation of the GET statements.

eop.char.list is an expression that evaluates to a recognized end-of-packet delimiters. The GET
operation terminates if a valid end-of-packet character is encountered in the data stream before the
requested number of characters is read.

last.char.read is a variable that stores the last character read by the GET operation. If no data is read,
read.var is set to the empty string. If the input terminated due to the maximum number of characters
being read or because of a timeout condition, an empty string is returned.

seconds specifies the number of seconds the program should wait before the GET operation times out.

Terminating conditions

GET statements read data from the device’s input stream until the first terminating condition is
encountered. The following table lists the possible terminating conditions:

Condition Description

Requested read length has
been satisfied

The read is fully satisfied. read.var contains the characters read, and
last.char.read contains an empty string. Program control passes to
the THEN clause if present. The default requested read length is one
character unless an end-of-packet value has been selected (in which
case, no length limit is used).

Recognized end-of-packet
character has been processed

The read is terminated by a special application-defined character in
the data stream. The data read to this point, excluding the end-of-
packet character, is stored in read.var. The end-of-packet character
is stored in last.char.read. Program control passes to the THEN
clause if present. This terminating condition is only possible if the
UNTIL clause has been specified. If there is no UNTIL clause, no end-
of-packet characters are recognized.

GET statements

191

Condition Description

Timeout limit has expired The read could not be satisfied within the specified time limitation.
If no characters have been read, read.var and last.char.read are set
to the empty string, and read.count is set to 0. The system status
code is set to 0 and may be checked with the STATUS function.
Control passes to the ELSE clause if present. This condition is
only possible if the WAITING clause is specified. In the absence
of a WAITING clause, the application waits until one of the other
terminating conditions is met.

Device input error An unrecoverable error occurred on the device. Unrecoverable
errors can include EOF conditions and operating system reported I/
O errors. In this case, the data read to this point is stored in read.var,
and the empty string is stored in last.char.read. If no characters have
been read, read.var and last.char.read are set to the empty string,
and read.count is set to 0. The system status code is set to a nonzero
value and may checked with the STATUS function. Control passes
to the ELSE clause if present.

Note: Under all termination conditions, read.count is set to the number of characters read from
the input data stream.

THEN and ELSE clauses

For GET statements, the THEN and ELSE clauses are optional. They have different meanings and
produce different results, depending on the conditions specified for terminal input.

The following rules apply only if the THEN or ELSE clauses are specified:

▪ If the UNTIL clause is used without a WAITING clause or an expected length, the GET statement
behaves normally. The program waits indefinitely until a termination character is read, then
executes the THEN clause. The ELSE clause is never executed.

▪ If the WAITING clause is used, the GET statement behaves normally, and the ELSE clause is
executed only if the number of seconds for timeout has elapsed. If the input terminates for any
other reason, it executes the THEN clause.

▪ If the WAITING clause is not used and there is a finite number of characters to expect from the
input, then only the type-ahead buffer is examined for input. If the type-ahead buffer contains the
expected number of characters, it executes the THEN clause; otherwise it executes the ELSE clause.
If the type-ahead feature is turned off, the ELSE clause is always executed.

▪ In a special case, the ELSE clause is executed if the line has not been attached before executing the
GET statement.

In summary, unless the WAITING clause is used, specifying the THEN and ELSE clauses causes the GET
statement to behave like an INPUTIF …FROM statement. The exception to this is the UNTIL clause
without a maximum length specified, in which case the GET statement behaves normally and the ELSE
clause is never used.

Example

The following code fragment shows how the GET statement reads a number of data buffers
representing a transaction message from a device:

DIM SAVEBUFFER(10)
 SAVELIMIT = 10
 OPENDEV "TTY10" TO TTYLINE ELSE STOP "CANNOT OPEN TTY10"
 I = 1

Chapter 1: Statements and functions

192

 LOOP
 GET BUFFER,128 FROM TTYLINE UNTIL CHAR(10) WAITING 10
 ELSE
 IF STATUS()
 THEN PRINT "UNRECOVERABLE ERROR DETECTED ON DEVICE,
 "IM SAVEBUFFER(10)
 SAVELIMIT = 10
 OPENDEV "TTY10" TO TTYLINE ELSE STOP "CANNOT OPEN TTY10"
 I = 1
 LOOP
 GET BUFFER,128 FROM TTYLINE UNTIL CHAR(10)
 WAITING 10
 ELSE
 IF STATUS()
 THEN PRINT "UNRECOVERABLE ERROR DETECTED ON DEVICE,":
 ELSE PRINT "DEVICE TIMEOUT HAS OCCURRED, ":
 PRINT "TRANSACTION CANNOT BE COMPLETED."
 STOP
 END
 WHILE BUFFER # "QUIT" DO
 IF I > SAVELIMIT
 THEN
 SAVELIMIT += 10
 DIM SAVEBUFFER(SAVELIMIT)
 END
 SAVEBUFFER(I) = BUFFER
 I += 1
 REPEAT

getCipherSuite function
The getCipherSuite() function obtains information about supported cipher suites, their version,
usage, strength, and type for the specified security context. The result is put into the dynamic array
ciphers, with one line for each cipher suite, separated by a field mark (@FM).

Syntax

getCipherSuite(context,ciphers)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

context The security context handle.
ciphers A dynamic array containing the cipher strings delimited by @FM.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid security context handle.

getIpv

193

Return code Status

2 Unable to obtain information.

The format of the string for one cipher suite is as follows:

Suite, version, key-exchange, authentication, encryption, digest, export

Refer to the cipher tables in setCipherSuite function, on page 354 for definitions of all suites. The
following is an example of a typical suite.

EXP-DES-CBC-SHA SSLv3 Kx=RSA(512) Au=RSA Enc=DES(40) Mac=SHA1
export

The suite name is EXP-DES-CBC-SHA. It is specified by SSLv3. The Key-exchange algorithm is RSA with
512-bit key. The authentication is also done by RSA algorithm. The data encryption uses DES (Data
Encryption Standard, an NIST standard) with CBC mode. MAC (Message Authentication Code, a hash
method to calculate message digest) will be done with SHA-1 (Secure Hash Algorithm 1, also an NIST
standard) algorithm. The suite is exportable.

Only those methods that are active for the protocol will be retrieved.

getIpv
Use the getIpv function to display the current IPv setting on the whole system or a particular
network's connection.

Syntax

getIpv ([networkexpr])

With no arguments, getIpv returns the current IPv setting. For networkexpr, enter either "socket" or
"uvnet" to view only that particular network's connection displays.

Note: If you opened a server socket with "", the server socket will listen on 0.0.0.0 using IPv6 and
is able to accept connection from IPv4 and IPv6 clients. If the server socket is bound to a particular
address, the client connection must match the exact server network address (DNS domain or
otherwise) and use the same IPv setting as well.

GETX statement
Use the GETX statement to read a block of data from an input stream and return the characters in
ASCII hexadecimal format.

For details, see the GET statements, on page 189.

GET(ARG.) statement
Use the GET(ARG.) statement to retrieve the next command line argument. The command line is
delimited by blanks, and the first argument is assumed to be the first word after the program name.
When a cataloged program is invoked, the argument list starts with the second word in the command
line.

Chapter 1: Statements and functions

194

Syntax

GET(ARG. [,arg#]) variable [THEN statements] [ELSE statements]

Blanks in quoted strings are not treated as delimiters and the string is treated as a single argument.
For example, "54 76" returns 54 76.

arg# specifies the command line argument to retrieve. It must evaluate to a number. If arg# is not
specified, the next command line argument is retrieved. The retrieved argument is assigned to
variable.

THEN and ELSE statements are both optional. The THEN clause is executed if the argument is found.
The ELSE clause is executed if the argument is not found. If the argument is not found and no ELSE
clause is present, variable is set to an empty string.

If no arg# is specified or if arg# evaluates to 0, the argument to the right of the last argument retrieved
is assigned to variable. The GET statement fails if arg# evaluates to a number greater than the number
of command line arguments or if the last argument has been assigned and a GET with no arg# is used.
To move to the beginning of the argument list, set arg# to 1.

If arg# evaluates to the null value, the GET statement fails and the program terminates with a run-time
error message.

Example

In the following example, the command is:

RUN BP PROG ARG1 ARG2 ARG3

and the program is:

A=5;B=2
 GET(ARG.)FIRST
 GET(ARG.,B)SECOND
 GET(ARG.)THIRD
 GET(ARG.,1)FOURTH
 GET(ARG.,A-B)FIFTH
 PRINT FIRST
PRINT SECOND
 PRINT THIRD
 PRINT FOURTH
 PRINT FIFTH

This is the program output:

ARG1
 ARG2
 ARG3
 ARG1
 ARG3

If the command line is changed to RUN PROG, the system looks in the file PROG for the program with
the name of the first argument. If PROG is a cataloged program, the command line would have to be
changed to PROG ARG1 ARG2 ARG3 to get the same results.

getHTTPDefault function
The getHTTPDefault function returns the default values of the HTTP settings. See the section
under setHTTPDefault for additional information.

GETLIST statement

195

Syntax

getHTTPDefault(option, value)

option The following options are currently defined:

PROXY_NAME
PROXY_PORT
VERSION
BUFSIZE
AUTHENTICATE
HEADERS

value is a string containing the appropriate option value.

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid option.

GETLIST statement
Use the GETLIST statement to activate a saved select list so that a READNEXT statement can use it.

Syntax

GETLIST listname [TO list.number] [SETTING variable]
{THEN statements [ELSE statements] | ELSE statements}

listname is an expression that evaluates to the form:

record.ID

or:

record.IDaccount.name

record.ID is the record ID of a select list in the &SAVEDLISTS& file. If account.name is specified, the
&SAVEDLISTS& file of that account is used instead of the one in the local account.

If listname evaluates to the null value, the GETLIST statement fails and the program terminates with a
run-time error message.

The TO clause puts the list in a select list numbered 0 through 10. If list.number is not specified, the list
is saved as select list 0.

The SETTING clause assigns the count of the elements in the list to variable. The system variable
@SELECTED is also assigned this count whether or not the SETTING clause is used. If the list is
retrieved successfully, even if the list is empty, the THEN statements execute; if not, the ELSE
statements execute.

Chapter 1: Statements and functions

196

PICK, REALITY, and IN2 flavors

PICK, REALITY, and IN2 flavor accounts store select lists in list variables instead of numbered select
lists. In those accounts, and in programs that use the VAR.SELECT option of the $OPTIONS statement,
the syntax of the GETLIST statement is:

GETLIST listname [TO list.variable] [SETTING variable] {THEN statements [ELSE statements] | ELSE
statements}

GETLOCALE function
In NLS mode use the GETLOCALE function to return the names of specified categories of the current
locale. The GETLOCALE function also returns the details of any saved locale that differs from the
current one.

Syntax

GETLOCALE (category)

category is one of the following tokens that are defined in the UniVerse include file UVNLSLOC.H:

Category Description

UVLC$ALL The names of all the current locale categories as a dynamic array. The
elements of the array are separated by field marks. The categories are in the
order Time, Numeric, Monetary, Ctype, and Collate.

UVLC$SAVED A dynamic array of all the saved locale categories.
UVLC$TIME The setting of the Time category.
UVLC$NUMERIC The setting of the Numeric category.
UVLC$MONETARY The setting of the Monetary category.
UVLC$CTYPE The setting of the Ctype category.
UVLC$COLLATE The setting of the Collate category.

If the GETLOCALE function fails, it returns one of the following error tokens:

Error token Description

LCE$NO.LOCALES UniVerse locales are not enabled.
LCE
$BAD.CATEGORY

Category is invalid.

For more information about locales, see the UniVerse NLS Guide.

GETREM function
Use the GETREM function after the execution of a REMOVE statement, a REMOVE function, or
a REVREMOVE statement, to return the numeric value for the character position of the pointer
associated with dynamic.array.

Syntax

GETREM (dynamic.array)

dynamic.array evaluates to the name of a variable containing a dynamic array.

getSocketErrorMessage function

197

The returned value is an integer. The integer returned is one-based, not zero-based. If no REMOVE
statements have been executed on dynamic.array, 1 is returned. At the end of dynamic.array, GETREM
returns the length of dynamic array plus 1. The offset returned by GETREM indicates the first character
of the next dynamic array element to be removed.

Example

DYN = "THIS":@FM:"HERE":@FM:"STRING"
 REMOVE VAR FROM DYN SETTING X
 PRINT GETREM(DYN)

This is the program output:

5

getSocketErrorMessage function
Use the getSocketErrorMessage() function to translate an error code into a text error message.

This function works with all socket functions. The return status of those functions can be passed into
this function to get the corresponding error message.

Syntax

getSocketErrorMessage(errCode, errMsg)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

errCode The status return code sent by the socket functions.
errMsg A string containing corresponding error text.

Return codes

The following table describes the return code of each mode.

Return code Description

0 Success.
1 Invalid error code.

getSocketInformation function
Use the getSocketInformation() function to obtain information about a socket connection.

Syntax

getSocketInformation(socket_handle, self_ or_ peer, socket_info)

Parameters

The following table describes each parameter of the syntax.

Chapter 1: Statements and functions

198

Parameter Description

socket_handle A handle to the open socket.
self_ or_ peer Get information on the self end or the peer end of the socket. Specify 0 to

return information from the peer end and non-zero for information from
the self end.

socket_info Dynamic array containing information about the socket connection. For
information about the elements of this dynamic array, see the following
table.

Elements

The following table describes each element of the socket_info dynamic array.

Element Description

1 Open or closed
2 Name or IP
3 Port number
4 Secure or nonsecure
5 Blocking mode

Return codes

The following table describes the status of each return code.

Return codes Status

0 Success.
Non-zero See Socket function error return codes, on page 599.

getSocketMap function
The getSocketMap() function gets the NLS map associated with the input socket handle with the
input socket handle aSocket.

Syntax

getSocketMap(aSocket, mapname)

aSocket is the socket handle from openSocket() or acceptConnection(), or 0. If aSocket is not 0,
getSocketMap gets the NLS map associated with the input socket handle. If aSocket is 0, it gets the
current default NLS map.

getSocketOptions function
The getSocketOptions() function gets the current value for a socket option associated with a
socket of any type.

Syntax

getSocketOptions(socket_handle, options)

getSocketOptions function

199

Parameters

The following table describes each parameter of the syntax.

Parameter Description

socket_handle The socket handle from openSocket(), acceptSocket(), or
initServerSocket().

options A dynamic array containing information about the socket options and
their current settings. When querying for options, the dynamic array is
configured as:

optName1<FM>
optName2<FM>
optName...

When the options are returned, the dynamic array is configured as:

optName1<VM>optValue1a[<VM>optValue1b]<FM>
optName2<VM>optValue2a[<VM>optValue2b]<FM>
optName3...

Where optName is specified by the caller and must be an option name
string listed below. For all options other than LINGER, the first optValue
specifies whether the option is ON or OFF and must be one of two
possible values: “1” for ON or “2” for OFF. The second optValue is
optional and can hold additional data for a specific option.

For the LINGER option, the first value will be zero for OFF and non-zero
for ON. The second optValue is the timeout value, which is the number
of time units to wait before closing the socket. The timeout value's
unit type (seconds, milliseconds, and so forth) is dependent on the
implementation of the SELECT() function on your operating system.

Available options

The following table describes the available options (case-sensitive) for getSocketOptions().

Option Description

DEBUG Enable/disable recording of debug information.
REUSEADDR Enable/disable the reuse of a location address (default).
KEEPALIVE Enable/disable keeping connections alive.
DONTROUTE Enable/disable routing bypass for outgoing messages.
LINGER Linger on close if data is present.
BROADCAST Enable/disable permission to transmit broadcast messages.
OOBINLINE Enable/disable reception of out-of-band data in band.
SNDBUF Get buffer size for output (default 4KB).
RCVBUF Get buffer size for input (default 4KB).
TYPE Get the type of the socket. Refer to the socket.h file for more

information.
ERROR Get and clear error on the socket.

Return codes

The following table describes the status of each return code.

Chapter 1: Statements and functions

200

Return code Description

0 Success.
Non-zero See Socket function error return codes, on page 599.

GOSUB statement
Use the GOSUB statement to transfer program control to an internal subroutine referenced by
statement.label. A colon (:) is optional in GOSUB statements, even though it is required after
nonnumeric statement labels at the beginning of program lines.

Syntax

GOSUB statement.label [:]

GO SUB statement.label [:]

Use the RETURN statement at the end of the internal subroutine referenced by the GOSUB statement,
to transfer program control to the statement following the GOSUB statement.

Use the RETURN TO statement at the end of an internal subroutine to transfer control to a location in
the program other than the line following the GOSUB statement. In this case, use statement.label to
refer to the target location.

Be careful with the RETURN TO statement, because all other GOSUBs or CALLs active when the GOSUB
is executed remain active, and errors can result.

A program can call a subroutine any number of times. A subroutine can also be called from within
another subroutine; this process is called nesting subroutines. You can nest up to 256 GOSUB calls.

Subroutines can appear anywhere in the program but should be readily distinguishable from the main
program. To prevent inadvertent entry into the subroutine, precede it with a STOP statement, END
statement, or GOTO statement that directs program control around the subroutine.

Example

VAR='ABKL1234'
 FOR X=1 TO LEN(VAR)
 Y=VAR[X,1]
 GOSUB 100
 NEXT X
 STOP
 100*
 IF Y MATCHES '1N' THEN RETURN TO 200
 PRINT 'ALPHA CHARACTER IN POSITION ',X
 RETURN
 200*
PRINT 'NUMERIC CHARACTER IN POSITION ',X
 STOP

This is the program output:

ALPHA CHARACTER IN POSITION 1
 ALPHA CHARACTER IN POSITION 2
 ALPHA CHARACTER IN POSITION 3
 ALPHA CHARACTER IN POSITION 4
 NUMERIC CHARACTER IN POSITION 5

GOTO statement

201

GOTO statement
Use the GOTO statement to transfer program control to the statement specified by statement.label. A
colon (:) is optional in GOTO statements.

If the statement referenced is an executable statement, that statement and those that follow are
executed. If it is a nonexecutable statement, execution proceeds at the first executable statement
encountered after the referenced statement.

Syntax

GO[TO] statement.label [:]

GO TO statement.label [:]

Example

X=80
 GOTO 10
 STOP
 *
 10*
 IF X>20 THEN GO 20 ELSE STOP
 *
 20*
 PRINT 'AT LABEL 20'
 GO TO CALCULATE:
 STOP
 *
 CALCULATE:
 PRINT 'AT LABEL CALCULATE'

This is the program output:

AT LABEL 20
 AT LABEL CALCULATE

GROUP function
Use the GROUP function to return one or more substrings located between specified delimiters in
string.

Syntax

GROUP (string, delimiter, occurrence [,num.substr])

delimiter evaluates to any character, including field mark, value mark, and subvalue marks. It delimits
the start and end of the substring. If delimiter evaluates to more than one character, only the first
character is used. Delimiters are not returned with the substring.

occurrence specifies which occurrence of the delimiter is to be used as a terminator. If occurrence is
less than 1, 1 is assumed.

num.substr specifies the number of delimited substrings to return. If the value of num.substr is an
empty string or less than 1, 1 is assumed. When more than one substring is returned, delimiters are
returned along with the successive substrings.

Chapter 1: Statements and functions

202

If either delimiter or occurrence is not in the string, an empty string is returned, unless occurrence
specifies 1. If occurrence is 1 and delimiter is not found, the entire string is returned. If delimiter is an
empty string, the entire string is returned.

If string evaluates to the null value, null is returned. If string contains CHAR(128) (that is, @NULL.STR),
it is treated like any other character in a string. If delimiter, occurrence, or num.substr evaluates to the
null value, the GROUP function fails and the program terminates with a run-time error message.

The GROUP function works identically to the FIELD function.

Examples

D=GROUP("###DHHH#KK","#",4)
 PRINT "D= ",D

The variable D is set to DHHH because the data between the third and fourth occurrence of the
delimiter # is DHHH.

REC="ACADABA"
 E=GROUP(REC,"A",2)
 PRINT "E= ",E

The variable E is set to "C".

VAR="?"
 Z=GROUP("A.1234$$$$&&",VAR,3)
 PRINT "Z= ",Z

Z is set to an empty string since "?" does not appear in the string.

Q=GROUP("+1+2+3ABAC","+",2,2)
 PRINT "Q= ",Q

Q is set to "1+2" since two successive fields were specified to be returned after the second occurrence
of "+".

This is the program output:

D= DHHH
 E= C
 Z=
 Q= 1+2

GROUPSTORE statement
Use the GROUPSTORE statement to modify character strings by inserting, deleting, or replacing fields
separated by specified delimiters.

Syntax

GROUPSTORE new.string IN string USING start, n [,delimiter]

new.string is an expression that evaluates to the character string to be inserted in string.

string is an expression that evaluates to the character string to be modified.

delimiter evaluates to any single ASCII character, including field, value, and subvalue marks. If you do
not specify delimiter, the field mark is used.

GTS function

203

start evaluates to a number specifying the starting field position. Modification begins at the field
specified by start. If start is greater than the number of fields in string, the required number of empty
fields is generated before the GROUPSTORE statement is executed.

n specifies the number of fields of new.string to insert in string. n determines how the GROUPSTORE
operation is executed. If n is positive, n fields in string are replaced with the first n fields of new.string.
If n is negative, n fields in string are replaced with all the fields in new.string. If n is 0, all the fields in
new.string are inserted in string before the field specified by start.

If string evaluates to the null value, null is returned. If new.string, start, n, or delimiter is null, the
GROUPSTORE statement fails and the program terminates with a run-time error message.

Example

Q='1#2#3#4#5'
 GROUPSTORE "A#B" IN Q USING 2,2,"#"
 PRINT "TEST1= ",Q
 *
 Q='1#2#3#4#5'
 GROUPSTORE "A#B" IN Q USING 2,-2,"#"
 PRINT "TEST2= ",Q
 *
 Q='1#2#3#4#5'
 GROUPSTORE "A#B" IN Q USING 2,0,"#"
 PRINT "TEST3= ",Q
 *
Q='1#2#3#4#5'
 GROUPSTORE "A#B#C#D" IN Q USING 1,4,"#"
 PRINT "TEST4= ",Q
 *
 Q='1#2#3#4#5'
 GROUPSTORE "A#B#C#D" IN Q USING 7,3,"#"
 PRINT "TEST5= ",Q

This is the program output:

TEST1= 1#A#B#4#5
 TEST2= 1#A#B#4#5
 TEST3= 1#A#B#2#3#4#5
 TEST4= A#B#C#D#5
 TEST5= 1#2#3#4#5##A#B#C

GTS function
Use the GTS function to test if elements of one dynamic array are greater than elements of another
dynamic array.

Syntax

GTS (array1, array2)

CALL -GTS (return.array, array1, array2)

CALL !GTS (return.array, array1, array2)

Each element of array1 is compared with the corresponding element of array2. If the element from
array1 is greater than the element from array2, a 1 is returned in the corresponding element of a
new dynamic array. If the element from array1 is less than or equal to the element from array2, a 0

Chapter 1: Statements and functions

204

is returned. If an element of one dynamic array has no corresponding element in the other dynamic
array, the undefined element is evaluated as an empty string, and the comparison continues.

If either of a corresponding pair of elements is the null value, null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

HEADING statement
Use the HEADING statement to specify the text and format of the heading to print at the top of each
page of output.

Syntax

HEADING [ON print.channel] heading

HEADINGE [ON print.channel] heading

HEADINGN [ON print.channel] heading

The ON clause specifies the logical print channel to use for output. print.channel is an expression that
evaluates to a number from –1 through 255. If you do not use the ON clause, logical print channel 0 is
used, which prints to the user’s terminal if PRINTER OFF is set (see the PRINTER statement, on page
301). Logical print channel –1 prints the data on the screen, regardless of whether a PRINTER ON
statement has been executed.

heading is an expression that evaluates to the heading text and the control characters that specify the
heading’s format. You can use the following format control characters, enclosed in single quotation
marks, in the heading expression:

Control character Description

C[n] Prints heading line centered in a field of n blanks. If n is not specified, centers
the line on the page.

D Prints current date formatted as dd mmm yyyy.
T Prints current time and date formatted as dd mmm yyyy hh:mm:ss. Time is in 12-

hour format with “am” or “pm” appended.
\

Prints current time and date formatted as dd mmm yyyy hh:mm:ss. Time is in
12-hour format with “am” or “pm” appended. Do not put the backslash inside
single quotation marks.

G Inserts gaps to format headings.
I Resets page number, time, and date for PIOPEN flavor only.
Q Allows the use of the] ^ and \ characters.
R[n] Inserts the record ID left-justified in a field of n blanks.
L Starts a new line.
] Starts a new line. Do not put the right bracket inside single quotation marks.
N Suppresses automatic paging.
P[n] Prints current page number right-justified in a field of n blanks. The default

value for n is 4.
S Left-justified, inserted page number.
^ Prints current page number right-justified in a field of n blanks. The default

value for n is 4. Do not put the caret inside single quotation marks.

Two single quotation marks (' ') print one single quotation mark in heading text.

HEADING statement

205

When the program is executed, the format control characters produce the specified results. You can
specify multiple options in a single set of quotation marks.

If either print.channel or heading evaluates to the null value, the HEADING statement fails and the
program terminates with a run-time error message.

Pagination begins with page 1 and increments automatically on generation of each new page or upon
encountering the $PAGE statement.

Output to a terminal or printer is paged automatically. Use the N option in either a HEADING
statement or a FOOTING statement to turn off automatic paging.

HEADINGE and HEADINGN statements

The HEADINGE statement is the same as the HEADING statement with the $OPTIONS statement
HEADER.EJECT selected. HEADINGE causes a page eject with the HEADING statement. Page eject is the
default for INFORMATION flavor accounts.

The HEADINGN statement is the same as the HEADING statement with the $OPTIONS -HEADER.EJECT
selected. HEADINGN suppresses a page eject with the HEADING statement. The page eject is
suppressed in IDEAL, PICK, REALITY, and IN2 flavor accounts.

Using] ^ and \ in headings

The characters] ^ and \ are control characters in headings and footings. To use these characters as
normal characters, you must use the Q option and enclose the control character in double or single
quotation marks. You only need to specify Q once in any heading or footing, but it must appear before
any occurrence of the characters] ^ and \.

Formatting the heading text

The control character G (for gap) can be used to add blanks to text in headings to bring the width of a
line up to device width. If G is specified once in a line, blanks are added to that part of the line to bring
the line up to the device width. If G is specified at more than one point in a line, the space characters
are distributed as evenly as possible to those points. See the following examples, in which the vertical
bars represent the left and right margins:

Specification Result

"Hello there" |Hello there |
"'G'Hello there" | Hello there|
"'G'Hello there'G'" | |
"Hello'G'there" |Hello there|
"'G'Hello'G'there'G'" | Hello there |

The minimum gap size is 0 blanks. If a line is wider than the device width even when all the gaps are 0,
the line wraps, and all gaps remain 0.

If NLS is enabled, HEADING calculates gaps using varying display positions rather than character
lengths. For more information about display length, see the UniVerse NLS Guide.

Left-justified inserted page number

The control character S (for sequence number) is left-justified at the point where the S appears in the
line. Only one character space is reserved for the number. If the number of digits exceeds 1, any text to
the right is shifted right by the number of extra characters required. For example, the statement:

HEADING "This is page 'S' of 100000"

Chapter 1: Statements and functions

206

results in headings such as:

This is page 3 of 100000
 This is page 333 of 100000
 This is page 3333 of 100000

INFORMATION flavor

Page Number Field:

In an INFORMATION flavor account the default width of the page number field is the length of the
page number. Use the n argument to P to set the field width of the page number. You can also include
multiple P characters to specify the width of the page field, or you can include blanks in the text that
immediately precedes a P option. For example, 'PPP' prints the page number right-justified in a field of
three blanks.

Note: In all other flavors, 'PPP' prints three identical page numbers, each in the default field of
four.

Date format:

In an INFORMATION flavor account the default date format is mm-dd-yy, and the default time format is
24-hour style.

In PICK, IN2, REALITY, and IDEAL flavor accounts, use the HEADER.DATE option of the $OPTIONS
statement to cause the HEADING statement, FOOTING statement, and $PAGE statement to behave as
they do in INFORMATION flavor accounts.

PIOPEN flavor

Right-justified overwriting page number:

The control character P (for page) is right-justified at the point at which the P appears in the line. Only
one character space is reserved for the number. If the number of digits exceeds 1, literal characters to
the left of the initial position are overwritten. Normally you must enter a number of blanks to the left
of the P to allow for the maximum page number to appear without overwriting other literal characters.
For example, the statement:

HEADING "This is page 'P' of 100000"

results in headings such as:

This is page 3 of 100000
 This is pag333 of 100000
 This is pa3333 of 100000

Resetting the page number and the date:

The control character I (for initialize) resets the page number to 1, and resets the date.

Example

HEADING "'C' LIST PRINTED: 'D'"
 FOR N=1 TO 10
 PRINT "THIS IS ANOTHER LINE"
 NEXT

HMAC function

207

This is the program output:

 LIST PRINTED: 04 Jun 1994
 THIS IS ANOTHER LINE
 THIS IS ANOTHER LINE
 THIS IS ANOTHER LINE
 THIS IS ANOTHER LINE
 THIS IS ANOTHER LINE
 THIS IS ANOTHER LINE
 THIS IS ANOTHER LINE
 THIS IS ANOTHER LINE
 THIS IS ANOTHER LINE
 THIS IS ANOTHER LINE

HMAC function
HMAC (keyed-Hash Message Authentication Code) is a specific construction for calculating a message
authentication code (MAC) involving a cryptographic hash function in combination with a secret key.

Note: The HMAC function is in full compliance with RFC 2104.

Syntax

hmac= HMAC(hmacAlg, hmacKey, hmacData, [outFormat])

hmacAlg, hmacKey, and hmacData are string values. They can be supplied as quoted strings or as
string variables, or a mix of both.

Parameters

The following table describes each parameter of the syntax.

Variable Description

hmacAlg Any OpenSSL supported digest functions, such as MD5, SHA1, SHA256,
SHA384, SHA512 or SHA3 related algorithms. If FIPS mode is turned on,
only FIPS-compliant digest algorithms are allowed (namely SHA1, SHA256,
SHA384 and SHA512).

hmacKey User must take responsibility to keep this key secure.
hmacData Data for which a keyed hash is to be generated by the HMAC function.
outformat Optional. Determines the output format. Currently, the following values are

supported:

0 - The output is binary format (bit-stream)

1 - Lower case hexadecimal format, for example f22a….0def, which doubles
the size of binary format

2 - Uppercase hexadecimal format, for example F22A…0DEF

3 - Lowercase hexadecimal delimited by colons, for example f2:2a:…0d:ef

4 - Uppercase hexadecimal delimited by colons, for example F1:2A:…0D:EF

5 - Lowercase hexadecimal delimited by spaces, for example f2 2a … 0d ef

6 - Uppercase hexadecimal delimited by spaces, for example F2 2A … 0D EF

Chapter 1: Statements and functions

208

Return codes

The function returns hmac as the result, whose length is determined by the digest algorithm. For
example, for MD5, the length is 16 bytes. For SHA1, it is 20 bytes. For SHA256 or SHA3-256, it is 32
bytes. All lengths are for binary format.

If an error occurs, the function will return -1. STATUS() can be called to determine the error details.

The following table describes the status of each return code.

Return code Status

0 Success.
1 Unsupported digest algorithm.
2 Not applicable.
3 HMAC cannot be obtained.
4 Invalid parameters.

HUSH statement
Use the HUSH statement to suppress the display of all output normally sent to a terminal during
processing. HUSH also suppresses output to a COMO file or TANDEM display.

Syntax

HUSH { ON | OFF | expression} [SETTING status]

SETTING status sets the value of a variable to the value of the HUSH state before the HUSH statement
was executed. It can be used instead of the STATUS function to save the state so that it can be restored
later. STATUS has a value of 1 if the previous state was HUSH ON or a value of 0 if the previous state
was HUSH OFF.

You might use this statement when you are transmitting information over phone lines or when you are
sending data to a hard-copy terminal. Both these situations result in slower transmission speeds. The
unnecessary data display makes the task even slower.

HUSH acts as a toggle. If it is used without a qualifier, it changes the current state.

Do not use this statement to shut off output display unless you are sure the display is unnecessary.
When you use HUSH ON, all output is suppressed including error messages and requests for
information.

Value returned by the STATUS function

The previous state is returned by the STATUS function. If terminal output was suppressed prior to
execution of the HUSH statement, the STATUS function returns a 1. If terminal output was enabled
before execution of the HUSH statement, the STATUS function returns a 0.

Example

In the following example, terminal output is disabled with the HUSH statement and the previous state
was saved in the variable USER.HUSH.STATE.

After executing some other statements, the program returns the user’s process to the same HUSH
state as it was in previous to the execution of the first HUSH statement:

HUSH ON
 USER.HUSH.STATE = STATUS()

ICHECK function

209

 ...
 HUSH USER.HUSH.STATE

The example could have been written as follows:

HUSH ON SETTING USER.HUSH.STATE
 .
 .
 .
 HUSH USER.HUSH.STATE

ICHECK function
Use the ICHECK function to check if data you intend to write to an SQL table violates any SQL
integrity constraints. ICHECK verifies that specified data and primary keys satisfy the defined SQL
integrity constraints for an SQL table.

Syntax

ICHECK (dynamic.array [, file.variable] , key [, column#])

dynamic.array is an expression that evaluates to the data you want to check against any integrity
constraints.

file.variable specifies an open file. If file.variable is not specified, the default file variable is assumed
(for more information on default files, see the OPEN statement, on page 283).

key is an expression that evaluates to the primary key you want to check against any integrity
constraints.

column# is an expression that evaluates to the number of the column in the table whose data is to
be checked. If you do not specify column#, all columns in the file are checked. Column 0 specifies the
primary key (record ID).

If dynamic.array, file.variable, key, or column# evaluates to the null value, the ICHECK function fails
and the program terminates with a run-time error message.

You might use the ICHECK function to limit the amount of integrity checking that is done and thus
improve performance. If you do this, however, you are assuming responsibility for data integrity. For
example, you might want to use ICHECK with a program that changes only a few columns in a file. To
do this, turn off the OPENCHK configurable parameter, open the file with the OPEN statement rather
than the OPENCHECK statement, and use the ICHECK function before you write the updated record
to verify, for each column you are updating, that you are not violating the table’s integrity checks.

If the ON UPDATE clause of a referential constraint specifies an action, ICHECK always validates data
being written to the referenced table; it does not check the referencing table. Therefore, ICHECK can
succeed, but when the actual write is done, it can have a constraint failure while attempting to update
the referencing table. If the referential constraint does not have an ON UPDATE clause, or if these
clauses specify NO ACTION, the referencing table is checked to ensure that no row in it contains the
old value of the referenced column.

ICHECK does not check triggers when it checks other SQL integrity constraints. Therefore, a write that
fires a trigger can fail even if the ICHECK succeeds.

ICHECK returns a dynamic array of three elements separated by field marks:

error.codeFcolumn#Fconstraint

Chapter 1: Statements and functions

210

Element Code Description

A code that indicates the type of failure. Error codes can
be any of the following:

0 No failure
1 SINGLEVALUED failure
2 NOT NULL failure
3 NOT EMPTY failure
4 ROWUNIQUE failure (including single-column association

KEY)
5 UNIQUE (column constraint) failure
6 UNIQUE (table constraint) failure
7 Association KEY ROWUNIQUE failure when association

has multiple KEY fields.
8 CHECK constraint failure
9 Primary key has too many parts
10 Referential constraint failure

error.code

11 Referential constraint failure that occurs when a
numeric column references a nonnumeric column in the
referenced table.

column# The number of the column where the failure occurred. If any part of
a primary key fails, 0 is returned. If the violation involves more than
one column, -1 is returned.

constraint This element is returned only when error.code is 7 or 8. For code
7, the association name is returned. For code 8, the name of the
CHECK constraint is returned if it has a name; otherwise, the CHECK
constraint itself is returned.

If the record violates more than one integrity constraint, ICHECK returns a dynamic array only for the
first constraint that causes a failure.

The ICHECK function is advisory only. That is, if two programs try to write the same data to the same
column defined as UNIQUE (see error 5), an ICHECK in the first program may pass. If the second
program writes data to the file before the first program writes its ICHECKed data, the first program’s
write fails even though the ICHECK did not fail.

ICONV function
Use the ICONV function to convert string to a specified internal storage format. string is an expression
that evaluates to the string to be converted.

Syntax

ICONV (string, conversion)

conversion is an expression that evaluates to one or more valid conversion codes, separated by value
marks (ASCII 253).

string is converted to the internal format specified by conversion. If multiple codes are used, they are
applied from left to right. The first conversion code converts the value of string. The second conversion
code converts the output of the first conversion, and so on.

ICONV function

211

If string evaluates to the null value, null is returned. If conversion evaluates to the null value, the
ICONV function fails and the program terminates with a run-time error message.

The STATUS function reflects the result of the conversion:

Result Description

0 The conversion is successful.
1 string is invalid. An empty string is returned, unless string is the null value, in

which case null is returned.
2 conversion is invalid.
3 Successful conversion of possibly invalid data.
4 Invalid time zone or UTC offset.

For information about converting strings to an external format, see the OCONV function, on page
279.

Examples

The following are examples of date conversions:

Source line Converted value

DATE=ICONV("02-23-85","D") 6264
DATE=ICONV("30/9/67","DE") -92
DATE=ICONV("6-10-85","D") 6371
DATE=ICONV("19850625","D") 6386
DATE=ICONV("85161","D") 6371

The following is an example of a time conversion:

Source line Converted value

TIME=ICONV("9AM","MT") 32400

The following are examples of hex, octal, and binary conversions:

Source line Converted value

HEX=ICONV("566D61726B","MX0C") Vmark
OCT=ICONV("3001","MO") 1537
BIN=ICONV(1111,"MB") 15

The following are examples of masked decimal conversions:

Source line Converted value

X=4956.00

X=ICONV(X,"MD2")

495600

X=563.888

X=ICONV(X,"MD0")

-564

X=ICONV(1988.28,"MD24") 19882800

Chapter 1: Statements and functions

212

ICONVS function
Use the ICONVS function to convert each element of dynamic.array to a specified internal storage
format.

Syntax

ICONVS (dynamic.array, conversion)

CALL -ICONVS (return.array, dynamic.array, conversion)

CALL !ICONVS (return.array, dynamic.array, conversion)

conversion is an expression that evaluates to one or more valid conversion codes, separated by value
marks (ASCII 253).

Each element of dynamic.array is converted to the internal format specified by conversion and is
returned in a dynamic array. If multiple codes are used, they are applied from left to right. The first
conversion code converts the value of each element of dynamic.array. The second conversion code
converts the value of each element of the output of the first conversion, and so on.

If dynamic.array evaluates to the null value, null is returned. If an element of dynamic.array is the null
value, null is returned for that element. If conversion evaluates to the null value, the ICONV function
fails and the program terminates with a run-time error message.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

The STATUS function reflects the result of the conversion:

Value Description

0 The conversion is successful.
1 An element of dynamic.array is invalid. An empty string is returned, unless

dynamic.array is the null value, in which case null is returned.
2 conversion is invalid.
3 Successful conversion of possibly invalid data.

For information about converting elements in a dynamic array to an external format, see the OCONVS
function, on page 280.

IF statement
Use the IF statement to determine program flow based on the evaluation of expression. If the value
of expression is true, the THEN statements are executed. If the value of expression is false, the
THEN statements are ignored and the ELSE statements are executed. If expression is the null value,
expression evaluates to false. If no ELSE statements are present, program execution continues with the
next executable statement.

Syntax

IF expression {THEN statements [ELSE statements] | ELSE statements}

IF expression
{THEN statements
[ELSE statements] |
ELSE statements}

IF statement

213

IF expression {THEN
 statements
END [ELSE
 statements
 END] | ELSE
 statements
END}

IF expression
 {THEN
statements
END
 [ELSE
statements
END] |
ELSE
 statements
 END }

The IF statement must contain either a THEN clause or an ELSE clause. It need not include both.

Use the ISNULL function with the IF statement when you want to test whether the value of a variable
is the null value. This is the only way to test for the null value since null cannot be equal to any value,
including itself. The syntax is:

IF ISNULL (expression) …

You can write IF…THEN statements on a single line or separated onto several lines. Separating
statements onto several lines can improve readability. Either way, the statements are executed
identically.

You can nest IF…THEN statements. If the THEN or ELSE statements are written on more than one line,
you must use an END statement as the last statement of the THEN or ELSE statements.

Conditional compilation

You can specify the conditions under which all or part of a BASIC program is to be compiled, using a
modified version of the IF statement. The syntax of the conditional compilation statement is the same
as that of the IF statement except for the test expression, which must be one of the following: $TRUE,
$T, $FALSE, or $F.

Example

X=10
 IF X>5 THEN PRINT 'X IS GREATER THAN 5';Y=3
 *
 IF Y>5 THEN STOP ELSE Z=9; PRINT 'Y IS LESS THAN 5'
 *
 IF Z=9 THEN PRINT 'Z EQUALS 9'
 ELSE PRINT 'Z DOES NOT EQUAL 9' ; STOP
 *
 IF Z=9 THEN
 GOTO 10
 END ELSE
 STOP
 END
 *
 10*
 IF Y>4

Chapter 1: Statements and functions

214

 THEN
 PRINT 'Y GREATER THAN 4'
 END
 ELSE
 PRINT 'Y IS LESS THAN 4'
 END

This is the program output:

X IS GREATER THAN 5
 Y IS LESS THAN 5
 Z EQUALS 9
 Y IS LESS THAN 4

IFS function
Use the IFS function to return a dynamic array whose elements are chosen individually from one of
two dynamic arrays based on the contents of a third dynamic array.

Syntax

IFS (dynamic.array, true.array, false.array)

CALL -IFS (return.array, dynamic.array, true.array, false.array)

CALL !IFS (return.array, dynamic.array, true.array, false.array)

Each element of dynamic.array is evaluated. If the element evaluates to true, the corresponding
element from true.array is returned to the same element of a new dynamic array. If the element
evaluates to false, the corresponding element from false.array is returned. If there is no corresponding
element in the correct response array, an empty string is returned for that element. If an element is the
null value, that element evaluates to false.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

ILPROMPT function
Use the ILPROMPT function to evaluate a string containing UniVerse in-line prompts.

Syntax

ILPROMPT (in.line.prompt)

in.line.prompt is an expression that evaluates to a string containing in-line prompts. In-line prompts
have the following syntax:

<< [control,] … text [, option] >>

control is an option that specifies the characteristics of the prompt. Separate multiple control options
with commas. Possible control options are:

Option Description

A Always prompts when the sentence containing the control option
is executed. If this option is not specified, the input value from a
previous execution of this prompt is used.

ILPROMPT function

215

Option Description

Cn Uses the word in the nth position in the command line as the input
value. (The verb is in position 1.)

F(filename)
record.ID [,fm [,vm [,sm]]])

Finds input value in record.ID in filename. Optionally, extract a
value (vm) or subvalue (sm) from the field (fm).

In Uses the word in the nth position in the command line as the input
value, but prompts if word n was not entered.

P Saves the input from an in-line prompt. BASIC uses the input for
all in-line prompts with the same prompt text until the saved
input is overwritten by a prompt with the same prompt text and
with a control option of A, C, I, or S, or until control returns to the
UniVerse prompt. The P option saves the input from an in-line
prompt in the current paragraph, or in other paragraphs.

R Repeats the prompt until Return is pressed.
R(string) Repeats the prompt until Return is pressed, and inserts string

between each entry.
Sn Takes the nth word from the command but uses the most recent

command entered at the UniVerse level to execute the paragraph,
rather than an argument in the paragraph. Use this option in
nested paragraphs.

@(CLR) Clears the screen.
@(BELL) Rings the terminal bell.
@(TOF) Positions the prompt at the top left of the screen.
@(col, row) Prompts at this column and row number on the terminal.

text is the prompt text to display. If you want to include quotation marks (single or double) or
backslashes as delimiters within the prompt text, you must enclose the entire text string in a set of
delimiters different from the delimiters you are using within the text string. For example, to print the
following prompt text:

'P'RINTER OR 'T'ERMINAL

you must specify the prompt text as

\'P'RINTER OR 'T'ERMINAL\

or

"'P'RINTER OR 'T'ERMINAL"

option can be any valid ICONV function conversion or matching pattern (see the MATCH operator, on
page 259). A conversion must be in parentheses.

If in.line.prompt evaluates to the null value, the ILPROMPT function fails and the program terminates
with a run-time error.

If the in-line prompt has a value, that value is substituted for the prompt. If the in-line prompt does not
have a value, the prompt is displayed to request an input value when the sentence is executed. The
value entered at the prompt is then substituted for the in-line prompt.

Once a value has been entered for a particular prompt, the prompt will continue to have that
value until a CLEARPROMPTS statement is executed, unless the control option A is specified.
CLEARPROMPTS clears all values entered for in-line prompts.

You can enclose prompts within prompts.

Chapter 1: Statements and functions

216

Example

A="This is your number. - <<number>>"
 PRINT ILPROMPT(A)
 PRINT ILPROMPT("Your number is <<number>>, and your letter is
 <<letter>>.")

This is the program output:

number=5
This is your number. - 5
 letter=K
Your number is 5, and your letter is K.

INCLUDE statement
Use the INCLUDE statement to direct the compiler to insert the source code in the record program and
compile it along with the main program. The INCLUDE statement differs from the $CHAIN statement in
that the compiler returns to the main program and continues compiling with the statement following
the INCLUDE statement.

Syntax

INCLUDE [filename] program

INCLUDE program FROM filename

When program is specified without filename, program must be a record in the same file as the program
currently containing the INCLUDE statement.

If program is a record in a different file, the name of the file in which it is located must be specified in
the INCLUDE statement, followed by the name of the program. The file name must specify a type 1 or
type 19 file defined in the VOC file.

You can nest INCLUDE statements.

The INCLUDE statement is a synonym for the $INCLUDE and #INCLUDE statements.

Example

PRINT "START"
INCLUDE END
PRINT "FINISH"

When this program is compiled, the INCLUDE statement inserts code from the program END (see the
example on the END statement, on page 148). This is the program output:

START
THESE TWO LINES WILL PRINT ONLY
WHEN THE VALUE OF 'A' IS 'YES'.

THIS IS THE END OF THE PROGRAM
FINISH

INDEX function

217

INDEX function
Use the INDEX function to return the starting character position for the specified occurrence of
substring in string.

Syntax

INDEX (string, substring, occurrence)

string is an expression that evaluates to any valid string. string is examined for the substring
expression.

occurrence specifies which occurrence of substring is to be located.

When substring is found and if it meets the occurrence criterion, the starting character position of the
substring is returned. If substring is an empty string, 1 is returned. If the specified occurrence of the
substring is not found, or if string or substring evaluate to the null value, 0 is returned.

If occurrence evaluates to the null value, the INDEX function fails and the program terminates with a
run-time error message.

PICK, IN2, and REALITY flavors

In PICK, IN2, and REALITY flavor accounts, the search continues with the next character regardless of
whether it is part of the matched substring. Use the COUNT.OVLP option of the $OPTIONS statement
to get this behavior in IDEAL and INFORMATION flavor accounts.

Example

Q='AAA11122ABB1619MM'
 P=INDEX(Q,1,4)
 PRINT "P= ",P
 *
 X='XX'
 Y=2
 Q='P1234XXOO1299XX00P'
 TEST=INDEX(Q,X,Y)
 PRINT "TEST= ",TEST
 *
 Q=INDEX("1234",'A',1)
 PRINT "Q= ",Q
 * The substring cannot be found.
 *
 POS=INDEX('222','2',4)
PRINT "POS= ",POS
 * The occurrence (4) of the substring does not exist.

This is the program output:

P= 12
 TEST= 14
 Q= 0
 POS= 0

Chapter 1: Statements and functions

218

INDEXS function
Use the INDEXS function to return a dynamic array of the starting column positions for a specified
occurrence of a substring in each element of dynamic.array.

Syntax

INDEXS (dynamic.array, substring, occurrence)

CALL -INDEXS (return.array, dynamic.array, substring, occurrence)

CALL !INDEXS (return.array, dynamic.array, substring, occurrence)

Each element is examined for substring.

occurrence specifies which occurrence of substring is to be located.

When substring is found, and if it meets the occurrence criterion, the starting column position of
the substring is returned. If substring is an empty string, 1 is returned. If the specified occurrence of
substring cannot be found, 0 is returned.

If dynamic.array evaluates to the null value, 0 is returned. If any element of dynamic.array is null, 0 is
returned for that element. If occurrence is the null value, the INDEXS function fails and the program
terminates with a run-time error message.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

INDICES function
Use the INDICES function to return information about the secondary key indexes in a file.

Syntax

INDICES (file.variable [,indexname])

file.variable specifies an open file.

indexname is the name of a secondary index in the specified file.

If only file.variable is specified, a dynamic array is returned that contains the index names of all
secondary indexes for the file. The index names are separated by field marks. If file.variable has no
indexes, an empty string is returned.

If indexname is specified, information is returned in a dynamic array for indexname. Field 1 of the
dynamic array contains the following information:

Value Value can be… Description

Value 1 D

I

A

S

C

SQL

Data descriptor index.

I-descriptor index.

A-descriptor index.

S-descriptor index.

A- or S-descriptor index with correlative in
field 8.

SQL index.

INDICES function

219

Value Value can be… Description

Value 2 1

3

empty

Index needs rebuilding.

Index is currently being built concurrently.

Index does not need rebuilding.
Value 3 1

empty

Empty strings are not indexed.

Empty strings are indexed.
Value 4 1

empty

Automatic updating enabled.

Automatic updating disabled.
Value 5 pathname

empty

Full path name of the index file.

File is a distributed file.
Value 6 1

empty

Updates are pending.

No updates pending.
Value 7 L

R

Left-justified.

Right-justified.
Value 8 N

U

Nonunique.

Unique.
Value 9 part numbers Subvalued list of distributed file part

numbers.
Value 10 1 Index needs building

empty No build needed

Subvalued list corresponding to subvalues
in Value 9.

Value 11 1 Empty strings not indexed

empty Empty strings
indexed

Subvalued list corresponding to subvalues
in Value 9.

Value 12 1 Updating enabled

empty Updating disabled

Subvalued list corresponding to subvalues
in Value 9.

Value 13 index pathnames Subvalued list of path names for indexes
on distributed file part files, corresponding
to subvalues in Value 9.

Value 14 1 Updates pending

empty No updates pending

Subvalued list corresponding to subvalues
in Value 9.

Value 15 L Left-justified

R Right-justified

Subvalued list corresponding to subvalues
in Value 9.

Value 16 N Nonunique

U Unique

Subvalued list corresponding to subvalues
in Value 9.

Value 17 collate name Name of the Collate convention of the
index.

Note: Indexes created with the ALL.NULLS keyword are not compatible with releases that do not
support the ALL.NULLS keyword.
Value 18 Y

N

Y ALL.NULLS index - contains no data.

N Not an ALL.NULLS index.

Chapter 1: Statements and functions

220

Value Value can be… Description

Value 19 Y ALL.NULLS index -
contains no data.

N Not an ALL.NULLS index.

Subvalued list corresponding to subvalues
in Value 9.

If Value 1 of Field 1 is D, A, or S, Field 2 contains the field location (that is, the field number), and Field 6
contains either S (single-valued field) or M (multivalued field).

If Value 1 of Field 1 is I or SQL, the other fields of the dynamic array contain the following information,
derived from the I-descriptor in the file dictionary:

Field Value can be...

Field 2 I-type expression
Field 3 Output conversion code
Field 4 Column heading
Field 5 Width, justification
Field 6 S – single-valued field

M – multivalued field
Field 7 Association name
Fields 8-15 Empty
Fields 16-19 Compiled I-descriptor data
Field 20 Compiled I-descriptor code

If Value 1 of Field 1 is C, the other fields of the dynamic array contain the following information,
derived from the A- or S-descriptor in the file dictionary:

Field Value can be...

Field 2 Field number (location of field)
Field 3 Column heading
Field 4 Association code
Fields 5-6 Empty
Field 7 Output conversion code
Field 8 Correlative code
Field 9 L or R (justification)
Field 10 Width of display column

If either file.variable or indexname is the null value, the INDICES function fails and the program
terminates with a run-time error message.

Any file updates executed in a transaction (that is, between a BEGIN TRANSACTION statement and a
COMMIT statement) are not accessible to the INDICES function until after the COMMIT statement has
been executed.

If NLS is enabled, the INDICES function reports the name of the current Collate convention (as
specified in the NLS.LC.COLLATE file) in force when the index was created. See Value 17 in Field 1 for
the name of the Collate convention of the index. For more information about the Collate convention,
see the UniVerse NLS Guide.

initSecureServerSocket function

221

initSecureServerSocket function
Use the initSecureServerSocket() function to create a secured connection-oriented stream
server socket. It does exactly the same as the initServerSocket() function except that the
connection will be secure.

Once the server socket is opened, any change in the associated security context will not affect the
opened socket.

Syntax

initSecureServerSocket(name_or_IP, port, backlog, svr_socket, context)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

name_or_IP DNS name (x.com) or host interface address. Special addresses include:

▪ 127.0.0.1 (INADDR_LOOPBACK)

▪ 0.0.0.0 (INADDR_ANY)

▪ 255.255.255.255 (INADDR_BROADCAST)

Generally, this parameter should be set to 0.0.0.0.
port Port number. If the port number is specified as a value <= 0, CallHTTP

defaults to a port number of 40001.
backlog The maximum length of the queue of pending connections (for example,

concurrent client-side connections).
svr_socket The handle to the server side socket.
context The handle to the security context.

Return codes

The following table describes the status of each return code.

Return code Description

0 Success.
1-41 See Socket function error return codes, on page 599.
99 UniVerse failed to obtain a license for an interactive PHANTOM process.
101 Invalid security context handle.

initServerSocket function
Use the initServerSocket() function to create a connection-oriented (stream) socket. Associate
this socket with an address (name_or_IP) and port number (port), and specify the maximum length the
queue of pending connections may grow to.

Syntax

initServerSocket(name_or_IP, port, backlog, svr_socket)

Chapter 1: Statements and functions

222

Parameters

The following table describes each parameter of the syntax.

Parameter Description

name_or_IP DNS name (x.com) or host interface address. Special addresses include:

▪ 127.0.0.1 (INADDR_LOOPBACK)

▪ 0.0.0.0 (INADDR_ANY)

▪ 255.255.255.255 (INADDR_BROADCAST)

Generally, this parameter should be set to 0.0.0.0.
port Port number. If the port number is specified as a value <= 0, CallHTTP

defaults to a port number of 40001.
backlog The maximum length of the queue of pending connections (for example,

concurrent client-side connections).
svr_socket The handle to the server side socket.

Return codes

The following table describes the status of each return code.

Return code Description

0 Success.
Non-zero See Socket function error return codes, on page 599.

INMAT function
Use the INMAT function to return the number of array elements that have been loaded after the
execution of MATREAD statements, MATREADL statement, MATREADU statement, or MATPARSE
statement, or to return the modulo of a file after the execution of an OPEN statement. You can also use
the INMAT function after a DIMENSION statement to determine whether the DIM statement failed due
to lack of available memory. If a preceding DIM statement fails, INMAT returns a value of 1.

Syntax

INMAT ([array])

If the matrix assignment exceeds the number of elements specified in its dimensioning statement, the
zero element is loaded by the MATREAD, MATREADL, MATREADU, or MATPARSE statement. If the array
dimensioning is too small and the zero element has been loaded, the INMAT function returns a value
of 0.

If array is specified, the INMAT function returns the current dimensions of the array. If array is the null
value, the INMAT function fails and the program terminates with a run-time error message.

Example

DIM X(6)
 D='123456'
 MATPARSE X FROM D,''
 Y=INMAT()
 PRINT 'Y= ':Y

INPUT statement

223

 *
 DIM X(5)
 A='CBDGFH'
 MATPARSE X FROM A,''
 C=INMAT()
 PRINT 'C= ':C
 *
 OPEN '','VOC' TO FILE ELSE STOP
 T=INMAT()
 PRINT 'T= ':T

This is the program output:

Y= 6
 C= 0
 T= 23

INPUT statement
Use the INPUT statement to halt program execution and prompt the user to enter a response. Data
entered at the terminal or supplied by a DATA statement in response to an INPUT statement is
assigned to variable. Input supplied by a DATA statement is echoed to the terminal. If the response is a
RETURN with no preceding data, an empty string is assigned to variable.

Syntax

INPUT variable [,length] [:] [_]

INPUT @ (col, row) [, | :] variable [,length] [:] [format] [_]

INPUTIF @ (col, row) [, | :] variable [,length] [:] [format] [_]
[THEN statements] [ELSE statements]

The INPUT statement has two syntaxes. The first syntax displays a prompt and assigns the input to
variable. The second syntax specifies the location of the input field on the screen and lets you display
the current value of variable. Both the current value and the displayed input can be formatted.

Use the INPUTIF statement to assign the contents of the type-ahead buffer to a variable. If the type-
ahead buffer is empty, the ELSE statements are executed, otherwise any THEN statements are
executed.

Use the @ expression to specify the position of the input field. The prompt is displayed one character
to the left of the beginning of the field, and the current value of variable is displayed as the value
in the input field. The user can edit the displayed value or enter a new value. If the first character
typed in response to the prompt is an editing key, the user can edit the contents of the field. If the first
character typed is anything else, the field’s contents are deleted and the user can enter a new value.
Editing keys are defined in the terminfo files; they can also be defined by the KEYEDIT statement.
Calculations are based on display length rather than character length.

col and row are expressions that specify the column and row positions of the input prompt. The
prompt is positioned one character to the left of the input field. Because the prompt character is
positioned to the left of the col position, you must set the prompt to the empty string if you want to
use column 0. Otherwise, the screen is erased before the prompt appears.

length specifies the maximum number of characters allowed as input. When the maximum number of
characters is entered, input is terminated. If the @ expression is used, the newline is suppressed.

Chapter 1: Statements and functions

224

If length evaluates to less than 0 (for example, -1), the input buffer is tested for the presence of
characters. If characters are present, variable is set to 1, otherwise it is set to 0. No input is performed.

If you use the underscore (_) with the length expression, the user must enter the RETURN manually at
the terminal when input is complete. Only the specified number of characters is accepted.

Use a format expression to validate input against a format mask and to format the displayed input
field. The syntax of the format expression is the same as that for the FMT function. If you specify a
length expression together with a format expression, length checking is performed. If input does not
conform to the format mask, an error message appears at the bottom of the screen, prompting the
user for the correct input.

The colon (:) suppresses the newline after input is terminated. This allows multiple input prompts on
a single line.

The default prompt character is a question mark. Use the PROMPT statement to reassign the prompt
character.

The INPUT statement prints only the prompt character on the screen. To print a variable name or
prompt text along with the prompt, precede the INPUT statement with a PRINT statement.

The INPUT statement lets the user type ahead when entering a response. Users familiar with a
sequence of prompts can save time by entering data at their own speed, not waiting for all prompts to
be displayed. Responses to a sequence of INPUT prompts are accepted in the order in which they are
entered.

If col, row, length, or format evaluate to the null value, the INPUT statement fails and the program
terminates with a run-time error message. If variable is the null value and the user types the TRAP key,
null is retained as the value of variable.

If NLS is enabled, INPUT @ displays the initial value of an external multibyte character set through
the mask as best as possible. If the user enters a new value, mask disappears, and an input field of the
approximate length (not including any inserted characters) is entered. For details about format and
mask, see the FMTDP function.

Only backspace and kill are supported for editing functions when using a format mask with input.
When the user finishes the input, the new value is redisplayed through the mask in the same way as
the original value. For more information about NLS in BASIC programs, see the UniVerse NLS Guide.

PICK flavor

In a PICK flavor account, the syntax of the INPUT and INPUT @ statements includes THEN and ELSE
clauses:

INPUT variable [,length] [:] [_] [THEN statements] [ELSE statements]

INPUT @ (col, row) [, | :] variable [,length] [:] [format] [_] [THEN statements] [ELSE statements]

To use THEN and ELSE clauses with INPUT statements in other flavors, use the INPUT.ELSE option of
the $OPTIONS statement, on page 26.

PICK, IN2, and REALITY flavors

In PICK, IN2, and REALITY flavors, values supplied by a DATA statement are not echoed. To suppress
echoing input from DATA statements in IDEAL and INFORMATION flavors, use the SUPP.DATA.ECHO
option of the $OPTIONS statement.

Examples

In the following examples of program output, bold type indicates words the user types. In the first
example the value entered is assigned to the variable NAME:

INPUT statement

225

Source lines Program output

INPUT NAME

PRINT NAME

? Dave

Dave

In the next example the value entered is assigned to the variable CODE. Only the first seven characters
are recognized. A RETURN and a LINEFEED automatically occur.

Source lines Program output

INPUT CODE, 7

PRINT CODE

? 1234567

1234567

In the next example the user can enter more than two characters. The program waits for a RETURN to
end input, but only the first two characters are assigned to the variable YES.

Source Lines Program Output

INPUT YES, 2_

PRINT YES

? 1234

12

In the next example the colon inhibits the automatic LINEFEED after the RETURN:

Source lines Program output

INPUT YES, 2_:

PRINT "=",YES

? HI THERE =HI

In the next example the input buffer is tested for the presence of characters. If characters are present,
VAR is set to 1, otherwise it is set to 0. No input is actually done.

Source lines Program output

INPUT VAR, -1

PRINT VAR

0

In the next example the PRINT statement puts INPUT NAME before the input prompt:

Source lines Program output

PRINT "INPUT
NAME":

INPUT NAME

PRINT NAME

INPUT NAME?

Dave

Dave

In the next example the contents of X are displayed at column 5, row 5 in a field of 10 characters. The
user edits the field, replacing its original contents (CURRENT) with new contents (NEW). The new input
is displayed. If the PRINT statement after the INPUT statement were not used, X would be printed
immediately following the input field on the same line, since INPUT with the @ expression does not
execute a LINEFEED after a RETURN.

Chapter 1: Statements and functions

226

Source lines Program output

PRINT @(-1) X =
"CURRENT" INPUT
@(5,5) X,10 PRINT
PRINT X

 ?NEW_______ NEW

INPUTCLEAR statement
Use the INPUTCLEAR statement to clear the type-ahead buffer. You can use this statement before
input prompts so input is not affected by unwanted characters.

Syntax

INPUTCLEAR

Example

PRINT "DO YOU WANT TO CONTINUE (Y/N)?"
 INPUTCLEAR
 INPUT ANSWER, 1

INPUTDISP statement
Use the INPUTDISP statement with an @ expression to position the cursor at a specified location and
define a format for the variable to print. The current contents of variable are displayed as the value in
the defined field. Calculations are based on display length rather than character length.

Syntax

INPUTDISP [@(col, row) [, | :]] variable [format]

col specifies the column position, and row specifies the row position.

format is an expression that defines how the variable is to be displayed in the output field. The syntax
of the format expression is the same as that for the FMT function.

Example

PRINT @(-1)
 X = "CURRENT LINE"
 INPUTDISP @(5,5),X"10T"

The program output on a cleared screen is:

 CURRENT
 LINE

INPUTDP statement

227

INPUTDP statement
In NLS mode, use the INPUTDP statement to let the user enter data. The INPUTDP statement is similar
to the INPUT statement, INPUTIF statement, and INPUTDISP statement, but it calculates display
positions rather than character lengths.

Syntax

INPUTDP variable [, length] [:] [_] [THEN statements] [ELSE statements]

variable contains the input from a user prompt.

length specifies the maximum number of characters in display length allowed as input. INPUTDP
calculates the display length of the input field based on the current terminal map. When the specified
number of characters is entered, an automatic newline is executed.

The colon (:) executes the RETURN, suppressing the newline. This allows multiple input prompts on a
single line.

If you use the underscore (_), the user must enter the RETURN manually when input is complete, and
the newline is not executed.

For more information about display length, see the UniVerse NLS Guide.

INPUTERR statement
Use the INPUTERR statement to print a formatted error message on the bottom line of the terminal.
error.message is an expression that evaluates to the error message text. The message is cleared by
the next INPUT statement or is overwritten by the next INPUTERR statement or PRINTERR statement.
INPUTERR clears the type-ahead buffer.

Syntax

INPUTERR [error.message]

error.message can be any BASIC expression. The elements of the expression can be numeric or
character strings, variables, constants, or literal strings. The null value cannot be output. The
expression can be a single expression or a series of expressions separated by commas (,) or colons
(:) for output formatting. If no error message is designated, a blank line is printed. If error.message
evaluates to the null value, the default error message is printed:

Message ID is NULL: undefined error

Expressions separated by commas are printed at preset tab positions. The default tabstop setting is 10
characters. For information about changing the default setting, see the TABSTOP statement, on page
407. Multiple commas can be used together to cause multiple tabulations between expressions.

Expressions separated by colons are concatenated: that is, the expression following the colon is
printed immediately after the expression preceding the colon.

INPUTIF statement
Use the INPUTIF statement to assign the contents of the type-ahead buffer to a variable.

For details, see the INPUTIF statement, on page 227.

Chapter 1: Statements and functions

228

INPUTNULL statement
Use the INPUTNULL statement to define a character to be recognized as an empty string when it is
input in response to an INPUT statement. If the only input to the INPUT statement is character, that
character is recognized as an empty string. character replaces the default value of the INPUT variable
with an empty string. If character evaluates to the null value, the INPUTNULL statement fails and the
program terminates with a run-time error message.

Syntax

INPUTNULL character

You can also assign an empty string to the variable used in the INPUT @ statement before executing
the INPUT @. In this case entering a RETURN leaves the variable set to the empty string.

Note: Although the name of this statement is INPUTNULL, it does not define character to be
recognized as the null value. It defines it to be recognized as an empty string.

INPUTTRAP statement
Use the INPUTTRAP statement to branch to a program label or subroutine when a trap character is
input. Execution is passed to the statement label which corresponds to the trap number of the trap
character. If the trap number is larger than the number of labels, execution is passed to the statement
specified by the last label in the list.

Syntax

INPUTTRAP [trap.chars] {GOTO | GOSUB} label [,label …]

trap.chars is an expression that evaluates to a string of characters, each of which defines a trap
character. The first character in the string is defined as trap one. Additional characters are assigned
consecutive trap numbers. Each trap character corresponds to one of the labels in the label list. If
trap.chars evaluates to the null value, the INPUTTRAP statement fails and the program terminates
with a run-time error message.

Using GOTO causes execution to be passed to the specified statement label. Control is not returned
to the INPUTTRAP statement except by the use of another trap. Using GOSUB causes execution to
be passed to the specified subroutine, but control can be returned to the INPUTTRAP statement by a
RETURN statement. Control is returned to the statement following the INPUTTRAP statement, not the
INPUT @ statement that received the trap.

INS statement
Use the INS statement to insert a new field, value, or subvalue into the specified dynamic.array.

Syntax

INS expression BEFORE dynamic.array < field# [,value# [,subvalue#]] >

expression specifies the value of the new element to be inserted.

dynamic.array is an expression that evaluates to the dynamic array to be modified.

INS statement

229

field#, value#, and subvalue# specify the type and position of the new element to be inserted and are
called delimiter expressions.

There are three possible outcomes of the INS statement, depending on the delimiter expressions
specified.

Case Result

Case 1: If both value# and subvalue# are omitted or are 0, INS inserts a new field with
the value of expression into the dynamic array.

If field# is positive and less than or equal to the number of fields in
dynamic.array, the value of expression followed by a field mark is inserted
before the field specified by field#.

If field# is -1, a field mark followed by the value of expression is appended to the
last field in dynamic.array.

If field# is positive and greater than the number of fields in dynamic.array, the
proper number of field marks followed by the value of expression are appended
so that the value of field# is the number of the new field.

Case 2: If value# is nonzero and subvalue# is omitted or is 0, INS inserts a new value with
the value of expression into the dynamic array.

If value# is positive and less than or equal to the number of values in the field,
the value of expression followed by a value mark is inserted before the value
specified by value#.

If value# is -1, a value mark followed by the value of expression is appended to
the last value in the field.

If value# is positive and greater than the number of values in the field, the
proper number of value marks followed by the value of expression are
appended to the last value in the specified field so that the number of the new
value in the field is value#.

Case 3: If field#, value#, and subvalue# are all specified, INS inserts a new subvalue with
the value of expression into the dynamic array.

If subvalue# is positive and less than or equal to the number of subvalues in the
value, the value of expression following by a subvalue mark is inserted before
the subvalue specified by subvalue#.

If subvalue# is -1, a subvalue mark followed by expression is appended to the
last subvalue in the value.

If subvalue# is positive and greater than the number of subvalues in the value,
the proper number of subvalue marks followed by the value of expression are
appended to the last subvalue in the specified value so that the number of the
new subvalue in the value is subvalue#.

If all delimiter expressions are 0, the original string is returned.

In IDEAL, PICK, PIOPEN, and REALITY flavor accounts, if expression is an empty string and the new
element is appended to the end of the dynamic array, the end of a field, or the end of a value, the
dynamic array, field, or value is left unchanged. Additional delimiters are not appended. Use the
EXTRA.DELIM option of the $OPTIONS statement to make the INS statement append a delimiter to the
dynamic array, field, or value.

If expression evaluates to the null value, null is inserted into dynamic.array. If dynamic.array evaluates
to the null value, it remains unchanged by the insertion. If the INS statement references a subelement
of an element whose value is the null value, the dynamic array is unchanged.

Chapter 1: Statements and functions

230

If any delimiter expression is the null value, the INS statement fails and the program terminates with a
run-time error message.

INFORMATION and IN2 flavors

In INFORMATION and IN2 flavor accounts, if expression is an empty string and the new element
is appended to the end of the dynamic array, the end of a field, or the end of a value, a delimiter
is appended to the dynamic array, field, or value. Use the -EXTRA.DELIM option of the $OPTIONS
statement to make the INS statement work as it does in IDEAL, PICK, and REALITY flavor accounts.

Examples

In the following examples a field mark is shown by F, a value mark is shown by V, and a subvalue mark
is shown by S.

The first example inserts the character # before the first field and sets Q to #FFF1V2V3S6F9F5F7V3:

 R=@FM:@FM:1:@VM:2:@VM:3:@SM:6:@FM:9:@FM:5:@FM:7:@VM:3
 Q=R
 INS "#" BEFORE Q<1,0,0>

The next example inserts a # before the third value of field 3 and sets the value of Q to
FF1V2V#V3S6F9F5F7V3:

Q=R
 INS "#" BEFORE Q<3,3,0>

The next example inserts a value mark followed by a # after the last value in the field and sets Q to
FF1V2V3S6F9V#F5F7V3:

Q=R
 INS "#" BEFORE Q<4,-1,0>

The next example inserts a # before the second subvalue of the second value of field 3 and sets Q to
FF1V2S#V3S6F9F5F7V3:

Q=R
 INS "#" BEFORE Q<3,2,2>

INSERT function
Use the INSERT function to return a dynamic array that has a new field, value, or subvalue inserted
into the specified dynamic array.

Syntax

INSERT (dynamic.array, field#, value#, subvalue#, expression)

INSERT (dynamic.array, field# [,value# [,subvalue#]] ; expression)

dynamic.array is an expression that evaluates to a dynamic array.

field#, value#, and subvalue# specify the type and position of the new element to be inserted and are
called delimiter expressions. value# and subvalue# are optional, but if either is omitted, a semicolon
(;) must precede expression, as shown in the second syntax line.

expression specifies the value of the new element to be inserted.

INSERT function

231

There are three possible outcomes of the INSERT function, depending on the delimiter expressions
specified.

Case Result

Case 1: If both value# and subvalue# are omitted or are 0, INSERT inserts a new field
with the value of expression into the dynamic array.

If field# is positive and less than or equal to the number of fields in
dynamic.array, the value of expression followed by a field mark is inserted
before the field specified by field#.

If field# is -1, a field mark followed by the value of expression is appended to the
last field in dynamic.array.

If field# is positive and greater than the number of fields in dynamic.array, the
proper number of field marks followed by the value of expression are appended
so that the value of field# is the number of the new field.

Case 2: If value# is nonzero and subvalue# is omitted or is 0, INSERT inserts a new value
with the value of expression into the dynamic array.

If value# is positive and less than or equal to the number of values in the field,
the value of expression followed by a value mark is inserted before the value
specified by value#.

If value# is -1, a value mark followed by the value of expression is appended to
the last value in the field.

If value# is positive and greater than the number of values in the field, the
proper number of value marks followed by the value of expression are
appended to the last value in the specified field so that the number of the new
value in the field is value#.

Case 3: If field#, value#, and subvalue# are all specified, INSERT inserts a new subvalue
with the value of expression into the dynamic array.

If subvalue# is positive and less than or equal to the number of subvalues in the
value, the value of expression following by a subvalue mark is inserted before
the subvalue specified by subvalue#.

If subvalue# is -1, a subvalue mark followed by expression is appended to the
last subvalue in the value.

If subvalue# is positive and greater than the number of subvalues in the value,
the proper number of subvalue marks followed by the value of expression are
appended to the last subvalue in the specified value so that the number of the
new subvalue in the value is subvalue#.

In IDEAL, PICK, PIOPEN, and REALITY accounts, if expression is an empty string and the new element is
appended to the end of the dynamic array, the end of a field, or the end of a value, the dynamic array,
field, or value is left unchanged. Additional delimiters are not appended. Use the EXTRA.DELIM option
of the $OPTIONS statement to make the INSERT function append a delimiter to the dynamic array,
field, or value.

If expression evaluates to the null value, null is inserted into dynamic.array. If dynamic.array evaluates
to the null value, it remains unchanged by the insertion. If any delimiter expression is the null value,
the INSERT function fails and the program terminates with a run-time error message.

INFORMATION and IN2 flavors

In INFORMATION and IN2 flavor accounts, if expression is an empty string and the new element
is appended to the end of the dynamic array, the end of a field, or the end of a value, a delimiter

Chapter 1: Statements and functions

232

is appended to the dynamic array, field, or value. Use the -EXTRA.DELIM option of the $OPTIONS
statement to make the INSERT function work as it does in IDEAL, PICK, and REALITY flavor accounts.

Examples

In the following examples a field mark is shown by F, a value mark is shown by V, and a subvalue mark
is shown by S.

The first example inserts the character # before the first field and sets Q to #FFF1V2V3S6F9F5F7V:

 R=@FM:@FM:1:@VM:2:@VM:3:@SM:6:@FM:9:@FM:5:@FM:7:@VM:3
 Q=INSERT(R,1,0,0,"#")

The next example inserts a # before the third value of field 3 and sets the value of Q to
FF1V2V#V3S6F9F5F7V3:

Q=INSERT(R,3,3;"#")

The next example inserts a value mark followed by a # after the last value in the field and sets Q to
FF1V2V3S6F9V#F5F7V3:

Q=INSERT(R,4,-1,0,"#")

The next example inserts a # before the second subvalue of the second value of field 3 and sets Q to
FF1V2S#V3S6F9F5F7V3:

Q=INSERT(R,3,2,2;"#")

INT function
Use the INT function to return the integer portion of an expression.

Syntax

INT (expression)

expression must evaluate to a numeric value. Any arithmetic operations specified are calculated using
the full accuracy of the system. The fractional portion of the value is truncated, not rounded, and the
integer portion remaining is returned.

If expression evaluates to the null value, null is returned.

Example

PRINT "123.45 ", INT(123.45)
 PRINT "454.95 ", INT(454.95)

This is the program output:

123.45 123
 454.95 454

ISNULL function
Use the ISNULL function to test whether a variable is the null value. If variable is the null value, 1
(true) is returned, otherwise 0 (false) is returned. This is the only way to test for the null value since the
null value is not equal to any value, including itself.

ISNULLS function

233

Syntax

ISNULL (variable)

Example

X = @NULL
 Y = @NULL.STR
 PRINT ISNULL(X), ISNULL(Y)

This is the program output:

1 0

ISNULLS function
Use the ISNULLS function to test whether any element of dynamic.array is the null value. A dynamic
array is returned, each of whose elements is either 1 (true) or 0 (false). If an element in dynamic.array is
the null value, 1 is returned, otherwise 0 is returned. This is the only way to test for the null value since
the null value is not equal to any value, including itself.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Syntax

ISNULLS (dynamic.array)

CALL –ISNULLS (return.array, dynamic.array)

Example

DA = ""
 FOR I = 1 TO 7
 DA := I:@FM
 IF I = 5 THEN DA := @NULL.STR:@FM
 NEXT I
 PRINT ISNULLS(DA)

This is the program output:

0F0F0F0F0F1F0F0F0

ITYPE function
Use the ITYPE function to return the value resulting from the evaluation of an I-type expression in a
UniVerse file dictionary.

Syntax

ITYPE (i.type)

i.type is an expression evaluating to the contents of the compiled I-descriptor. The I-descriptor must
have been compiled before the ITYPE function uses it, otherwise you get a run-time error message.

i.type can be set to the I-descriptor to be evaluated in several ways. One way is to read the I-descriptor
from a file dictionary into a variable, then use the variable as the argument to the ITYPE function. If

Chapter 1: Statements and functions

234

the I-descriptor references a record ID, the current value of the system variable @ID is used. If the
I-descriptor references field values in a data record, the data is taken from the current value of the
system variable @RECORD.

To assign field values to @RECORD, read a record from the data file into @RECORD before invoking the
ITYPE function.

If i.type evaluates to the null value, the ITYPE function fails and the program terminates with a run-
time error message.

Example

This is the SUN.MEMBER file contents:

AW
 F1: ACCOUNTING
 TRX
 F1: MARKETING
 JXA
 F1: SALES

This is the DICT.ITME contents:

DEPARTMENTF1:D
 2:1
 3:
 4:
 5:10L
 6:L

This is the program source code:

OPEN 'SUN.MEMBER' TO FILE ELSE STOP
 OPEN 'DICT','SUN.MEMBER' TO D.FILE ELSE STOP
 *
 READ ITEM.ITYPE FROM D.FILE, 'DEPARTMENT' ELSE STOP
 *
 EXECUTE 'SELECT SUN.MEMBER'
 LOOP
 READNEXT @ID DO
 *
 READ @FRECORD FROM FILE, @ID THEN
 *
 PRINT @ID: "WORKS IN DEPARTMENT" ITYPE(ITEM.ITYPE)
 END
 REPEAT
 STOP
 END

This is the program output:

3 records selected to Select List #0
 FAW WORKS IN DEPARTMENT ACCOUNTING
 TRX WORKS IN DEPARTMENT MARKETING
 JXA WORKS IN DEPARTMENT SALES

KEYEDIT statement

235

KEYEDIT statement
Use the KEYEDIT statement to assign specific keyboard keys to the editing functions of the INPUT @
statement, and to the !EDIT.INPUT and !GET.KEY subroutines. KEYEDIT supports the following editing
functions:

Syntax

KEYEDIT (function, key) [, (function, key)] …

▪ Left arrow (<—)

▪ Enter (Return)

▪ Back space

▪ Right arrow (—>)

▪ Insert character

▪ Delete character

▪ Insert mode on

▪ Insert mode off

▪ Clear field

▪ Erase to end-of-line

▪ Insert mode toggle

In addition to the supported editing functions, two codes exist to designate the Esc and function keys.

function is an expression that evaluates to a numeric code assigned to a particular editing function.

Code Function

1 Function key
2 Left arrow (<—)
3 Return key
4 Back space
5 Esc key
6 Right arrow (—>)
7 Insert character
8 Delete character
9 Insert mode ON
10 Insert mode OFF
11 Clear from current position to end-of-line
12 Erase entire line
13 Insert mode toggle

key is an expression evaluating to a decimal value that designates the keyboard key to assign to the
editing function. There are three key types, described in the following table:

Type Decimal value Description

Control 1 through 31 Single character control codes ASCII 1
through 31.

Chapter 1: Statements and functions

236

Type Decimal value Description

Escape 32 through 159 Consists of the characters defined by the Esc
key followed by the ASCII value 0 through 127
(see Defining escape keys, on page 236).

Function 160 through 2,139,062,303 Consists of the characters defined by the
FUNCTION key followed by the ASCII value
0 through 127. You can specify up to four
ASCII values for complex keys (see Defining
function keys, on page 236).

If either function or key evaluates to the null value or an empty string, the KEYEDIT statement fails, the
program terminates, and a run-time error message is produced.

To define key, you must know the ASCII value generated by the keyboard on the terminal being used.
Once you know the ASCII code sequence generated by a particular keyboard key, you can use one of
the following three methods for deriving the numeric key value.

Defining control keys

A control key is one whose ASCII value falls within the range of 1 through 31. Generally keys of this type
consist of pressing a keyboard key while holding down the Ctrl key. The key value is the ASCII code
value, i.e., Ctrl-A is 1, Ctrl-M is 13, etc.

Defining escape keys

An escape key is one which consists of pressing the Esc key followed by a single ASCII value. The Esc
key can be defined by issuing a KEYEDIT statement using a function value of 5 and the ASCII value of
the escape character for the key parameter, e.g., KEYEDIT (5,27).

The key value for an escape key is derived by adding the ASCII value of the character following the Esc
key and 32. The constant 32 is added to ensure that the final key value falls within the range of 32 to
159, i.e., Esc-a is 33 (1+32), Esc-z is 122 (90+32), Esc-p is 144 (112+32), and so on.

Defining function keys

A function key is similar to an escape key but consists of a function key followed by one or more ASCII
values. The function key can be defined by issuing a KEYEDIT statement using a function value of 1 and
the ASCII value of the function character for the key parameter, e.g., KEYEDIT(1,1).

Deriving the key value for a function key depends on the number of characters in the sequence the
keyboard key generates. Because the KEYEDIT statement recognizes function keys that generate
character sequences up to five characters long, the following method can be used to derive the key
value.

Assume that keyboard key F7 generates the following character sequence:

Ctrl-A] 6 ~ <Return>

This character sequence is to be assigned to the Clear Field functionality of the INPUT @ statement. It
can be broken into five separate characters, identified as follows:

Character ASCII value Meaning

Ctrl-A 1 The preamble character (defines the function key)
] 93 The first character
6 54 The second character
~ 126 The third character
<Return> 10 The fourth character

KEYEDIT statement

237

First you define the function key value. Do this by issuing the KEYEDIT statement with a function value
of 1 and with a key value defined as the ASCII value of the preamble character, i.e., KEYEDIT (1, 1).

Once you define the function key, the following formula is applied to the remaining characters in the
sequence:

ASCII value * (2(8*(character position – 1))

Using the example above:

Key ASCII Formula Intermediate result Final result

] 93 * (2(8*(1-1)) = 93 * (20) = 93 * 1 = 93
6 54 * (2(8*(2-1)) = 54 * (28) = 54 * 256 = 13,824
~ 126 * (2(8*(3-1)) = 126 * (216) = 126 * 65,536 = 8,257,536
<cr> 10 * (2(8*(4-1)) = 10 * (224) = 10 *

16,777,216
= 167,772,160

176,043,613

+ 160
========
176,043,773

The results of each calculation are then added together. Finally, the constant 160 is added to insure
that the final key parameter value falls within the range of 160 through 2,139,062,303. For our example
above, this would yield 176,043,613 + 160, or 176,043,773. To complete this example and assign this
key to the Clear Field functionality, use the following KEYEDIT statement:

KEYEDIT (11, 176043773)

Historically, key values falling in the range of 160 through 287 included an implied Return, as there
was no method for supporting multiple character sequences. With the support of multiple character
sequences, you must now include the Return in the calculation for proper key recognition, with one
exception. For legacy key values that fall within the range of 160 through 287, a Return is automatically
appended to the end of the character sequence, yielding an internal key parameter of greater value.

A function key generates the character sequence:

Ctrl-A B <Return>

Before supporting multiple character sequences, this function key would have been defined as:

KEYEDIT (1, 1), (11, 225)

(1,1) defined the preamble of the function key, and (11, 225) defined the Clear-to-end-of-line key. The
225 value was derived by adding 160 to B (ASCII 65). The <Return> (ASCII 10) was implied. This can be
shown by using the SYSTEM(1050) function to return the internal trap table contents:

Type Value Key

0 1 3 10
1 1 3 13
2 1 1 1
3 1 11 2785

The value 2785 is derived as follows:

(65 * 1) + (10 * 256) + 160 = 65 + 2560 + 160 = 2785.

Chapter 1: Statements and functions

238

Defining unsupported keys

You can use the KEYEDIT statement to designate keys that are recognized as unsupported by the !
EDIT.INPUT subroutine. When the !EDIT.INPUT subroutine encounters an unsupported key, it sounds
the terminal bell.

An unsupported key can be any of the three key types:

▪ Control key

▪ Escape key

▪ Function key

Define an unsupported key by assigning any negative decimal value for the function parameter.

The key parameter is derived as described earlier.

See the !EDIT.INPUT or !GET.KEY subroutine for more information.

Retrieving defined keys

The SYSTEM function(1050) returns a dynamic array of defined KEYEDIT, KEYEXIT statement and
KEYTRAP statement keys. Field marks (ASCII 254) delimit the elements of the dynamic array. Each field
in the dynamic array has the following structure:

key.type V function.parameter V key.parameter

key.type is one of the following values:

Value Description

1 A KEYEDIT value
2 A KEYTRAP value
3 A KEYEXIT value
4 The INPUTNULL value
5 An unsupported value

function.parameter and key.parameter are the values passed as parameters to the associated
statement, except for the INPUTNULL value.

Example

The following example illustrates the use of the KEYEDIT statement and the SYSTEM(1050) function:

KEYEDIT (1,1), (2,21), (3,13), (4,8), (6,6), (12,176043773)
 KEYTRAP (1,2)
 keys.dfn=SYSTEM(1050)
 PRINT "#","Type","Value","Key"
 XX=DCOUNT(keys.dfn,@FM)
 FOR I=1 TO XX
 print I-1,keys.dfn<I,1>,keys.dfn<I,2>,keys.dfn<I,3>
 NEXT I

The program output is:

Type Value Key
 0 1 3 10
 1 1 3 13
 2 1 4 8
 3 1 1 1
 4 1 2 21

KEYEXIT statement

239

 5 1 6 6
 6 1 12 176043773
 7 2 1 2

KEYEXIT statement
Use the KEYEXIT statement to specify exit traps for the keys assigned specific functions by the KEYEDIT
statement. When an exit trap key is typed, the variable being edited with the INPUT @ statement or
the !EDIT.INPUT subroutine remains in its last edited state. Use the KEYTRAP statement to restore the
variable to its initial state.

Syntax

KEYEXIT (value, key) [, (value, key)] …

value is an expression that specifies a user-defined trap number for each key assigned by the KEYEDIT
statement.

key is a decimal value that designates the specific keyboard key assigned to the editing function. There
are three key types, described in the following table:

Type Decimal value Description

Control 1 through 31 Single character control codes ASCII 1 through
31.

Escape 32 through 159 Consists of the characters defined by the Esc
key followed by the ASCII value 0 through 127.

Function 160 through 2,139,062,303 Consists of the characters defined by the
function key followed by the ASCII value 0
through 127. A maximum of four ASCII values
can be specified for complex keys.

See the KEYEDIT statement for how to derive the decimal value of control, escape, and function keys.

If either the value or key expression evaluates to the null value or an empty string, the KEYEXIT
statement fails, the program terminates, and a run-time error message is produced.

KEYEXIT sets the STATUS function to the trap number of any trap key typed by the user.

Examples

The following example sets up Ctrl-B as an exit trap key. The STATUS function is set to 1 when the user
types the key.

KEYEXIT (1,2)

The next example sets up Ctrl-K as an exit trap key. The STATUS function is set to 2 when the user
types the key.

KEYEXIT (2,11)

KEYIN function
Use the KEYIN function to read a single character from the input buffer and return it. All UniVerse
special character handling (such as case inversion, erase, kill, and so on) is disabled. UNIX special

Chapter 1: Statements and functions

240

character handling (processing of interrupts, XON/XOFF, conversion of CR to LF, and so on) still takes
place.

Calculations are based on display length rather than character length.

No arguments are required with the KEYIN function; however, parentheses are required.

Syntax

KEYIN ()

KEYTRAP statement
Use the KEYTRAP statement to specify traps for the keys assigned specific functions by the KEYEDIT
statement. When a trap key is typed, the variable being edited with the INPUT @ statement or the !
EDIT.INPUT subroutine is restored to its initial state. Use the KEYEXIT statement to leave the variable
in its last edited state.

Syntax

KEYTRAP (value, key) [, (value, key)] …

value is an expression that evaluates to a user-defined trap number for each key assigned by the
KEYEDIT statement.

key is a decimal value which designates the specific keyboard key assigned to the editing function.
There are three key types, described in the following table:

Type Decimal value Description

Control 1 through 31 Single character control codes ASCII 1 through 31.
Escape 32 through 159 Consists of the characters defined by the Esc key

followed by the ASCII value 0 through 127.
Function 160 through 2,139,062,303 Consists of the characters defined by the function

key followed by the ASCII value 0 through 127. A
maximum of four ASCII values may be specified for
complex keys.

See the KEYEDIT statement, on page 235 for how to derive the decimal value of control, escape, and
function keys.

If either the value or key expression evaluates to the null value or an empty string, the KEYEXIT
statement fails, the program terminates, and a run-time error message is produced.

KEYTRAP sets the STATUS function to the trap number of any trap key typed by the user.

Examples

The following example sets up Ctrl-B as a trap key. The STATUS function is set to 1 when the user
types the key.

KEYTRAP (1, 2)

The next example defines function key values for the F1, F2, F3, and F4 keys on a Wyse 50 terminal:

KEYEDIT (1,1)
 KEYTRAP (1,224), (2,225), (3,226), (4,227)
 PRINT @(-1)
 VALUE = "KEY"

LEFT function

241

 INPUT @ (10,10):VALUE
 X=STATUS()
 BEGIN CASE
 CASE X = 1
 PRINT "FUNCTION KEY 1"
 CASE X =2
 PRINT "FUNCTION KEY 2"
 CASE X =3
 PRINT "FUNCTION KEY 3"
 CASE X =4
 PRINT "FUNCTION KEY 4"
 END CASE
 PRINT VALUE
 STOP
 END

LEFT function
Use the LEFT function to extract a substring comprising the first n characters of a string, without
specifying the starting character position. It is equivalent to the following substring extraction
operation:

string [1, length]

If string evaluates to the null value, null is returned. If n evaluates to the null value, the LEFT function
fails and the program terminates with a run-time error message.

Syntax

LEFT (string, n)

Example

PRINT LEFT("ABCDEFGH",3)

This is the program output:

ABC

LEN function
Use the LEN function to return the number of characters in string. Calculations are based on character
length rather than display length.

Syntax

LEN (string)

string must be a string value. The characters in string are counted, and the count is returned.

The LEN function includes all blank spaces, including trailing blanks, in the calculation.

If string evaluates to the null value, 0 is returned.

If NLS is enabled, use the LENDP function to return the length of a string in display positions rather
than character length. For more information about display length, see the UniVerse NLS Guide.

Chapter 1: Statements and functions

242

Example

P="PORTLAND, OREGON"
 PRINT "LEN(P)= ",LEN(P)
 *
 NUMBER=123456789
 PRINT "LENGTH OF NUMBER IS ",LEN(NUMBER)

This is the program output:

LEN(P)= 16
 LENGTH OF NUMBER IS 9

LENDP function
In NLS mode, use the LENDP function to return the number of display positions occupied by string
when using the specified map. Calculations are based on display length rather than character length.

Syntax

LENDP (string [,mapname])

string must be a string value. The display length of string is returned.

mapname is the name of an installed map. If mapname is not installed, the character length of string is
returned.

If mapname is omitted, the map associated with the channel activated by PRINTER ON is used,
otherwise it uses the map for print channel 0. You can also specify mapname as CRT, AUX, LPTR, and
OS. These values use the maps associated with the terminal, auxiliary printer, print channel 0, or the
operating system, respectively. If you specify mapname as NONE, the string is not mapped.

Any unmappable characters in string have a display length of 1.

The LENDP function includes all blank spaces, including trailing blanks, in the calculation.

If string evaluates to the null value, 0 is returned.

If you use the LENDP function with NLS disabled, the program behaves as if the LEN function is used.
See the LEN function, on page 241 to return the length of a string in character rather than display
positions.

For more information about display length, see the UniVerse NLS Guide.

LENS function
Use the LENS function to return a dynamic array of the number of display positions in each element of
dynamic.array. Calculations are based on character length rather than display length.

Syntax

LENS (dynamic.array)

CALL -LENS (return.array, dynamic.array)

CALL !LENS (return.array, dynamic.array)

LENSDP function

243

Each element of dyamic.array must be a string value. The characters in each element of dynamic.array
are counted, and the counts are returned.

The LENS function includes all blank spaces, including trailing blanks, in the calculation.

If dynamic.array evaluates to the null value, 0 is returned. If any element of dynamic.array is null, 0 is
returned for that element.

If NLS is enabled, use the LENSDP function to return a dynamic array of the number of characters in
each element of dynamic.array in display positions. For more information about display length, see
the UniVerse NLS Guide.

LENSDP function
In NLS mode, use the LENSDP function to return a dynamic array of the number of display positions
occupied by each element of dynamic.array. Calculations are based on display length rather than
character length.

Syntax

LENSDP (dynamic.array [, mapname])

CALL -LENSDP (return.array, dynamic.array [,mapname])

CALL !LENSDP (return.array, dynamic.array [,mapname])

Each element of dynamic.array must be a string value. The display lengths of each element of
dynamic.array are counted, and the counts are returned.

mapname is the name of an installed map. If mapname is not installed, the character length of string is
returned.

If mapname is omitted, the map associated with the channel activated by PRINTER ON is used,
otherwise it uses the map for print channel 0. You can also specify mapname as CRT, AUX, LPTR, and
OS. These values use the maps associated with the terminal, auxiliary printer, print channel 0, or the
operating system, respectively. If you specify mapname as NONE, the string is not mapped.

Any unmappable characters in dynamic.array have a display length of 1.

The LENSDP function includes all blank spaces, including trailing blanks, in the calculation.

If dynamic.array evaluates to the null value, 0 is returned. If any element of dynamic.array is null, 0 is
returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

If you use the LENSDP function with NLS disabled, the program behaves as if the LENS function is
used. See the LENS function to return the length of a string in character length rather than display
length.

For more information about display length, see the UniVerse NLS Guide.

LES function
Use the LES function to test if elements of one dynamic array are less than or equal to the elements of
another dynamic array.

Syntax

LES (array1, array2)

Chapter 1: Statements and functions

244

CALL -LES (return.array, array1, array2)

CALL !LES (return.array, array1, array2)

Each element of array1 is compared with the corresponding element of array2. If the element from
array1 is less than or equal to the element from array2, a 1 is returned in the corresponding element
of a new dynamic array. If the element from array1 is greater than the element from array2, a 0 is
returned. If an element of one dynamic array has no corresponding element in the other dynamic
array, the undefined element is evaluated as empty, and the comparison continues.

If either of a corresponding pair of elements is the null value, null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

LET statement
Use the LET statement to assign the value of expression to variable.

Syntax

[LET] variable = expression

Example

LET A=55
 LET B=45
 LET C=A+B
 LET D="55+45="
 LET E=D:C
 PRINT E

This is the program output:

55+45=100

LN function
Use the LN function to calculate the natural logarithm of the value of an expression, using base "e".
The value of "e" is approximately 2.71828. expression must evaluate to a numeric value greater than 0.

If expression is 0 or negative, 0 is returned and a warning is printed. If expression evaluates to the null
value, null is returned.

Syntax

LN (expression)

Example

PRINT LN(6)

This is the program output:

1.7918

loadSecurityContext function

245

loadSecurityContext function
The loadSecurityContext() function loads a saved security context record into the current
session.

The name and passPhrase parameters are needed to retrieve and decrypt the saved context. An
internal data structure is created and its handle is returned in the context parameter.

Syntax

loadSecurityContext(context, name, passPhrase)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

context The security context handle.
name String containing the name of the saved context.
PassPhrase String containing the passPhrase needed to decrypt the saved data.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.
1 Context record does not exist.
2 Context record could not be accessed (for example, wrong password).
3 Invalid content (file was not saved by the saveSecurityContext()

function).
4 Other problems that caused context load failure. Refer to the log file for

more information.

LOCALEINFO function
In NLS mode, use the LOCALEINFO function to retrieve the settings of the current locale.

Syntax

LOCALEINFO (category)

category is one of the following tokens that are defined in the UniVerse include file UVNLSLOC.H:

Category Description

UVLC$TIME

UVLC$NUMERIC

UVLC$MONETARY

UVLC$CTYPE

UVLC$COLLATE

Each token returns a dynamic array containing the data being
used by the specified category. The meaning of the data depends
on the category; field 1 is always the name of the category or
the value OFF. OFF means that locale support is disabled for a
category. The elements of the array are separated by field marks.

Chapter 1: Statements and functions

246

Category Description

UVLC$WEIGHTS Returns the weight table.
UVLC$INDEX Returns information about the hooks defined for the locale.

If the specified category is set to OFF, LOCALEINFO returns the string OFF.

If the LOCALEINFO function fails to execute, LOCALEINFO returns one of the following:

Error Description

LCE$NO.LOCALES NLS locales are not in force.
LCE
$BAD.CATEGORY

Category is invalid.

For more information about locales, see the UniVerse NLS Guide.

Example

The following example shows the contents of the multivalued DAYS field when the locale FR-FRENCH
is current. Information for LCT$DAYS is contained in the UVNLSLOC.H file in the INCLUDE directory in
the UV account directory.

category.info = LOCALEINFO(LC$TIME)
 PRINT category.info<LCT$DAYS>

This is the program output:

lundi}mardi}mercredi}jeudi}vendredi}samedi}dimanche

LOCATE statement (IDEAL and REALITY syntax)
Use the LOCATE statement to search dynamic.array for a field, value, or subvalue. LOCATE returns a
value indicating one of the following:

Syntax

LOCATE expression IN dynamic.array [< field# [, value#] >]
 [, start] [BY seq]
 SETTING variable
 {THEN statements [ELSE statements] | ELSE statements}

▪ Where expression was found in dynamic.array

▪ Where expression should be inserted in dynamic.array if it was not found

The search can start anywhere in dynamic.array.

Note: The REALITY syntax of LOCATE works in IDEAL, REALITY, IN2, and PICK flavors by default. To
make the INFORMATION syntax of LOCATE available in these flavors, use the INFO.LOCATE option
of $OPTIONS statement. To make the REALITY syntax of LOCATE available in INFORMATION and
PIOPEN flavors, use $OPTIONS –INFO.LOCATE.

expression evaluates to the content of the field, value, or subvalue to search for in dynamic.array. If
expression or dynamic.array evaluates to the null value, variable is set to 0 and the ELSE statements
are executed. If expression and dynamic.array both evaluate to empty strings, variable is set to 1 and
the THEN statements are executed.

LOCATE statement (IDEAL and REALITY syntax)

247

field# and value# are delimiter expressions that restrict the scope of the search. If you do not specify
field#, dynamic.array is searched field by field. If you specify field# but not value#, the specified field is
searched value by value. If you specify field# and value#, the specified value is searched subvalue by
subvalue.

start is an expression that evaluates to a number specifying the field, value, or subvalue from which to
start the search.

Case Description

Case 1: If field# and value# are omitted, the search starts in dynamic.array at the
field specified by start. If start is also omitted, the search starts at field 1 of
dynamic.array.

Case 2: If only field# is specified and it is greater than 0, the search starts at the value
specified by start. If start is also omitted, the search starts at value 1 in field#. If
field# is less than or equal to 0, both field# and value# are ignored.

Case 3: If both field# and value# are specified, the search starts at the subvalue
specified by start. If start is also omitted, the search starts at subvalue 1 of
value#, in the field specified by field#. If field# is greater than 0, but value# is less
than or equal to 0, LOCATE behaves as though only field# is specified.

If a field, value, or subvalue containing expression is found, variable returns the index of the located
field, value, or subvalue relative to the start of dynamic.array, field#, or value#, respectively, not
relative to the start of the search. If a field, value, or subvalue containing expression is not found,
variable is set to the number of fields, values, or subvalues in the array plus 1, and the ELSE
statements are executed. The format of the ELSE statement is the same as that used in the IF…THEN
statement.

If field#, value#, or start evaluates to the null value, the LOCATE statement fails and the program
terminates with a run-time error message.

variable stores the index of expression. variable returns a field number, value number, or subvalue
number, depending on the delimiter expressions used. variable is set to a number representing one of
the following:

▪ The index of the element containing expression, if such an element is found

▪ An index that can be used in an INSERT function to create a new element with the value specified
by expression

The search stops when one of the following conditions is met:

▪ A field containing expression is found.

▪ The end of the dynamic array is reached.

▪ A field that is higher or lower, as specified by seq, is found.

If the elements to be searched are sorted in one of the ascending or descending ASCII sequences
listed below, you can use the BY seq expression to end the search. The search ends at the place where
expression should be inserted to maintain the ASCII sequence, rather than at the end of the list of
specified elements.

Use the following values for seq to describe the ASCII sequence being searched:

Value Description

AL or A Ascending, left-justified (standard alphanumeric sort)
AR Ascending, right-justified (numeric sort)
DL or D Descending, left-justified (standard alphanumeric sort)
DR Descending, right-justified (numeric sort)

Chapter 1: Statements and functions

248

seq does not reorder the elements in dynamic.array; it specifies the terminating conditions for
the search. If a seq expression is used and the elements are not in the sequence indicated by seq,
an element with the value of expression may not be found. If seq evaluates to the null value, the
statement fails and the program terminates.

If NLS is enabled, the LOCATE statement with a BY seq expression uses the Collate convention as
specified in the NLS.LC.COLLATE file to determine the sort order for characters with ascending or
descending sequences. The Collate convention defines rules for casing, accents, and ordering. For
more information about how NLS calculates the order, see the UniVerse NLS Guide.

Examples

The examples show the REALITY flavor of the LOCATE statement. A field mark is shown by F, a value
mark is shown by V, and a subvalue mark is shown by S.

 Q='X':@SM:"$":@SM:'Y':@VM:'Z':@SM:4:@SM:2:@VM:'B'
 PRINT "Q= ":Q
LOCATE "$" IN Q <1> SETTING WHERE ELSE PRINT 'ERROR'
 PRINT "WHERE= ",WHERE
LOCATE "$" IN Q <1,1> SETTING HERE ELSE PRINT 'ERROR'
 PRINT "HERE= ", HERE
 NUMBERS=122:@FM:123:@FM:126:@FM:130:@FM
 PRINT "BEFORE INSERT, NUMBERS= ",NUMBERS
 NUM= 128
 LOCATE NUM IN NUMBERS BY "AR" SETTING X ELSE
 NUMBERS = INSERT(NUMBERS,X,0,0,NUM)
 PRINT "AFTER INSERT, NUMBERS= ",NUMBERS
 END

This is the program output:

Q= XS$SYVZS4S2VB
ERROR
WHERE= 4
HERE= 2
BEFORE INSERT, NUMBERS= 122F123F126F130F
AFTER INSERT, NUMBERS= 122F123F126F128F130F

LOCATE statement (INFORMATION syntax)
Use the LOCATE statement to search dynamic.array for a field, value, or subvalue. LOCATE returns a
value indicating one of the following:

Syntax

LOCATE expression IN dynamic.array <field# [, value# [, subvalue#]] >
 [BY seq] SETTING variable
 {THEN statements [ELSE statements] | ELSE statements}

▪ Where expressionwas found in dynamic.array

▪ Where expression should be inserted in dynamic.array if it was not found

The search can start anywhere in dynamic.array.

LOCATE statement (INFORMATION syntax)

249

Note: The INFORMATION syntax of LOCATE works in INFORMATION and PIOPEN flavors by default.
To make the REALITY syntax of LOCATE available in INFORMATION and PIOPEN flavors, use
$OPTIONS -INFO.LOCATE.

expression evaluates to the contents of the field, value, or subvalue to search for in dynamic.array. If
expression or dynamic.array evaluates to the null value, variable is set to 0 and the ELSE statements
are executed. If expression and dynamic.array both evaluate to empty strings, variable is set to 1 and
the THEN statements are executed.

field#, value#, and subvalue# are delimiter expressions specifying where to start the search in
dynamic.array. If you specify field# only, dynamic.array is searched field by field. If you specify field#
and value# only, the specified field is searched value by value. If you also specify subvalue#, the
specified value is searched subvalue by subvalue.

When the search is field by field, each field is treated as a single string, including any value marks and
subvalue marks. When the search is value by value, each value is treated as a single string, including
any subvalue marks. For the search to be successful, expression must match the entire contents of the
field, value, or subvalue found, including any embedded value marks or subvalue marks.

Case Description

Case 1: If both value# and subvalue# are omitted or are both less than or equal to 0, the
search starts at the field indicated by field#.

Case 2: If subvalue# is omitted or is less than or equal to 0, the search starts at the value
indicated by value#, in the field indicated by field#. If field# is less than or equal
to 0, field# defaults to 1.

Case 3: If field#, value#, and subvalue# are all specified and are all nonzero, the search
starts at the subvalue indicated by subvalue#, in the value specified by value#,
in the field specified by field#. If field# or value# are less than or equal to 0, they
default to 1.

If a field, value, or subvalue containing expression is found, variable is set to the index of the located
field relative to the start of dynamic.array, the field, or the value, respectively, not relative to the start
of the search.

If no field containing expression is found, variable is set to the number of the field at which the search
terminated, and the ELSE statements are executed. If no value or subvalue containing expression
is found, variable is set to the number of values or subvalues plus 1, and the ELSE statements are
executed. If field#, value#, or subvalue# is greater than the number of fields in dynamic.array, variable
is set to the value of field#, value#, or subvalue#, respectively, and the ELSE statements are executed.
The format of the ELSE statement is the same as that used in the IF…THEN statement.

If any delimiter expression evaluates to the null value, the LOCATE statement fails and the program
terminates with a run-time error message.

variable stores the index of expression. variable returns a field number, value number, or a subvalue
number, depending on the delimiter expressions used. variable is set to a number representing one of
the following:

▪ The index of the element containing expression, if such an element is found

▪ An index that can be used in an INSERT function to create a new element with the value specified
by expression.

The search stops when one of the following conditions is met:

▪ A field containing expression is found.

▪ The end of the dynamic array is reached.

▪ A field that is higher or lower, as specified by seq, is found.

Chapter 1: Statements and functions

250

If the elements to be searched are sorted in one of the ascending or descending ASCII sequences
listed below, you can use the BY seq expression to end the search. The search ends at the place where
expression should be inserted to maintain the ASCII sequence, rather than at the end of the list of
specified elements.

Use the following values for seq to describe the ASCII sequence being searched:

Value Description

AL or A Ascending, left-justified (standard alphanumeric sort)
AR Ascending, right-justified (numeric sort)
DL or D Descending, left-justified (standard alphanumeric sort)
DR Descending, right-justified (numeric sort)

seq does not reorder the elements in dynamic.array; it specifies the terminating conditions for
the search. If a seq expression is used and the elements are not in the sequence indicated by seq,
an element with the value of expression may not be found. If seq evaluates to the null value, the
statement fails and the program terminates.

If NLS is enabled, the LOCATE statement with a BY seq expression uses the Collate convention as
specified in the NLS.LC.COLLATE file to determine the sort order for characters with ascending or
descending sequences. The Collate convention defines rules for casing, accents, and ordering. For
more information about how NLS calculates the order, see the UniVerse NLS Guide.

Examples

The examples show the INFORMATION flavor of the LOCATE statement. A field mark is shown by F, a
value mark is shown by V, and a subvalue mark is shown by S.

 Q='X':@SM:"$":@SM:'Y':@VM:'Z':@SM:4:@SM:2:@VM:'B'
 PRINT "Q= ":Q
LOCATE "$" IN Q <1> SETTING WHERE ELSE PRINT 'ERROR'
 PRINT "WHERE= ",WHERE
LOCATE "$" IN Q <1,1> SETTING HERE ELSE PRINT 'ERROR'
 PRINT "HERE= ", HERE
 NUMBERS=122:@FM:123:@FM:126:@FM:130:@FM
 PRINT "BEFORE INSERT, NUMBERS= ",NUMBERS
 NUM= 128
 LOCATE NUM IN NUMBERS <2> BY "AR" SETTING X ELSE
 NUMBERS = INSERT(NUMBERS,X,0,0,NUM)
 PRINT "AFTER INSERT, NUMBERS= ",NUMBERS
 END

This is the program output:

Q= XS$SYVZS4S2VB
ERROR
 WHERE= 2
ERROR
 HERE= 4
BEFORE INSERT, NUMBERS= 122F123F126F130F
AFTER INSERT, NUMBERS= 122F123F126F128F130F

LOCATE statement (PICK syntax)
Use the LOCATE statement to search dynamic.array for a field, value, or subvalue. LOCATE returns a
value indicating one of the following:

LOCATE statement (PICK syntax)

251

Syntax

LOCATE (expression, dynamic.array [, field# [, value#]] ; variable [;seq])
 { THEN statements [ELSE statements] | ELSE statements }

▪ Where expression was found in dynamic.array

▪ Where expression should be inserted in dynamic.array if it was not found

Note: The PICK syntax of LOCATE works in all flavors of UniVerse.

expression evaluates to the content of the field, value, or subvalue to search for in dynamic.array. If
expression or dynamic.array evaluates to the null value, variable is set to 0 and the ELSE statements
are executed. If expression and dynamic.array both evaluate to empty strings, variable is set to 1 and
the THEN statements are executed.

field# and value# are delimiter expressions that restrict the scope of the search. If you do not specify
field#, dynamic.array is searched field by field. If you specify field# but not value#, the specified field is
searched value by value. If you specify field# and value#, the specified value is searched subvalue by
subvalue.

When the search is field by field, each field is treated as a single string, including any value marks and
subvalue marks. When the search is value by value, each value is treated as a single string, including
any subvalue marks. For the search to be successful, expression must match the entire contents of the
field, value, or subvalue found, including any embedded value marks or subvalue marks.

Case Result

Case 1: If field# and value# are omitted, the search starts at the first field in
dynamic.array.

Case 2: If only field# is specified and it is greater than 0, the search starts at the first
value in the field indicated by field#. If field# is less than or equal to 0, both field#
and value# are ignored.

Case 3: If both field# and value#are specified, the search starts at the first subvalue in
the value specified by value#, in the field specified by field#. If field# is greater
than 0, but value# is less than or equal to 0, LOCATE behaves as though only
field# is specified.

If a field, value, or subvalue containing expression is found, variable returns the index of the located
field, value, or subvalue relative to the start of dynamic.array, field#, or value#, respectively, not
relative to the start of the search. If a field, value, or subvalue containing expression is not found,
variable is set to the number of fields, values, or subvalues in the array plus 1, and the ELSE
statements are executed. The format of the ELSE statement is the same as that used in the IF…THEN
statement.

If field# or value# evaluates to the null value, the LOCATE statement fails and the program terminates
with a run-time error message.

variable stores the index of expression. variable returns a field number, value number, or a subvalue
number, depending on the delimiter expressions used. variable is set to a number representing one of
the following:

▪ The index of the element containing expression, if such an element is found

▪ An index that can be used in an INSERT function to create a new element with the value specified
by expression

The search stops when one of the following conditions is met:

Chapter 1: Statements and functions

252

▪ A field containing expression is found.

▪ The end of the dynamic array is reached.

▪ A field that is higher or lower, as specified by seq, is found.

If the elements to be searched are sorted in one of the ascending or descending ASCII sequences
listed below, you can use the BY seq expression to end the search. The search ends at the place where
expression should be inserted to maintain the ASCII sequence, rather than at the end of the list of
specified elements.

Use the following values for seq to describe the ASCII sequence being searched:

Value Description

AL or A Ascending, left-justified (standard alphanumeric sort)
AR Ascending, right-justified (numeric sort)
DL or D Descending, left-justified (standard alphanumeric sort)
DR Descending, right-justified (numeric sort)

seq does not reorder the elements in dynamic.array; it specifies the terminating conditions for
the search. If a seq expression is used and the elements are not in the sequence indicated by seq,
an element with the value of expression may not be found. If seq evaluates to the null value, the
statement fails and the program terminates.

If NLS is enabled, the LOCATE statement with a seq expression uses the Collate convention as
specified in the NLS.LC.COLLATE file to determine the sort order for characters with ascending or
descending sequences. The Collate convention defines rules for casing, accents, and ordering. For
more information about how NLS calculates the order, see the UniVerse NLS Guide.

Examples

The examples show the PICK flavor of the LOCATE statement. A field mark is shown by F, a value mark
is shown by V, and a subvalue mark is shown by S.

 Q='X':@SM:"$":@SM:'Y':@VM:'Z':@SM:4:@SM:2:@VM:'B'
 PRINT "Q= ":Q
LOCATE ("$", Q, 1; WHERE) ELSE PRINT 'ERROR'
 PRINT "WHERE= ",WHERE
LOCATE ("$", Q, 1, 1; HERE) ELSE PRINT 'ERROR'
 PRINT "HERE= ", HERE
 NUMBERS=122:@FM:123:@FM:126:@FM:130:@FM
 PRINT "BEFORE INSERT, NUMBERS= ",NUMBERS
 NUM= 128
 LOCATE (NUM, NUMBERS; X; "AR") ELSE
 NUMBERS = INSERT(NUMBERS,X,0,0,NUM)
 PRINT "AFTER INSERT, NUMBERS= ",NUMBERS
 END

This is the program output:

Q= XS$SYVZS4S2VB
ERROR
 WHERE= 4
HERE= 2
BEFORE INSERT, NUMBERS= 122F123F126F130F
AFTER INSERT, NUMBERS= 122F123F126F128F130F

LOCK statement

253

LOCK statement
Use the LOCK statement to protect specified user-defined resources or events against unauthorized
use or simultaneous data file access by different users.

Syntax

LOCK expression [THEN statements] [ELSE statements]

There are 64 public semaphore locks in the UniVerse system. They are task synchronization tools but
have no intrinsic definitions. You must define the resource or event associated with each semaphore,
ensuring that there are no conflicts in definition or usage of these semaphores throughout the entire
system.

expression evaluates to a number in the range of 0 through 63 that specifies the lock to be set. A
program can reset a lock any number of times and with any frequency desired. If expression evaluates
to the null value, the LOCK statement fails and the program terminates with a run-time error message.

If program B tries to set a lock already set by program A, execution of program B is suspended until the
first lock is released by program A; execution of program B then continues.

The ELSE clause provides an alternative to this procedure. When a LOCK statement specifies a
lock that has already been set, the ELSE clause is executed rather than program execution being
suspended.

Program termination does not automatically release locks set in the program. Each LOCK statement
must have a corresponding UNLOCK statement. If a program locks the same semaphore more than
once during its execution, a single UNLOCK statement releases that semaphore.

The UNLOCK statement can specify the expression used in the LOCK statement to be released. If no
expression is used in the UNLOCK statement, all locks set by the program are released.

Alternatively, locks can be released by logging off the system or by executing either the QUIT
command or the CLEAR.LOCKS command.

You can check the status of locks with the LIST.LOCKS command; this lists the locks on the screen.
The unlocked state is indicated by 0. The locked state is indicated by a number other than 0 (including
both positive and negative numbers). The number is the unique signature of the user who has set the
lock.

Note: The LOCK statement protects user-defined resources only. TheREADL statement, READU
statement, READVL statement, READVU statement, MATREADL statement, and MATREADU
statement use a different method of protecting files and records.

Example

The following example sets lock 60, executes the LIST.LOCKS command, then unlocks all locks set
by the program:

LOCK 60 ELSE PRINT "ALREADY LOCKED"
 EXECUTE "LIST.LOCKS"
 UNLOCK

The program displays the LIST.LOCKS report. Lock 60 is set by user 4.

0:-- 1:-- 2:-- 3:-- 4:-- 5:-- 6:-- 7:--
 8:-- 9:-- 10:-- 11:-- 12:-- 13:-- 14:-- 15:--
 16:-- 17:-- 18:-- 19:-- 20:-- 21:-- 22:-- 23:--
 24:-- 25:-- 26:-- 27:-- 28:-- 29:-- 30:-- 31:--

Chapter 1: Statements and functions

254

 32:-- 33:-- 34:-- 35:-- 36:-- 37:-- 38:-- 39:--
 40:-- 41:-- 42:-- 43:-- 44:-- 45:-- 46:-- 47:--
 48:-- 49:-- 50:-- 51:-- 52:-- 53:-- 54:-- 55:--
 56:-- 57:-- 58:-- 59:-- 60:4 61:-- 62:-- 63:--

LOOP statement
Use the LOOP statement to start a LOOP…REPEAT program loop. A program loop is a series of
statements that executes for a specified number of repetitions or until specified conditions are met.

Syntax

LOOP
 [loop.statements]
 [CONTINUE | EXIT]
 [{WHILE | UNTIL} expression [DO]]
[loop.statements]
 [CONTINUE | EXIT]
 REPEAT

Use the WHILE clause to indicate that the loop should execute repeatedly as long as the WHILE
expression evaluates to true (1). When the WHILE expression evaluates to false (0), repetition of the
loop stops, and program execution continues with the statement following the REPEAT statement.

Use the UNTIL clause to put opposite conditions on the LOOP statement. The UNTIL clause indicates
that the loop should execute repeatedly as long as the UNTIL expression evaluates to false (0). When
the UNTIL expression evaluates to true (1), repetition of the loop stops, and program execution
continues with the statement following the REPEAT statement.

If a WHILE or UNTIL expression evaluates to the null value, the condition is false.

expression can also contain a conditional statement. Any statement that takes a THEN or an ELSE
clause can be used as expression, but without the THEN or ELSE clause. When the conditional
statement would execute the ELSE clause, expression evaluates to false; when the conditional
statement would execute the THEN clause, expression evaluates to true. A LOCKED clause is not
supported in this context.

You can use multiple WHILE and UNTIL clauses in a LOOP…REPEAT loop. You can also nest LOOP…
REPEAT loops. If a REPEAT statement is encountered without a previous LOOP statement, an error
occurs during compilation.

Use the CONTINUE statement within LOOP…REPEAT to transfer control to the next iteration of the
loop from any point in the loop.

Use the EXIT statement within LOOP…REPEAT to terminate the loop from any point within the loop.

Although it is possible to exit the loop by means other than the conditional WHILE and UNTIL
statements (for example, by using GOTO or GOSUB in the DO statements), it is not recommended.
Such a programming technique is not in keeping with good structured programming practice.

LOWER function

255

Examples

Source lnes Program output

X=0

LOOP

UNTIL X>4 DO

PRINT "X= ",X

X=X+1

REPEAT

X= 0

X= 1

X= 2

X= 3

X= 4

A=20

LOOP

PRINT "A= ", A

A=A-1

UNTIL A=15 REPEAT

A= 20

A= 19

A= 18

A= 17

A= 16
Q=3

LOOP

PRINT "Q= ",Q

WHILE Q DO

Q=Q-1

REPEAT

Q= 3

Q= 2

Q= 1

Q= 0

EXECUTE "SELECT VOC FIRST 5"

MORE=1

LOOP

READNEXT ID

ELSE MORE=0

WHILE MORE DO

PRINT ID

REPEAT

5 record(s) selected to SELECT list #0.

LOOP

HASH.TEST

QUIT.KEY

P

CLEAR.LOCKS

EXECUTE "SELECT VOC FIRST 5"

LOOP

WHILE READNEXT ID DO

PRINT ID

REPEAT

5 record(s) selected to SELECT list #0.

LOOP

HASH.TEST

QUIT.KEY

P

CLEAR.LOCKS

LOWER function
Use the LOWER function to return a value equal to expression, except that system delimiters which
appear in expression are converted to the next lower-level delimiter: field marks are changed to value

Chapter 1: Statements and functions

256

marks, value marks are changed to subvalue marks, and so on. If expression evaluates to the null
value, null is returned.

Syntax

LOWER (expression)

The conversions are:

IM CHAR(255) to FM CHAR(254)
FM CHAR(254) to VM CHAR(253)
VM CHAR(253) to SM CHAR(252)
SM CHAR(252) to TM CHAR(251)
TM CHAR(251) to CHAR(250)
 CHAR(250) to CHAR(249)
 CHAR(249) to CHAR(248)

PIOPEN flavor

In PIOPEN flavor, the delimiters that can be lowered are CHAR(255) through CHAR(252). All other
characters are left unchanged. You can obtain PIOPEN flavor for the LOWER function by:

▪ Compiling your program in a PIOPEN flavor account

▪ Specifying the $OPTIONS INFO.MARKS statement

Examples

In the following examples an item mark is shown by I, a field mark is shown by F, a value mark is
shown by V, a subvalue mark is shown by S, and a text mark is shown by T. CHAR(250) is shown as Z.

The following example sets A to DDFEEV123V77:

A= LOWER('DD':IM'EE':FM:123:FM:777)

The next example sets B to 1F2S3V4T5:

B= LOWER(1:IM:2:VM:3:FM:4:SM:5)

The next example sets C to 999Z888:

C= LOWER(999:TM:888)

LTS function
Use the LTS function to test if elements of one dynamic array are less than elements of another
dynamic array.

Syntax

LTS (array1, array2)

CALL -LTS (return.array, array1, array2)

CALL !LTS (return.array, array1, array2)

Each element of array1 is compared with the corresponding element of array2. If the element from
array1 is less than the element from array2, a 1 is returned in the corresponding element of a new

MAT statement

257

dynamic array. If the element from array1 is greater than or equal to the element from array2, a 0 is
returned. If an element of one dynamic array has no corresponding element in the other dynamic
array, the undefined element is evaluated as an empty string, and the comparison continues.

If either of a corresponding pair of elements is the null value, null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

MAT statement
Use the MAT statement to assign one value to all of the elements in the array or to assign all the values
of one array to the values of another array.

Use the first syntax to assign the same value to all array elements. Use any valid expression. The value
of expression becomes the value of each array element.

Use the second syntax to assign values from the elements of array2 to the elements of array1. Both
arrays must previously be named and dimensioned. The dimensioning of the two arrays can be
different. The values of the elements of the new array are assigned in consecutive order, regardless of
whether the dimensions of the arrays are the same or not. If array2 has more elements than in array1,
the extra elements are ignored. If array2 has fewer elements, the extra elements of array1 are not
assigned.

Note: Do not use the MAT statement to assign individual elements of an array.

Syntax

MAT array = expression

MAT array1 = MAT array2

Examples

Source lines Program output

DIM ARRAY(5)

QTY=10

MAT ARRAY=QTY

FOR X=1 TO 5

PRINT
"ARRAY(":X:")=",ARRAY(X)

NEXT X

ARRAY(1)= 10

ARRAY(2)= 10

ARRAY(3)= 10

ARRAY(4)= 10

ARRAY(5)= 10

DIM ONE(4,1)

MAT ONE=1

DIM TWO(2,2)

MAT TWO = MAT ONE

FOR Y=1 TO 4

PRINT
"ONE(":Y:",1)=",ONE(Y,1)

NEXT Y

ONE(1,1)= 1

ONE(2,1)= 1

ONE(3,1)= 1

ONE(4,1)= 1

Chapter 1: Statements and functions

258

Source lines Program output

DIM ONE(4,1)

MAT ONE=1

DIM TWO(2,2)

MAT TWO = MAT ONE

FOR X=1 TO 2

FOR Y=1 TO 2

PRINT
"TWO(":X:",":Y:")=",TWO(X,Y)

NEXT Y

NEXT X

TWO(1,1)= 1

TWO(1,2)= 1

TWO(2,1)= 1

TWO(2,2)= 1

The following example sets all elements in ARRAY to the empty string:

MAT ARRAY=''

MATBUILD statement
Use the MATBUILD statement to build a dynamic array from a dimensioned array.

Syntax

MATBUILD dynamic.array FROM array [,start [,end]] [USING delimiter]

dynamic.array is created by concatenating the elements of array beginning with start and finishing
with end. If start and end are not specified or are out of range, they default to 1 and the size of the
array respectively.

array must be named and dimensioned in a MATBUILD statement or COMMON statement before it is
used in this statement.

delimiter specifies characters to be inserted between fields of the dynamic array. If delimiter is not
specified, it defaults to a field mark. To specify no delimiter, specify USING without delimiter.

If an element of array is the null value, the dynamic array will contain CHAR(128) for that element. If
start, end, or delimiter is the null value, the MATBUILD statement fails and the program terminates
with a run-time error.

Overflow elements

PICK, IN2, and REALITY flavor dimensioned arrays contain overflow elements in the last element.
INFORMATION and IDEAL flavor dimensioned arrays contain overflow elements in element 0.

In PICK, IN2, and REALITY flavor accounts, if end is not specified, dynamic.array contains the overflow
elements of array. In IDEAL and INFORMATION flavor accounts, to get the overflow elements you must
specify end as less than or equal to 0, or as greater than the size of array.

REALITY flavor accounts use only the first character of delimiter, and if USING is specified without a
delimiter, delimiter defaults to a field mark rather than an empty string.

MATCH operator

259

MATCH operator
Use the MATCH operator or its synonym MATCHES to compare a string expression with a pattern.

Syntax

string MATCH[ES] pattern

pattern is a general description of the format of string. It can consist of text or the special characters X,
A, and N preceded by an integer used as a repeating factor. For example, nN is the pattern for strings of
n numeric characters.

The following table lists the pattern codes and their definitions:

Pattern Definition

… Any number of any characters (including none).
0X Any number of any characters (including none).
nX n number of any characters.
0A Any number of alphabetic characters (including none).
nA n number of alphabetic characters.
0N Any number of numeric characters (including none).
nN n number of numeric characters.
'text' Exact text; any literal string (quotation marks required).
"text" Exact text; any literal string (quotation marks required).

If n is longer than nine digits, it is used as text in a pattern rather than as a repeating factor for a
special character. For example, the pattern "1234567890N" is treated as a literal string, not as a
pattern of 1,234,567,890 numeric characters.

If the string being evaluated matches the pattern, the expression evaluates as true (1); otherwise, it
evaluates as false (0). If either string or pattern is the null value, the match evaluates as false.

A tilde (~) placed immediately before pattern specifies a negative match. That is, it specifies a pattern
or a part of a pattern that does not match the expression or a part of the expression. The match is
true only if string and pattern are of equal length and differ in at least one character. An example of a
negative match pattern is:

'A'~'X'5N

This pattern returns a value of true if the expression begins with the letter A, which is not followed by
the letter X, and which is followed by any five numeric characters. Thus AB55555 matches the pattern,
but AX55555, A55555, AX5555, and A5555 do not.

You can specify multiple patterns by separating them with value marks (ASCII CHAR(253)). The
following expression is true if the address is either 16 alphabetic characters or 4 numeric characters
followed by 12 alphabetic characters; otherwise, it is false:

ADDRESS MATCHES "16A": CHAR(253): "4N12A"

An empty string matches the following patterns: "0A", "0X", "0N", "…", "", '', or \\.

If NLS is enabled, the MATCH operator uses the current values for alphabetic and numeric characters
specified in the NLS.LC.CTYPE file. For more information about the NLS.LC.CTYPE file, see the UniVerse
NLS Guide.

Chapter 1: Statements and functions

260

MATCHFIELD function
Use the MATCHFIELD function to check a string against a match pattern.

See the MATCH operator, on page 259 for information about pattern matching.

field is an expression that evaluates to the portion of the match string to be returned.

If string matches pattern, the MATCHFIELD function returns the portion of string that matches the
specified field in pattern. If string does not match pattern, or if string or pattern evaluates to the null
value, the MATCHFIELD function returns an empty string. If field evaluates to the null value, the
MATCHFIELD function fails and the program terminates with a run-time error.

pattern must contain specifiers to cover all characters contained in string. For example, the following
statement returns an empty string because not all parts of string are specified in the pattern:

MATCHFIELD ("XYZ123AB", "3X3N", 1)

To achieve a positive pattern match on string above, the following statement might be used:

MATCHFIELD ("XYZ123AB", "3X3N0X", 1)

This statement returns a value of "XYZ".

Syntax

MATCHFIELD (string, pattern, field)

Examples

Source lines Program output

Q=MATCHFIELD("AA123BBB9","2A0N3A0N",3)

PRINT "Q= ",Q

Q= BBB

ADDR='20 GREEN ST. NATICK, MA.,01234'

ZIP=MATCHFIELD(ADDR,"0N0X5N",3)

PRINT "ZIP= ",ZIP

ZIP= 01234

INV='PART12345 BLUE AU'

COL=MATCHFIELD(INV,"10X4A3X",2)

PRINT "COL= ",COL

COL= BLUE

In the following example the string does not match the pattern:

Source lines Program output

XYZ=MATCHFIELD('ABCDE1234',"2N3A4N",1)

PRINT "XYZ= ",XYZ

XYZ=

In the following example the entire string does not match the pattern:

Source lines Program output

XYZ=MATCHFIELD('ABCDE1234',"2N3A4N",1)

PRINT "XYZ= ",XYZ

XYZ=

MATPARSE statement

261

MATPARSE statement
Use the MATPARSE statement to separate the fields of dynamic.array into consecutive elements of
array.

Syntax

MATPARSE array FROM dynamic.array [,delimiter]

MATPARSE array [,start [,end]] FROM dynamic.array [USING delimiter]
 [SETTING elements]

array must be named and dimensioned in a MATPARSE statement or COMMON statement before it is
used in this statement.

start specifies the starting position in array. If start is less than 1, it defaults to 1.

end specifies the ending position in array. If end is less than 1 or greater than the length of array, it
defaults to the length of array.

delimiter is an expression evaluating to the characters used to delimit elements in dynamic.array. Use
a comma or USING to separate delimiter from dynamic.array. delimiter can have no characters (an
empty delimiter), one character, or more than one character with the following effects:

▪ An empty delimiter (a pair of quotation marks) parses dynamic.array so that each character
becomes one element of array (see the second example). The default delimiter is a field mark.
This is different from the empty delimiter. To use the default delimiter, omit the comma or USING
following dynamic.array.

▪ A single character delimiter parses dynamic.array into fields delimited by that character by storing
the substrings that are between successive delimiters as elements in the array. The delimiters are
not stored in the array (see the first example).

▪ A multicharacter delimiter parses dynamic.array by storing as elements both the substrings
that are between any two successive delimiters and the substrings consisting of one or more
consecutive delimiters in the following way: dynamic.array is searched until any of the delimiter
characters are found. All of the characters up to but not including the delimiter character
are stored as an element of array. The delimiter character and any identical consecutive
delimiter characters are stored as the next element. The search then continues as at the start of
dynamic.array (see the third example).

▪ If delimiter is a system delimiter and a single CHAR(128) is extracted from dynamic.array, the
corresponding element in array is set to the null value.

The characters in a multicharacter delimiter expression can be different or the same. A delimiter
expression of /: might be used to separate hours, minutes, seconds and month, day, year in the
formats 12:32:16 and 1/23/85. A delimiter expression of two spaces " " might be used to separate
tokens on a command line that contain multiple blanks between tokens.

The SETTING clause sets the variable elements to the number of elements in array. If array overflows,
elements is set to 0. The value of elements is the same as the value returned by the INMAT function
after a MATPARSE statement.

If all the elements of array are filled before MATPARSE reaches the end of dynamic.array, MATPARSE
puts the unprocessed part of dynamic.array in the zero element of array for IDEAL, INFORMATION, or
PIOPEN flavor accounts, or in the last element of array for PICK, IN2, or REALITY flavor accounts.

Use the INMAT function after a MATPARSE statement to determine the number of elements loaded
into the array. If there are more delimited fields in dynamic.array than elements in array, INMAT
returns 0; otherwise, it returns the number of elements loaded.

Chapter 1: Statements and functions

262

If start is greater than end or greater than the length of array, no action is taken, and INMAT returns 0.

If start, end, dynamic.array, or delimiter evaluates to the null value, the MATPARSE statement fails and
the program terminates with a run-time error message.

Examples

Source lines Program output

DIM X(4)

Y='1#22#3#44#5#66#7'

MATPARSE X FROM Y, '#'

FOR Z=0 TO 4

PRINT "X(":Z:")",X(Z)

NEXT Z

PRINT

X(0) 5#66#7

X(1) 1

X(2) 22

X(3) 3

X(4) 44

DIM Q(6)

MATPARSE Q FROM 'ABCDEF', ''

FOR P=1 TO 6

PRINT "Q(":P:")",Q(P)

NEXT P

PRINT

Q(1) A

Q(2) B

Q(3) C

Q(4) D

Q(5) E

Q(6) F
DIM A(8,2)

MATPARSE A FROM 'ABCDEFGDDDHIJCK',
'CD'

FOR I = 1 TO 8

FOR J = 1 TO 2

PRINT "A(":I:",":J:")=",A(I,J)," ":

NEXT J

PRINT

NEXT I

END

A(1,1)= AB A(1,2)= C

A(2,1)= A(2,2)= D

A(3,1)= EFG A(3,2)= DDD

A(4,1)= HIJ A(4,2)= C

A(5,1)= K A(5,2)=

A(6,1)= A(6,2)=

A(7,1)= A(7,2)=

A(8,1)= A(8,2)=

MATREAD statements
Use the MATREAD statement to assign the contents of the fields of a record from a UniVerse file to
consecutive elements of array. The first field of the record becomes the first element of array, the
second field of the record becomes the second element of array, and so on. The array must be named
and dimensioned in a DIMENSION statement or COMMON statement before it is used in this statement.

Syntax

MATREAD array FROM [file.variable,] record.ID [ON ERROR statements]

MATREAD statements

263

 {THEN statements [ELSE statements] | ELSE statements}

{ MATREADL | MATREADU } array FROM [file.variable,] record.ID
 [ON ERROR statements] [LOCKED statements]
 {THEN statements [ELSE statements] | ELSE statements}

file.variable specifies an open file. If file.variable is not specified, the default file is assumed (for more
information about default files, see the OPEN statement). If the file is neither accessible nor open, the
program terminates with a run-time error message.

If record.ID exists, array is set to the contents of the record, and the THEN statements are executed;
any ELSE statements are ignored. If no THEN statements are specified, program execution continues
with the next sequential statement. If record.ID does not exist, the elements of array are not changed,
and the ELSE statements are executed; any THEN statements are ignored.

If either file.variable or record.ID evaluates to the null value, the MATREAD statement fails and the
program terminates with a run-time error. If any field in the record is the null value, null becomes an
element in array. If a value or a subvalue in a multivalued field is the null value, it is read into the field
as the stored representation of null (CHAR(128)).

If the file is an SQL table, the effective user of the program must have SQL SELECT privilege to read
records in the file. For information about the effective user of a program, see the AUTHORIZATION
statement, on page 74.

A MATREAD statement does not set an update record lock on the specified record. That is, the record
remains available for update to other users. To prevent other users from updating the record until it is
released, use a MATREADL or MATREADU statement.

If the number of elements in array is greater than the number of fields in the record, the extra
elements in array are assigned empty string values. If the number of fields in the record is greater
than the number of elements in the array, the extra values are stored in the zero element of array for
IDEAL or INFORMATION flavor accounts, or in the last element of array for PICK, IN2, or REALITY flavor
accounts. The zero element of an array can be accessed with a 0 subscript as follows:

MATRIX (0)

or:

MATRIX (0, 0)

Use the INMAT function after a MATREAD statement to determine the number of elements of the array
that were actually used. If the number of fields in the record is greater than the number of elements in
the array, the value of the INMAT function is set to 0.

If NLS is enabled, MATREAD and other BASIC statements that perform I/O operations always map
external data to the UniVerse internal character set using the appropriate map for the input file. For
details, see the READ statements, on page 309.

The ON ERROR clause

The ON ERROR clause is optional in MATREAD statements. Its syntax is the same as that of the ELSE
clause. The ON ERROR clause lets you specify an alternative for program termination when a fatal
error is encountered during processing of the MATREAD statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

▪ Any uncommitted transactions begun within the current execution environment roll back.

Chapter 1: Statements and functions

264

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

The LOCKED clause

The LOCKED clause is optional, but recommended. Its syntax is the same as that of the ELSE clause.

The LOCKED clause handles a condition caused by a conflicting lock (set by another user) that
prevents the MATREAD statement from processing. The LOCKED clause is executed if one of the
following conflicting locks exists:

In this statement... This requested lock... Conflicts with these locks...

MATREADL Shared record lock Exclusive file lock

Update record lock
MATREADU Update record lock Exclusive file lock

Intent file lock

Shared file lock

Update record lock

Shared record lock

If a MATREAD statement does not include a LOCKED clause, and a conflicting lock exists, the program
will timeout after 60 minutes or until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the terminal number of the
user who owns the conflicting lock.

Releasing Locks

A shared record lock can be released with a CLOSE statement, RELEASE statement, or STOP
statement. An update record lock can be released with a CLOSE statement, DELETE statements,
MATWRITE statements, RELEASE statement, STOP statement, WRITE statements, or WRITEV
statement.

Locks acquired or promoted within a transaction are not released when the previous statements are
processed.

MATREADL and MATREADU statements

Use the MATREADL syntax to acquire a shared record lock and then perform a MATREAD. This lets
other programs read the record with no lock or a shared record lock.

Use the MATREADU syntax to acquire an update record lock and then perform a MATREAD. The update
record lock prevents other users from updating the record until the user who set it releases it.

An update record lock can be acquired when no shared record lock exists, or promoted from a shared
record lock owned by you if no other shared record locks exist.

MATREADL statement

265

Example

DIM ARRAY(10)
 OPEN 'SUN.MEMBER' TO SUN.MEMBER ELSE STOP
 MATREAD ARRAY FROM SUN.MEMBER, 6100 ELSE STOP
 *
 FOR X=1 TO 10
PRINT "ARRAY(":X:")",ARRAY(X)
 NEXT X
 *
 PRINT
 *
 DIM TEST(4)
 OPEN '','SUN.SPORT' ELSE STOP 'CANNOT OPEN SUN.SPORT'
 MATREAD TEST FROM 851000 ELSE STOP
 *
 FOR X=0 TO 4
 PRINT "TEST(":X:")",TEST(X)
 NEXT X

This is the program output:

ARRAY(1) MASTERS
 ARRAY(2) BOB
 ARRAY(3) 55 WESTWOOD ROAD
 ARRAY(4) URBANA
 ARRAY(5) IL
 ARRAY(6) 45699
 ARRAY(7) 1980
 ARRAY(8) SAILING
 ARRAY(9)
 ARRAY(10) II
 TEST(0) 6258
 TEST(1) 6100
 TEST(2) HARTWELL
 TEST(3) SURFING
 TEST(4) 4

MATREADL statement
Use the MATREADL statement to set a shared record lock and perform the MATREAD statement.

For details, see the MATREAD statements, on page 262.

MATREADU statement
Use the MATREADU statement to set an update record lock and perform the MATREAD statement.

For details, see the MATREAD statements, on page 262.

MATWRITE statements
Use the MATWRITE statement to write data from the elements of a dimensioned array to a record in a
UniVerse file. The elements of array replace any data stored in the record. MATWRITE strips any trailing
empty fields from the record.

Chapter 1: Statements and functions

266

Syntax

MATWRITE[U] array ON | TO [file.variable,] record.ID
 [ON ERROR statements] [LOCKED statements]
 [THEN statements] [ELSE statements]

file.variable specifies an open file. If file.variable is not specified, the default file is assumed (for more
information on default files, see the OPEN statement). If the file is neither accessible nor open, the
program terminates with a run-time message, unless ELSE statements are specified.

If the file is an SQL table, the effective user of the program must have SQL INSERT and UPDATE
privileges to read records in the file. For information about the effective user of a program, see the
AUTHORIZATION statement.

If the OPENCHK configurable parameter is set to TRUE, or if the file is opened with the OPENCHECK
statement, all SQL integrity constraints are checked for every MATWRITE to an SQL table. If an integrity
check fails, the MATWRITE statement uses the ELSE clause. Use the ICHECK function to determine
what specific integrity constraint caused the failure.

The system searches the file for the record specified by record.ID. If the record is not found, MATWRITE
creates a new record.

If NLS is enabled, MATWRITE and other BASIC statements that perform I/O operations always map
internal data to the external character set using the appropriate map for the output file. For details,
see the WRITE statements, on page 459. For more information about maps, see the UniVerse NLS
Guide.

The ON ERROR clause

The ON ERROR clause is optional in the MATWRITE statement. The ON ERROR clause lets you specify
an alternative for program termination when a fatal error is encountered while the MATWRITE is being
processed.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

▪ Any uncommitted transactions begun within the current execution environment roll back.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

The LOCKED clause

The LOCKED clause is optional, but recommended.

The LOCKED clause handles a condition caused by a conflicting lock (set by another user) that
prevents the MATWRITE statement from processing. The LOCKED clause is executed if one of the
following conflicting locks exists:

▪ Exclusive file lock

MATWRITE statements

267

▪ Intent file lock

▪ Shared file lock

▪ Update record lock

▪ Shared record lock

If the MATWRITE statement does not include a LOCKED clause, and a conflicting lock exists, the
program pauses until the lock is released.

When updating a file, MATWRITE releases the update record lock set with a MATREADU statement, on
page 265. To maintain the update record lock set with the MATREADU statement, use MATWRITEU
instead of MATWRITE.

The new values are written to the record, and the THEN clauses are executed. If no THEN statements
are specified, execution continues with the statement following the MATWRITE statement.

If either file.variable or record.ID evaluates to the null value, the MATWRITE statement fails and the
program terminates with a run-time error message. Null elements of array are written to record.ID as
the stored representation of the null value, CHAR(128).

The MATWRITEU statement

Use the MATWRITEU statement to update a record without releasing the update record lock set by a
previous MATREADU statement (see the MATREADU statement, on page 265). To release the update
record lock set by a MATREADU statement and maintained by a MATWRITEU statement, you must
use a RELEASE or MATWRITE statement. If you do not explicitly release the lock, the record remains
locked until the program executes the STOP statement. When more than one program or user could
modify the same record, use a MATREADU statement to lock the record before doing the MATWRITE or
MATWRITEU.

IDEAL and INFORMATION flavors

In IDEAL and INFORMATION flavor accounts, if the zero element of the array has been assigned a value
by a MATREAD or MATREADU statement, the zero element value is written to the record as the n+1
field, where n is the number of elements dimensioned in the array. If the zero element is assigned an
empty string, only the assigned elements of the array are written to the record; trailing empty fields
are ignored. The new record is written to the file (replacing any existing record) without regard for the
size of the array.

It is generally good practice to use the MATWRITE statement with arrays that have been loaded with
either a MATREAD or a MATREADU statement.

After executing a MATWRITE statement, you can use the STATUS function to determine the result of
the operation as follows (see the STATUS function, on page 388 for more information):

Value Description

0 The record was locked before the MATWRITE operation.
-2 The record was unlocked before the MATWRITE operation.
-3 The record failed an SQL integrity check.

Example

DIM ARRAY(5)
 OPEN 'EX.BASIC' TO EX.BASIC ELSE STOP 'CANNOT OPEN'
 MATREADU ARRAY FROM EX.BASIC, 'ABS' ELSE STOP
 ARRAY(1)='Y = 100'
 MATWRITE ARRAY TO EX.BASIC, 'ABS'
 PRINT 'STATUS()= ',STATUS()

Chapter 1: Statements and functions

268

This is the program output:

STATUS()= 0

MATWRITEU statement
Use the MATWRITEU statement to maintain an update record lock and perform the MATWRITE
statement.

For details, see the MATWRITE statements, on page 265.

MAXIMUM function
Use the MAXIMUM function to return the element with the highest numeric value in dynamic.array.
Nonnumeric values, except the null value, are treated as 0. If dynamic.array evaluates to the null value,
null is returned. Any element that is the null value is ignored, unless all elements of dynamic.array are
null, in which case null is returned.

result is the variable that contains the largest element found in dynamic.array.

dynamic.array is the array to be tested.

Syntax

MAXIMUM (dynamic.array)

CALL !MAXIMUM (result, dynamic.array)

Examples

A=1:@VM:"ZERO":@SM:20:@FM:-25
 PRINT "MAX(A)=",MAXIMUM(A)

This is the program output:

MAX(A)=20

In the following example, the !MAXIMUM subroutine is used to obtain the maximum value contained in
array A. The nonnumeric value, Z, is treated as 0.

A=1:@VM:25:@VM:'Z':@VM:7
 CALL !MAXIMUM (RESULT,A)
 PRINT RESULT

This is the program output:

0

MINIMUM function
Use the MINIMUM function to return the element with the lowest numeric value in dynamic.array.
Nonnumeric values and empty strings, except the SQL null value, are treated as 0. If dynamic.array
evaluates to the null value, null is returned. Any element that is the null value is ignored, unless all
elements of dynamic.array are null, in which case null is returned.

result is the variable that contains the smallest element found in dynamic.array.

MOD function

269

dynamic.array is the array to be tested.

Syntax

MINIMUM (dynamic.array)

CALL !MINIMUM (result, dynamic.array)

Examples

A=1:@VM:"ZERO":@SM:20:@FM:-25
 PRINT "MIN(A)=",MINIMUM(A)

This is the program output:

MIN(A)= -25

In the following example, the !MINIMUM subroutine is used to obtain the minimum value contained in
array A. The nonnumeric value, Q, is treated as 0.

A=2:@VM:19:@VM:6:@VM:'Q'
 CALL !MINIMUM (RESULT,A)
 PRINT RESULT

This is the program output:

0

The next example shows the output of the MINIMUM function for an empty string and the SQL null
value:

MYNULL=@NULL.STR
MYSTR=””
CRT “MINIMUM NULL:”:MINIMUM(MYNULL)
CRT “MINIMUM EMPTY STR:”:MINIMUM(MYSTR)

The output from this program is:

MINIMUM NULL:
MINIMUM EMPTY STR: 0

MOD function
Use the MOD function to calculate the value of the remainder after integer division is performed on the
dividend expression by the divisor expression.

Syntax

MOD (dividend, divisor)

The MOD function calculates the remainder using the following formula:

MOD (X, Y) = X - (INT (X / Y) * Y)

dividend and divisor can evaluate to any numeric value, except that divisor cannot be 0. If divisor is 0, a
division by 0 warning message is printed, and 0 is returned. If either dividend or divisor evaluates to the
null value, null is returned.

Chapter 1: Statements and functions

270

The MOD function works like the REM function, on page 327.

Example

X=85; Y=3
 PRINT 'MOD (X,Y)= ',MOD (X,Y)

This is the program output:

MOD (X,Y)= 1

MODS function
Use the MODS function to create a dynamic array of the remainder after the integer division of
corresponding elements of two dynamic arrays.

Syntax

MODS (array1, array2)

CALL -MODS (return.array, array1, array2)

CALL !MODS (return.array, array1, array2)

The MODS function calculates each element according to the following formula:

XY.element = X - (INT (X / Y) * Y)

X is an element of array1 and Y is the corresponding element of array2. The resulting element is
returned in the corresponding element of a new dynamic array. If an element of one dynamic array
has no corresponding element in the other dynamic array, 0 is returned. If an element of array2 is 0,
0 is returned. If either of a corresponding pair of elements is the null value, null is returned for that
element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Example

A=3:@VM:7
 B=2:@SM:7:@VM:4
 PRINT MODS(A,B)

This is the program output:

1S0V3

MQCLOSE function
Use the MQCLOSE() function to close access to a queue or other object. When you close the queue, the
queue and all uncommitted messages on the queue are deleted.

Syntax

status=MQCLOSE(hConn, hObj, options)

MQCONN function

271

Parameters

The following table describes each parameter of the syntax.

Parameter Description

hConn A handle denoting the connection to the queue manager. [IN]
hObj The handle to the WebSphere MQ queue or object being closed. Upon

successful completion of MQCLOSE, hObj is set to MQHO_UNUSABLE_HOBJ. [IN/
OUT]

options^253 One or more option codes (MQCO_*) that specify how the WebSphere MQ queue
or object is to be closed. If required, multiple option codes can be supplied by
adding them together.

For a complete description of the option codes available to MQCLOSE, see the
WebSphere MQ Application Programming Reference manual. [IN]

Return codes

The following table describes the meaning of each return code.

Return code Description

0 – MQCC_OK Function call completed successfully.
1 – MQCC_WARNING The function call succeeded, but a warning was returned. You can call the

MQGETERROR function to get further details about the warning.
2 – MQCC_FAILED The function call failed. You can call the MQGETERROR function to get

further details about the failure.

Usage notes

MQGETERROR() – If the return code status is MQCC_WARNING or MQCC_FAILED, you can call the
MQGETERROR function to get detailed information about the warning or error.

Refer to the WebSphere MQ Application Programming Reference manual for additional information
about this function.

Refer to the WebSphere MQ Messages manual for more information about the WebSphere MQ reason
codes. You can also access the MQI_ErrMsg file in the $UVHOME directory to read them.

MQCONN function
The MQCONN() function connects an application to a WebSphere MQ queue manager.

Syntax

status=MQCONN(qManager, hConn)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

qManager The name of the queue manager to which you are connecting. [IN]

Chapter 1: Statements and functions

272

Parameter Description

hConn The handle denoting the connection to the Websphere MQ queue manager. Use
this handle in subsequent calls to other CallMQI functions. [IN]

Return codes

The following table describes the meaning of each return code.

Return code Description

0 – MQCC_OK Function call completed successfully.
1 – MQCC_WARNING The function call succeeded, but a warning was returned. You can call the

MQGETERROR function to get further details about the warning.
2 – MQCC_FAILED The function call failed. You can call the MQGETERROR function to get

further details about the failure.

Usage notes

MQGETERROR() – If the return code status is MQCC_WARNING or MQCC_FAILED, you can call the
MQGETERROR function to get detailed information about the warning or error.

Refer to the WebSphere MQ Application Programming Reference manual for additional information
about this function.

Refer to the WebSphere MQ Messages manual for more information about the WebSphere MQ reason
codes. You can also access the MQI_ErrMsg file in the $UVHOME directory to read them.

MQDISC function
The MQDISC function terminates connections to the queue manager that were create using the
MQCONN function. The input for this function is the hConn connection handle returned by the MQCONN
function.

Syntax

status=MQDISC(hConn)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

hConn The handle denoting the connection to the WebSphere MQ queue
manager. Upon successful completion, the MQDISC function sets this to
MQHC_UNUSABLE_CONNECTION. [IN/OUT]

Return codes

The following table describes the meaning of each return code.

Return code Description

0 – MQCC_OK Function call completed successfully.
1 – MQCC_WARNING The function call succeeded, but a warning was returned. You can call the

MQGETERROR function to get further details about the warning.

MULS function

273

Return code Description

2 – MQCC_FAILED The function call failed. You can call the MQGETERROR function to get
further details about the failure.

Usage notes

MQGETERROR() – If the return code status is MQCC_WARNING or MQCC_FAILED, you can call the
MQGETERROR function to get detailed information about the warning or error.

Refer to the WebSphere MQ Application Programming Reference manual for additional information
about this function.

Refer to the WebSphere MQ Messages manual for more information about the WebSphere MQ reason
codes. You can also access the MQI_ErrMsg file in the $UVHOME directory to read them.

MULS function
Use the MULS function to create a dynamic array of the element-by-element multiplication of two
dynamic arrays.

Each element of array1 is multiplied by the corresponding element of array2 with the result being
returned in the corresponding element of a new dynamic array. If an element of one dynamic array has
no corresponding element in the other dynamic array, 0 is returned. If either of a corresponding pair of
elements is the null value, null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Syntax

MULS (array1, array2)

CALL -MULS (return.array, array1, array2)

CALL !MULS (return.array, array1, array2)

Example

A=1:@VM:2:@VM:3:@SM:4
 B=4:@VM:5:@VM:6:@VM:9
 PRINT MULS(A,B)

This is the program output:

4V10V18S0V0

NAP statement
Use the NAP statement to suspend the execution of a BASIC program, pausing for a specified number
of milliseconds.

milliseconds is an expression evaluating to the number of milliseconds for the pause. If milliseconds
is not specified, a value of 1 is used. If milliseconds evaluates to the null value, the NAP statement is
ignored.

Chapter 1: Statements and functions

274

Syntax

NAP [milliseconds]

NEG function
Use the NEG function to return the arithmetic inverse of the value of the argument.

number is an expression evaluating to a number.

Syntax

NEG (number)

Example

In the following example, A is assigned the value of 10, and B is assigned the value of NEG(A), which
evaluates to –10:

A = 10
 B = NEG(A)

NEGS function
Use the NEGS function to return the negative values of all the elements in a dynamic array. If the value
of an element is negative, the returned value is positive. If dynamic.array evaluates to the null value,
null is returned. If any element is null, null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Syntax

NEGS (dynamic.array)

CALL -NEGS (return.array, dynamic.array)

NES function
Use the NES function to test if elements of one dynamic array are equal to the elements of another
dynamic array.

Each element of array1 is compared with the corresponding element of array2. If the two elements
are equal, a 0 is returned in the corresponding element of a new dynamic array. If the two elements
are not equal, a 1 is returned. If an element of one dynamic array has no corresponding element in the
other dynamic array, a 1 is returned. If either of a corresponding pair of elements is the null value, null
is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Syntax

NES (array1, array2)

CALL -NES (return.array, array1, array2)

NEXT statement

275

CALL !NES (return.array, array1, array2)

NEXT statement
Use the NEXT statement to end a FOR…NEXT loop, causing the program to branch back to the FOR
statement and execute the statements that follow it.

Each FOR statement must have exactly one corresponding NEXT statement.

variable is the name of the variable given as the index counter in the FOR statement. If the variable is
not named, the most recently named index counter variable is assumed.

Syntax

NEXT [variable]

Example

FOR I=1 TO 10
 PRINT I:" ":
 NEXT I
 PRINT

This is the program output:

1 2 3 4 5 6 7 8 9 10

NOBUF statement
Use the NOBUF statement to turn off buffering for a file previously opened for sequential processing.
Normally UniVerse uses buffering for sequential input and output operations. The NOBUF statement
turns off this buffering and causes all writes to the file to be performed immediately. It eliminates the
need for FLUSH operations but also eliminates the benefits of buffering. The NOBUF statement must
be executed after a successful OPENSEQ statement or CREATE statement and before any input or
output operation is performed on the record.

If the NOBUF operation is successful, the THEN statements are executed; the ELSE statements are
ignored. If THEN statements are not present, program execution continues with the next statement.

If the specified file cannot be accessed or does not exist, the ELSE statements are executed; the THEN
statements are ignored. If file.variable evaluates to the null value, the NOBUF statement fails and the
program terminates with a run-time error message.

Syntax

NOBUF file.variable {THEN statements [ELSE statements] | ELSE
statements}

Example

In the following example, if RECORD1 in FILE.E can be opened, buffering is turned off:

OPENSEQ 'FILE.E', 'RECORD1' TO DATA THEN NOBUF DATA
 ELSE ABORT

Chapter 1: Statements and functions

276

NOT function
Use the NOT function to return the logical complement of the value of expression. If the value of
expression is true, the NOT function returns a value of false (0). If the value of expression is false, the
NOT function returns a value of true (1).

A numeric expression that evaluates to 0 is a logical value of false. A numeric expression that evaluates
to anything else, other than the null value, is a logical true.

An empty string is logically false. All other string expressions, including strings that include an empty
string, spaces, or the number 0 and spaces, are logically true.

If expression evaluates to the null value, null is returned.

Syntax

NOT (expression)

Example

X=5; Y=5
 PRINT NOT(X-Y)
 PRINT NOT(X+Y)

This is the program output:

1
 0

NOTS function
Use the NOTS function to return a dynamic array of the logical complements of each element of
dynamic.array. If the value of the element is true, the NOTS function returns a value of false (0) in the
corresponding element of the returned array. If the value of the element is false, the NOTS function
returns a value of true (1) in the corresponding element of the returned array.

A numeric expression that evaluates to 0 has a logical value of false. A numeric expression that
evaluates to anything else, other than the null value, is a logical true.

An empty string is logically false. All other string expressions, including strings which consist of an
empty string, spaces, or the number 0 and spaces, are logically true.

If any element in dynamic.array is the null value, null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Syntax

NOTS (dynamic.array)

CALL -NOTS (return.array, dynamic.array)

CALL !NOTS (return.array, dynamic.array)

Example

X=5; Y=5

NOW function

277

 PRINT NOTS(X-Y:@VM:X+Y)

This is the program output:

1V0

NOW function
Use the DATE function to return the numeric value of the internal datetime value. Although the NOW
function takes no arguments, parentheses are required to identify it as a function.

Note: This function is supported on Linux and Solaris platforms only.

The internal format for the datetime is a 64-bit integer represented in milliseconds since the start of
the UNIX epoch (midnight UTC, January 1, 1970). All datetimes prior to the Unix epoch are represented
as negative numbers.

The result of NOW function is not affected by the timezone setting.

Syntax

NOW ()

Example

PRINT NOW()
PRINT OCONV(NOW(), “DT”)

This is the program output:

1574240110666
2019-11-20 01:55:10.666

NULL statement
Use the NULL statement when a statement is required but no operation is to be performed. For
example, you can use it with the ELSE clause if you do not want any operation performed when the
ELSE clause is executed.

Note: This statement has nothing to do with the null value.

Syntax

NULL

Example

OPEN '','SUN.MEMBER' TO FILE ELSE STOP
 FOR ID=5000 TO 6000
 READ MEMBER FROM FILE, ID THEN PRINT ID ELSE NULL
 NEXT ID

Chapter 1: Statements and functions

278

NUM function
Use the NUM function to determine whether expression is a numeric or nonnumeric string. If expression
is a number, a numeric string, or an empty string, it evaluates to true and a value of 1 is returned. If
expression is a nonnumeric string, it evaluates to false and a value of 0 is returned.

A string that contains a period used as a decimal point (.) evaluates to numeric. A string that contains
any other character used in formatting numeric or monetary amounts, for example, a comma (,) or a
dollar sign ($) evaluates to nonnumeric.

If expression evaluates to the null value, null is returned.

If NLS is enabled, NUM uses the Numeric category of the current locale to determine the decimal
separator. For more information about locales, see the UniVerse NLS Guide.

Syntax

NUM (expression)

Example

X=NUM(2400)
 Y=NUM("Section 4")
 PRINT "X= ",X,"Y= ",Y

This is the program output:

X= Y= 0

NUMS function
Use the NUMS function to determine whether the elements of a dynamic array are numeric or
nonnumeric strings. If an element is numeric, a numeric string, or an empty string, it evaluates to true,
and a value of 1 is returned to the corresponding element in a new dynamic array. If the element is a
nonnumeric string, it evaluates to false, and a value of 0 is returned.

The NUMS of a numeric element with a decimal point (.) evaluates to true; the NUMS of a numeric
element with a comma (,) or dollar sign ($) evaluates to false.

If dynamic.array evaluates to the null value, null is returned. If an element of dynamic.array is null, null
is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

If NLS is enabled, NUMS uses the Numeric category of the current locale to determine the decimal
separator. For more information about locales, see the UniVerse NLS Guide.

Syntax

NUMS (dynamic.array)

CALL -NUMS (return.array, dynamic.array)

CALL !NUMS (return.array, dynamic.array)

OCONV function

279

OCONV function
Use the OCONV function to convert string to a specified format for external output. The result is always
a string expression.

Syntax

OCONV (string, conversion)

string is converted to the external output format specified by conversion.

conversion must evaluate to one or more conversion codes separated by value marks (ASCII 253).

If multiple codes are used, they are applied from left to right as follows: the leftmost conversion
code is applied to string, the next conversion code to the right is then applied to the result of the first
conversion, and so on.

If string evaluates to the null value, null is returned. If conversion evaluates to the null value, the
OCONV function fails and the program terminates with a run-time error message.

The OCONV function also allows PICK flavor exit codes.

The STATUS function reflects the result of the conversion:

Value Description

0 The conversion is successful.
1 An invalid string is passed to the OCONV function; the original string is returned

as the value of the conversion. If the invalid string is the null value, null is
returned.

2 The conversion code is invalid.
3 Successful conversion of possibly invalid data.
4 Invalid time zone or UTC offset.

For information about converting strings to an internal format, see the ICONV function, on page 210.

Examples

The following examples show date conversions:

Source line Converted value

DATE=OCONV('9166',"D2") 3 Feb 93
DATE=OCONV(9166,'D/E') 3/2/1993
DATE=OCONV(9166,'DI')

(For IN2, PICK, and REALITY flavor
accounts.)

3/2/1993

DATE=OCONV('9166',"D2-") 2-3-93
DATE=OCONV(0,'D') 31 Dec 1967

The following examples show time conversions:

Source line Converted value

TIME=OCONV(10000,"MT") 02:46
TIME=OCONV("10000","MTHS") 02:46:40am

Chapter 1: Statements and functions

280

Source line Converted value

TIME=OCONV(10000,"MTH") 02:46am
TIME=OCONV(10000,"MT.") 02.46
TIME=OCONV(10000,"MTS") 02:46:40

The following examples show hex, octal, and binary conversions:

Source line Converted value

HEX=OCONV(1024,"MX") 400
HEX=OCONV('CDE',"MX0C") 434445
OCT=OCONV(1024,"MO") 2000
OCT=OCONV('CDE',"MO0C") 103104105
BIN=OCONV(1024,"MB") 10000000000
BIN=OCONV('CDE',"MB0C") 010000110100010001000101

The following examples show masked decimal conversions:

Source line Converted value

X=OCONV(987654,"MD2") 9876.54
X=OCONV(987654,"MD0") 987654
X=OCONV(987654,"MD2,$") $9,876.54
X=OCONV(987654,"MD24$") $98.77
X=OCONV(987654,"MD2-Z") 9876.54
X=OCONV(987654,"MD2,D") 9,876.54
X=OCONV(987654,"MD3,$CPZ") $987.654
X=OCONV(987654,"MD2,ZP12#") ####9,876.54

OCONVS function
Use the OCONVS function to convert the elements of dynamic.array to a specified format for external
output.

Syntax

OCONVS (dynamic.array, conversion)

CALL -OCONVS (return.array, dynamic.array, conversion)

CALL !OCONVS (return.array, dynamic.array, conversion)

The elements are converted to the external output format specified by conversion and returned in a
dynamic array. conversion must evaluate to one or more conversion codes separated by value marks
(ASCII 253).

If multiple codes are used, they are applied from left to right as follows: the leftmost conversion code
is applied to the element, the next conversion code to the right is then applied to the result of the first
conversion, and so on.

If dynamic.array evaluates to the null value, null is returned. If any element of dynamic.array is null,
null is returned for that element. If conversion evaluates to the null value, the OCONVS function fails
and the program terminates with a run-time error message.

ON statement

281

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

The STATUS function reflects the result of the conversion:

Return value Description

0 The conversion is successful.
1 An invalid element is passed to the OCONVS function; the original element

is returned. If the invalid element is the null value, null is returned for that
element.

2 The conversion code is invalid.

For information about converting elements in a dynamic array to an internal format, see the ICONVS
function, on page 212.

ON statement
Use the ON statement to transfer program control to one of the internal subroutines named in the
GOSUB clause or to one of the statements named in the GOTO clause.

Syntax

ON expression GOSUB statement.label [:] [,statement.label [:]…]

ON expression GO[TO] statement.label [:] [,statement.label [:] …]

Using the GOSUB clause

Use ON GOSUB to transfer program control to one of the internal subroutines named in the GOSUB
clause. The value of expression in the ON clause determines which of the subroutines named in the
GOSUB clause is to be executed.

During execution, expression is evaluated and rounded to an integer. If the value of expression is 1 or
less than 1, the first subroutine named in the GOSUB clause is executed; if the value of expression is 2,
the second subroutine is executed; and so on. If the value of expression is greater than the number of
subroutines named in the GOSUB clause, the last subroutine is executed. If expression evaluates to the
null value, the ON statement fails and the program terminates with a run-time error message.

statement.label can be any valid label defined in the program. If a nonexistent statement label is
given, an error message is issued when the program is compiled. You must use commas to separate
statement labels. You can use a colon with the statement labels to distinguish them from variable
names.

A RETURN statement in the subroutine returns program flow to the statement following the ON
GOSUB statement.

The ON GOSUB statement can be written on more than one line. A comma is required at the end of
each line of the ON GOSUB statement except the last.

Using ON GOSUB in a PICK flavor account

If the value of expression is less than 1, the next statement is executed; if the value of expression is
greater than the number of subroutines named in the GOSUB clause, execution continues with the
next statement rather than the last subroutine. To get this characteristic in other flavors, use the
ONGO.RANGE option of the $OPTIONS statement.

Chapter 1: Statements and functions

282

Using the GOTO clause

Use ON GOTO to transfer program control to one of the statements named in the GOTO clause. The
value of expression in the ON clause determines which of the statements named in the GOTO clause is
to be executed. During execution, expression is evaluated and rounded to an integer.

If the value of expression is 1 or less than 1, control is passed to the first statement label named in the
GOTO clause; if the value of expression is 2, control is passed to the second statement label; and so on.
If the value of expression is greater than the number of statements named in the GOTO clause, control
is passed to the last statement label. If expression evaluates to the null value, the ON statement fails
and the program terminates with a run-time error message.

statement.label can be any valid label defined in the program. If a nonexistent statement label is
given, an error message is issued when the program is compiled. You must use commas to separate
statement labels. You can use a colon with the statement labels to distinguish them from variable
names.

Using ON GOTO in a PICK flavor account

If the value of expression is less than 1, control is passed to the next statement; if the value of
expression is greater than the number of the statements named in the GOTO clause, execution
continues with the next statement rather than the last statement label. To get this characteristic with
other flavors, use the ONGO.RANGE option of the $OPTIONS statement.

Examples

Source lines Program output

FOR X=1 TO 4

ON X GOSUB 10,20,30,40

PRINT 'RETURNED FROM SUBROUTINE'

NEXT X

STOP

10 PRINT 'AT LABEL 10'

RETURN

20 PRINT 'AT LABEL 20'

RETURN

30 PRINT 'AT LABEL 30'

RETURN

40 PRINT 'AT LABEL 40'

RETURN

AT LABEL 10

RETURNED FROM SUBROUTINE

AT LABEL 20

RETURNED FROM SUBROUTINE

AT LABEL 30

RETURNED FROM SUBROUTINE

AT LABEL 40

RETURNED FROM SUBROUTINE

OPEN statement

283

Source lines Program output

VAR=1234

Y=1

10*

X=VAR[Y,1]

IF X='' THEN STOP

ON X GOTO 20,30,40

20*

PRINT 'AT LABEL 20'

Y=Y+1

GOTO 10

30*

PRINT 'AT LABEL 30'

Y=Y+1

GOTO 10

40*

PRINT 'AT LABEL 40'

Y=Y+1

GOTO 10

AT LABEL 20

AT LABEL 30

AT LABEL 40

AT LABEL 40

OPEN statement
Use the OPEN statement to open a UniVerse file for use by BASIC programs. All file references in a
BASIC program must be preceded by either an OPEN statement or an OPENCHECK statement for that
file. You can open several UniVerse files at the same point in a program, but you must use a separate
OPEN statement for each file.

Syntax

OPEN [dict,] filename [TO file.variable] [ON ERROR statements]
 {THEN statements [ELSE statements] | ELSE statements}

dict is an expression that evaluates to a string specifying whether to open the file dictionary or the
data file. Use the string DICT to open the file dictionary, or use PDICT to open an associated Pick-style
dictionary. Any other string opens the data file. By convention an empty string or the string DATA is
used when you are opening the data file. If the dict expression is omitted, the data file is opened. If dict
is the null value, the data file is opened.

filename is an expression that evaluates to the name of the file to be opened. If the file exists, the
file is opened, and the THEN statements are executed; the ELSE statements are ignored. If no THEN
statements are specified, program execution continues with the next statement. If the file cannot be
accessed or does not exist, the ELSE statements are executed; any THEN statements are ignored. If
filename evaluates to the null value, the OPEN statement fails and the program terminates with a run-
time error message.

Chapter 1: Statements and functions

284

Use the TO clause to assign the opened file to file.variable. All statements that read, write to, delete,
or clear that file must refer to it by the name of the file variable. If you do not assign the file to a file
variable, an internal default file variable is used. File references that do not specify a file variable
access the default file variable, which contains the most recently opened file. The file opened to the
current default file variable is assigned to the system variable @STDFIL.

Default file variables are not local to the program from which they are executed. When a subroutine is
called, the current default file variable is shared with the calling program.

When opening an SQL table, the OPEN statement enforces SQL security. The permissions granted
to the program’s effective user ID are loaded when the file is opened. If no permissions have been
granted, the OPEN statement fails, and the ELSE statements are executed.

All writes to an SQL table opened with the OPEN statement are subject to SQL integrity checking
unless the OPENCHK configurable parameter has been set to FALSE. Use the OPENCHECK statement
instead of the OPEN statement to enable automatic integrity checking for all writes to a file, regardless
of whether the OPENCHK configurable parameter is true or false.

Use the INMAT function after an OPEN statement to determine the modulo of the file.

The ON ERROR clause

The ON ERROR clause is optional in the OPEN statement. Its syntax is the same as that of the ELSE
clause. The ON ERROR clause lets you specify an alternative for program termination when a fatal
error is encountered while the OPEN statement is being processed.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

▪ Any uncommitted transactions begun within the current execution environment roll back.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

The STATUS function

The file type is returned if the file is opened successfully. If the file is not opened successfully, the
following values may return:

Value Description

-1 File name not found in the VOC file.
-2 A generic error that can occur for various reasons.

Null file name or file. This error may also occur when you cannot open a file
across UVNet.

-3 Operating system access error that occurs when you do not have permission to
access a UniVerse file in a directory. For example, this may occur when trying to
access a type 1 or type 30 file.

OPENCHECK statement

285

Value Description

-4 Access error when you do not have operating system permissions or if DATA.30
is missing for a type 30 file.

-5 Read error detected by the operating system.
-6 Unable to lock file header.
-7 Invalid file revision or wrong byte-ordering for the platform.
-8 Invalid part file information.
-9 Invalid type 30 file information in a distributed file.
-10 A problem occurred while the file was being rolled forward during warmstart

recovery. Therefore, the file is marked “inconsistent.”
-11 The file is a view, therefore it cannot be opened by a BASIC program.
-12 No SQL privileges to open the table.
-13 Index problem.
-14 Cannot open the NFS file.
-15 There is a problem with the OVER.30 file in a dynamic file.
-16 Modulo over limit.
-17 Freechain corruption.
-18 SICA corruption.
-19 External Database Access (EDA) setup error.
-20 Automatic Data Encryption (ADE) setup error.

Examples

OPEN "SUN.MEMBER" TO DATA ELSE STOP "CAN'T OPEN SUN.MEMBER"
 OPEN "FOOBAR" TO FOO ELSE STOP "CAN'T OPEN FOOBAR"
 PRINT "ALL FILES OPEN OK"

This is the program output:

CAN'T OPEN FOOBAR

The following example opens the same file as in the previous example. The OPEN statement includes
an empty string for the dict argument.

OPEN "","SUN.MEMBER" TO DATA ELSE STOP "CAN'T OPEN SUN.MEMBER"
 OPEN "","FOO.BAR" TO FOO ELSE STOP "CAN'T OPEN FOOBAR"
 PRINT "ALL FILES OPEN OK"

OPENCHECK statement
Use the OPENCHECK statement to open an SQL table for use by BASIC programs, enforcing SQL
integrity checking. All file references in a BASIC program must be preceded by either an OPENCHECK
statement or an OPEN statement for that file.

The OPENCHECK statement works like the OPEN statement, except that SQL integrity checking is
enabled if the file is an SQL table. All field integrity checks for an SQL table are stored in the security
and integrity constraints area (SICA). The OPENCHECK statement loads the compiled form of these
integrity checks into memory, associating them with the file variable. All writes to the file are subject
to SQL integrity checking.

Chapter 1: Statements and functions

286

Syntax

OPENCHECK [dict,] filename [TO file.variable]
 {THEN statements [ELSE statements] | ELSE statements}

The STATUS function

The file type is returned if the file is opened successfully. If the file is not opened successfully, the
following values may return:

Value Description

-1 File name not found in the VOC file.
-2 Null file name or file. This error may also occur when you cannot open a file

across UVNet.
-3 Operating system access error that occurs when you do not have permission to

access a UniVerse file in a directory. For example, this may occur when trying to
access a type 1 or type 30 file.

-4 Access error when you do not have operating system permissions or if DATA.30
is missing for a type 30 file.

-5 Read error detected by the operating system.
-6 Unable to lock file header.
-7 Invalid file revision or wrong byte-ordering for the platform.
-8 Invalid part file information.
-9 Invalid type 30 file information in a distributed file.
-10 A problem occurred while the file was being rolled forward during warmstart

recovery. Therefore, the file is marked “inconsistent.”
-11 The file is a view, therefore it cannot be opened by a BASIC program.
-12 No SQL privileges to open the table.
-13 A generic error that can occur for various reasons.

Index problem.
-14 Cannot open the NFS file.

OPENDEV statement
Use the OPENDEV statement to open a device for sequential processing. OPENDEV also sets a record
lock on the opened device or file.

See the READSEQ statement, on page 317 and WRITESEQ statement, on page 464 for more details
on sequential processing.

Syntax

OPENDEV device TO file.variable [LOCKED statements]
 {THEN statements [ELSE statements] | ELSE statements}

device is an expression that evaluates to the record ID of a device definition record in the &DEVICE&
file. If device evaluates to the null value, the OPENDEV statement fails and the program terminates
with a run-time error message. For more information, see the following section.

OPENDEV statement

287

The TO clause assigns a file.variable to the device being opened. All statements used to read to or
write from that device must refer to it by the assigned file.variable.

If the device exists and is not locked, the device is opened and any THEN statements are executed; the
ELSE statements are ignored. If no THEN statements are specified, program execution continues with
the next statement.

If the device is locked, the LOCKED statements are executed; THEN statements and ELSE statements
are ignored.

If the device does not exist or cannot be opened, the ELSE statements are executed; any THEN
statements are ignored. The device must have the proper access permissions for you to open it.

If NLS is enabled, you can use OPENDEV to open a device that uses a map defined in the &DEVICE&
file. If there is no map defined in the &DEVICE& file, the default mapname is the name in the
NLSDEFDEVMAP parameter in the uvconfig file. For more information about maps, see the UniVerse
NLS Guide.

Devices on Windows platforms

On Windows NT systems, you may need to change to block size defined for a device in the &DEVICE&
file before you can use OPENDEV to reference the device. On some devices there are limits to the type
of sequential processing that is available once you open the device. The following table summarizes
the limits:

Device type Block size Processing available

4 mm DAT drive No change needed. No limits.
8 mm DAT drive No change needed. No limits.
1/4-inch cartridge
drive, 60 MB or 150 MB

Specify the block size as 512
bytes or a multiple of 512
bytes.

Use READBLK and WRITEBLK to read or write
data in blocks of 512 bytes. Use SEEK only to
move the file pointer to the beginning or the
end of the file. You can use WEOF to write an
end-of-file (EOF) mark only at the beginning
of the data or after a write.

1/4-inch 525 cartridge
drive

No change needed. No limits.

Diskette drive Specify the block size as 512
bytes or a multiple of 512
bytes.

Use SEEK only to move the file pointer to the
beginning of the file. Do not use WEOF.

The LOCKED clause

The LOCKED clause is optional, but recommended.

The LOCKED clause handles a condition caused by a conflicting lock (set by another user) that
prevents the OPENDEV statement from processing. The LOCKED clause is executed if one of the
following conflicting locks exists:

▪ Exclusive file lock

▪ Intent file lock

▪ Shared file lock

▪ Update record lock

▪ Shared record lock

Chapter 1: Statements and functions

288

If the OPENDEV statement does not include a LOCKED clause, and a conflicting lock exists, the
program pauses until the lock is released.

Example

The following example opens TTY30 for sequential input and output operations:

OPENDEV 'TTY30' TO TERM THEN PRINT 'TTY30 OPENED'
 ELSE ABORT

This is the program output:

TTY30 OPENED

OPENPATH statement
The OPENPATH statement is similar to the OPEN statement, except that the pathname of the file is
specified. This file is opened without reference to the VOC file. The file must be a hashed UniVerse file
or a directory (UniVerse types 1 and 19).

Syntax

OPENPATH pathname [TO file.variable] [ON ERROR statements]
 {THEN statements [ELSE statements] | ELSE statements}

pathname specifies the relative or absolute path name of the file to be opened. If the file exists, it
is opened and the THEN statements are executed; the ELSE statements are ignored. If pathname
evaluates to the null value, the OPENPATH statement fails and the program terminates with a run-
time error message.

If the file cannot be accessed or does not exist, the ELSE statements are executed; any THEN
statements are ignored.

Use the TO clause to assign the file to a file.variable. All statements used to read, write, delete, or clear
that file must refer to it by the assigned file.variable name. If you do not assign the file to a file.variable,
an internal default file variable is used. File references that do not specify file.variable access the
most recently opened default file. The file opened to the default file variable is assigned to the system
variable @STDFIL.

The ON ERROR clause

The ON ERROR clause is optional in the OPENPATH statement. Its syntax is the same as that of the
ELSE clause. The ON ERROR clause lets you specify an alternative for program termination when a
fatal error is encountered during processing of the OPENPATH statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

▪ Any uncommitted transactions begun within the current execution environment roll back.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

OPENSEQ statement

289

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

The STATUS function

You can use the STATUS function after an OPENPATH statement to find the cause of a file open failure
(that is, for an OPENPATH statement in which the ELSE clause is used). The following values can be
returned if the OPENPATH statement is unsuccessful:

Value Description

-1 File name not found in the VOC file.
-2 A generic error that can occur for various reasons.

Null file name or file. This error may also occur when you cannot open a file
across UVNet.

-3 Operating system access error that occurs when you do not have permission to
access a UniVerse file in a directory. For example, this may occur when trying to
access a type 1 or type 30 file.

-4 Access error when you do not have operating system permissions or if DATA.30
is missing for a type 30 file.

-5 Read error detected by the operating system.
-6 Unable to lock file header.
-7 Invalid file revision or wrong byte-ordering for the platform.
-8 Invalid part file information.
-9 Invalid type 30 file information in a distributed file.
-10 A problem occurred while the file was being rolled forward during warmstart

recovery. Therefore, the file is marked “inconsistent.”
-11 The file is a view, therefore it cannot be opened by a BASIC program.
-12 No SQL privileges to open the table.
-13 Index problem.
-14 Cannot open the NFS file.

Example

The following example opens the file SUN.MEMBER. The path name specifies the file.

OPENPATH '/user/members/SUN.MEMBER' ELSE ABORT

OPENSEQ statement
Use the OPENSEQ statement to open a file for sequential processing. All sequential file references in a
BASIC program must be preceded by an OPENSEQ or OPENDEV statement for that file. Although you
can open several files for sequential processing at the same point in the program, you must issue a
separate OPENSEQ statement for each.

See the READSEQ statement, on page 317 and WRITESEQ statement, on page 464 for more details
on sequential processing.

Chapter 1: Statements and functions

290

Syntax

OPENSEQ filename, record.ID TO file.variable [USING dynamic.array]
 [ON ERROR statements] [LOCKED statements]
 {THEN statements [ELSE statements] | ELSE statements}

OPENSEQ pathname TO file.variable [USING dynamic.array]
 [ON ERROR statements] [LOCKED statements]
 {THEN statements [ELSE statements] | ELSE statements}

Note: Performing multiple OPENSEQ operations on the same file results in creating only one
update record lock. This single lock can be released by a CLOSESEQ statement or RELEASE
statement.

The first syntax is used to open a record in a type 1 or type 19 file.

The second syntax specifies a path name to open a UNIX or DOS file. The file can be a disk file, a pipe,
or a special device.

filename specifies the name of the type 1 or type 19 file containing the record to be opened.

record.ID specifies the record in the file to be opened. If the record exists and is not locked, the file
is opened and the THEN statements are executed; the ELSE statements are ignored. If no THEN
statements are specified, program execution continues with the next statement. If the record or
the file itself cannot be accessed or does not exist, the ELSE statements are executed; any THEN
statements are ignored.

pathname is an explicit path name for the file, pipe, or device to be opened. If the file exists and is not
locked, it is opened and the THEN statements are executed; the ELSE statements are ignored. If the
path name does not exist, the ELSE statements are executed; any THEN statements are ignored.

If the file does not exist, the OPENSEQ statement fails. The file can also be explicitly created with the
CREATE statement.

OPENSEQ sets an update record lock on the specified record or file. This lock is reset by a CLOSESEQ
statement. This prevents any other program from changing the record while you are processing it.

If filename, record.ID, or pathname evaluate to the null value, the OPENSEQ statement fails and the
program terminates with a run-time error message.

The TO clause is required. It assigns the record, file, or device to file.variable. All statements used to
sequentially read, write, delete, or clear that file must refer to it by the assigned file variable name.

If NLS is enabled, you can use the OPENSEQ filename, record.ID statement to open a type 1 or type
19 file that uses a map defined in the .uvnlsmap file in the directory containing the type 1 or
type 19 file. If there is no .uvnlsmap file in the directory, the default mapname is the name in the
NLSDEFDIRMAP parameter in the uvconfig file.

Use the OPENSEQ pathname statement to open a UNIX pipe, file, or a file specified by a device
that uses a map defined in the .uvnlsmap file in the directory holding pathname. If there is no
.uvnlsmap file in the directory, the default mapname is the name in the NLSDEFSEQMAP parameter
in the uvconfig file, or you can use the SET.SEQ.MAP command to assign a map.

For more information about maps, see the UniVerse NLS Guide.

File buffering

Normally UniVerse uses buffering for sequential input and output operations. Use the NOBUF
statement after an OPENSEQ statement to turn off buffering and cause all writes to the file to be

OPENSEQ statement

291

performed immediately. For more information about file buffering, see the NOBUF statement, on page
275.

The USING clause

You can optionally include the USING clause to control whether the opened file is included in the
rotating file pool. The USING clause supplements OPENSEQ processing with a dynamic array whose
structure emulates an &DEVICE& file record. Field 17 of the dynamic array controls inclusion in the
rotating file pool with the following values:

▪ Y removes the opened file.

▪ N includes the opened file.The

ON ERROR clause

The ON ERROR clause is optional in the OPENSEQ statement. Its syntax is the same as that of the ELSE
clause. The ON ERROR clause lets you specify an alternative for program termination when a fatal
error is encountered while the OPENSEQ statement is being processed.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

▪ Any uncommitted transactions begun within the current execution environment roll back.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

The LOCKED clause is optional, but recommended. Its syntax is the same as that of the ELSE clause.
The LOCKED clause handles a condition caused by a conflicting lock (set by another user) that
prevents the OPENSEQ statement from processing. The LOCKED clause is executed if one of the
following conflicting locks exists:

▪ Exclusive file lock

▪ Intent file lock

▪ Shared file lock

▪ Update record lock

▪ Shared record lock

If the OPENSEQ statement does not include a LOCKED clause, and a conflicting lock exists, the
program pauses until the lock is released.

Use the STATUS function after an OPENSEQ statement to determine whether the file was successfully
opened.

The STATUS function

The file type is returned if the file is opened successfully. If the file is not opened successfully, the
following values may return:

Chapter 1: Statements and functions

292

Value Description

-1 File name not found in the VOC file.
-2 A generic error that can occur for various reasons.

Null file name or file. This error may also occur when you cannot open a file
across UVNet.

-3 Operating system access error that occurs when you do not have privileges to
access a UniVerse file in a directory. For example, this may occur when trying to
access a type 1 or type 30 file.

-4 Access error when you do not have operating system permissions or if DATA.30
is missing for a type 30 file.

-5 Read error detected by the operating system.
-6 Unable to lock file header.
-7 Invalid file revision or wrong byte-ordering for the platform.
-8 Invalid part file information.
-9 Invalid type 30 file information in a distributed file.
-10 A problem occurred while the file was being rolled forward during warmstart

recovery. Therefore, the file is marked “inconsistent.”
-11 The file is a view, therefore it cannot be opened by a BASIC program.
-12 No SQL privileges to open the table.
-13 Index problem.
-14 Cannot open the NFS file.

Examples

The following example reads RECORD1 from the nonhashed file FILE.E:

OPENSEQ 'FILE.E', 'RECORD1' TO FILE THEN
 PRINT "'FILE.E' OPENED FOR PROCESSING"
 END ELSE ABORT
 READSEQ A FROM FILE THEN PRINT A ELSE STOP

The next example writes the record read from FILE.E to the file /usr/depta/file1:

OPENSEQ '/usr/depta/file1' TO OUTPUT THEN
 PRINT "usr/depta/file1 OPENED FOR PROCESSING"
 END ELSE ABORT
 WRITESEQ A ON OUTPUT ELSE PRINT "CANNOT WRITE TO OUTPUT"
 .
 .
 .
 CLOSESEQ FILE
 CLOSESEQ OUTPUT
 END

This is the program output:

FILE.E OPENED FOR PROCESSING
 HI THERE
 .
 .
 .
 /usr/depta/file1 OPENED FOR PROCESSING

openSecureSocket function

293

The next example includes the USING clause to remove an opened file from the rotating file pool:

DEVREC = "1"@FM
 FOR I = 2 TO 16
 DEVREC = DEVREC:I:@FM
 NEXT I
 DEVREC=DEVREC:'Y'
 *
 OPENSEQ 'SEQTEST', 'TESTDATA' TO TESTFILE USING DEVREC
 THEN PRINT "OPENED 'TESTDATA' OK...."
 ELSE PRINT "COULD NOT OPEN TESTDATA"
 CLOSESEQ TESTFILE

This is the program output:

OPENED 'TESTDATA' OK

openSecureSocket function
Use the openSecureSocket() function to open a secure socket connection in a specified mode and
return the status.

This function behaves exactly the same as the openSocket() function, except that it returns the
handle to a socket that transfers data in a secured mode (SSL/TLS).

All parameters (with the exception of context) have the exact meaning as the openSocket()
parameters. Context must be a valid security context handle.

Once the socket is opened, any change in the associated security context will not affect the
established connection.

Syntax

openSecureSocket(name_or_IP, port, mode, timeout, socket_handle,
context)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

name_or_IP DNS name (x.com) or IP address of a server.
port Port number. If the port number is specified as a value <= 0, CallHTTP

defaults to a port number of 40001.
mode 0: using current mode

1: blocking mode (default)

2: non-blocking mode
timeout The timeout value, expressed in milliseconds. If you specify mode as 0,

timeout will be ignored.
socket_handle A handle to the open socket.
context A handle to the security context.

Return codes

The following table describes the status of each return code.

Chapter 1: Statements and functions

294

Return code Description

0 Success.
99 UniVerse failed to obtain a license for an interactive PHANTOM process.
1-41 See Socket function error return codes, on page 599.
101 Invalid security context handle.
102 SSL/TLS handshake failure (unspecified, peer is not SSL aware).
103 Requires client authentication but does not have a certificate in the

security context.
104 Unable to authenticate server.

openSocket function
Use the openSocket() function to open a socket connection in a specified mode and return the
status.

Syntax

openSocket(name_or_IP, port, mode, timeout, socket_handle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

name_or_IP DNS name (x.com) or IP address of a server.
port Port number. If the port number is specified as a value <= 0, CallHTTP

defaults to a port number of 40001.
mode 0: using current mode

1: blocking mode (default)

2: non-blocking mode
timeout The timeout value, expressed in milliseconds. If you specify mode as 0,

timeout will be ignored.
socket_handle A handle to the open socket.

Return codes

The following table describes the status of each return code.

Return code Description

0 Success.
99 UniVerse failed to obtain a license for an interactive PHANTOM process.
Non-zero See Socket function error return codes, on page 599.

Return status

The following table describes the return status of each mode.

OpenXMLData function

295

Mode Return status

Non-blocking The function will return immediately regardless of whether or not
the socket is successfully opened. The return code indicates if the
operation is successful. The timeout value is ignored.

Blocking If a positive timeout is specified, the function will either return with a
valid socket handle or will time out after the specified timeout period.
If the timeout value is 0, the function will block until either the socket
is successfully opened, the underlying TCP/IP connection times out or
some other error prevents the socket from opening.

OpenXMLData function
After you prepare the XML document, open it using the OpenXMLData function.

Syntax

Status=OpenXMLData(xml_handle,xml_data_extraction_rule,
xml_data_handle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xml_handle The XML handle generated by the PrepareXML() function.
xml_data_extraction_rule The path to the XML extraction rule file.
xml_data_handle The XML data file handle. The following are the possible return values:

XML.SUCCESS: Success.

XML.ERROR: Failed

XML.INVALID.HANDLE: Invalid XML handle

Example

The following example illustrates use of the OpenXMLData function:

status = OpenXMLData(“STUDENT_XML”, “&XML&/MYSTUDENT.ext”,STUDENT_XML_DATA)
If status = XML.ERROR THEN
STOP “Error when opening the XML document. “
END
IF status = XML.INVALID.HANDLE THEN
STOP “Error: Invalid parameter passed.”
END

ORS function
Use the ORS function to create a dynamic array of the logical OR of corresponding elements of two
dynamic arrays.

Each element of the new dynamic array is the logical OR of the corresponding elements of array1 and
array2. If an element of one dynamic array has no corresponding element in the other dynamic array,
a false is assumed for the missing element.

Chapter 1: Statements and functions

296

If both corresponding elements of array1 and array2 are the null value, null is returned for those
elements. If one element is the null value and the other is 0 or an empty string, null is returned. If one
element is the null value and the other is any value other than 0 or an empty string, a true is returned.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Syntax

ORS (array1, array2)

CALL -ORS (return.array, array1, array2)

CALL !ORS (return.array, array1, array2)

Example

A="A":@SM:0:@VM:4:@SM:1
 B=0:@SM:1-1:@VM:2
 PRINT ORS(A,B)

This is the program output:

1S0V1S1

PAGE statement
Use the PAGE statement to print headings, footings, and page advances at the appropriate places on
the specified output device.

You can specify headings and footings before execution of the PAGE statement (see the HEADING
statement, on page 204 and FOOTING statement, on page 179). If there is no heading or footing,
PAGE clears the screen.

Syntax

PAGE [ON print.channel] [page#]

The ON clause specifies the logical print channel to use for output. print.channel is an expression that
evaluates to a number from –1 through 255. If you do not use the ON clause, logical print channel 0 is
used, which prints to the user’s terminal if PRINTER OFF is set (see the PRINTER statement, on page
301). Logical print channel –1 prints the data on the screen, regardless of whether a PRINTER ON
statement has been executed.

page# is an expression that specifies the next page number. If a heading or footing is in effect when the
page number is specified, the heading or footing on the current page contains a page number equal to
one less than the value of page#.

If either print.channel or page# evaluates to the null value, the PAGE statement fails and the program
terminates with a run-time error message.

Example

In the following example the current value of X provides the next page number:

PAGE ON 5 X

PERFORM statement

297

PERFORM statement
Use the PERFORM statement to execute a UniVerse sentence, paragraph, menu, or command from
within the BASIC program, then return execution to the statement following the PERFORM statement.
The commands are executed in the same environment as the BASIC program that called them; that is,
unnamed common variables, @variables, and in-line prompts retain their values, and select lists and
the DATA stack remain active. If these values change, the new values are passed back to the calling
program.

Syntax

PERFORM command

You can specify multiple commands in the PERFORM statement in the same way you specify them in
the body of a UniVerse paragraph. Each command or line must be separated by a field mark (ASCII
CHAR(254)).

If command evaluates to the null value, the PERFORM statement fails and the program terminates
with a run-time error message.

You cannot use the PERFORM statement within a transaction to execute most UniVerse commands
and SQL statements. However, you can use PERFORM to execute the following UniVerse commands
and SQL statements within a transaction:

▪ CHECK.SUM

▪ COUNT

▪ DELETE (SQL)

▪ DISPLAY

▪ ESEARCH

▪ GET.LIST

▪ INSERT

▪ LIST

▪ LIST.LABEL

▪ LIST.ITEM

▪ RUN

▪ SAVE.LIST

▪ SEARCH

▪ SELECT (RetrieVe)

▪ SELECT (SQL)

▪ SORT

▪ SORT.LABEL

▪ SORT.ITEM

▪ SSELECT

▪ STAT

▪ SUM

▪ UPDATE

Chapter 1: Statements and functions

298

REALITY flavor

In a REALITY flavor account PERFORM can take all the clauses of the EXECUTE statement. To get these
PERFORM characteristics in other flavor accounts, use the PERF.EQ.EXEC option of the $OPTIONS
statement.

Example

In the following example multiple commands are separated by field marks:

PERFORM 'RUN BP SUB'
 FM=CHAR(254)
 COMMAND = 'SSELECT EM':FM
 COMMAND := 'RUN BP PAY':FM
 COMMAND := 'DATA 01/10/85'
PERFORM COMMAND
 A = 'SORT EM '
 A := 'WITH PAY.CODE EQ'
 A := '10 AND WITH DEPT'
 A := 'EQ 45'
 PERFORM A

PRECISION statement
Use the PRECISION statement to control the maximum number of decimal places that are output
when the system converts a numeric value from internal binary format to an ASCII character string
value.

Syntax

PRECISION expression

expression specifies a number from 0 through 14. Any fractional digits in the result of such a conversion
that exceed the precision setting are rounded off.

If you do not include a PRECISION statement, a default precision of 4 is assumed. Precisions are
stacked so that a BASIC program can change its precision and call a subroutine whose precision is the
default unless the subroutine executes a PRECISION statement. When the subroutine returns to the
calling program, the calling program has the same precision it had when it called the subroutine.

Trailing fractional zeros are dropped during output. Therefore, when an internal number is converted
to an ASCII string, the result might appear to have fewer decimal places than the precision setting
allows. However, regardless of the precision setting, the calculation always reflects the maximum
accuracy of which the computer is capable (that is, slightly more than 17 total digits, including
integers).

If expression evaluates to the null value, the PRECISION statement fails and the program terminates
with a run-time error message.

Example

A = 12.123456789
 PRECISION 8
 PRINT A
 PRECISION 4
 PRINT A

PrepareXML function

299

This is the program output:

12.12345679
 12.1235

PrepareXML function
The PrepareXML function allocates memory for the XML document, opens the document,
determines the file structure of the document, and returns the file structure.

Syntax

Status=PrepareXML(xml_file,xml_handle)

For PrepareXML to complete successfully, you should set the library directory environment variable,
which may not be the same name on all systems. For example, the environment variable is called
LD_LIBRARY_PATH on Solaris systems, SHLIB_PATH on HP systems, and so on. If this environment
variable is not properly set, UniVerse may produce errors such as the following:

ld.so.1: uvsh: fatal: libxxxx: can't open file: errno=2

xxxx may be some unrecognizable combination of letters and numbers. To correct this, set up your
environment according to the vendor’s instructions

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xml_file The path to the file where the XML document resides.
xml_handle The return value. The return value is the UniVerse BASIC variable for

xml_handle. Status is one of the following return values:

XML.SUCCESS: Success.

XML.ERROR: Failed

Example

The following example illustrates use of the PrepareXML function:

STATUS = PrepareXML(“&XML&/MYSTUDENT.XML”,STUDENT_XML)
IF STATUS=XML.ERROR THEN
STATUS = XMLError(errmsg)
PRINT “error message “:errmsg
STOP “Error when preparing XML document “
END

PRINT statement
Use the PRINT statement to send data to the screen, a line printer, or another print file.

Chapter 1: Statements and functions

300

Syntax

PRINT [ON print.channel] [print.list]

The ON clause specifies the logical print channel to use for output. print.channel is an expression that
evaluates to a number from –1 through 255. If you do not use the ON clause, logical print channel
0 is used, which prints to the user’s terminal if PRINTER OFF is set (see the PRINTER statement, on
page 301). If print.channel evaluates to the null value, the PRINT statement fails and the program
terminates with a run-time error message. Logical print channel –1 prints the data on the screen,
regardless of whether a PRINTER ON statement has been executed.

You can specify a HEADING statement, FOOTING statement, $PAGE statement, and PRINTER CLOSE
statements for each logical print channel. The contents of the print files are printed in order by logical
print channel number.

print.list can contain any BASIC expression. The elements of the list can be numeric or character
strings, variables, constants, or literal strings; the null value, however, cannot be printed. The list
can consist of a single expression or a series of expressions separated by commas (,) or colons (:) for
output formatting. If no print.list is designated, a blank line is printed.

Expressions separated by commas are printed at preset tab positions. The default tabstop setting is 10
characters. Calculations for tab characters are based on character length rather than display length.
For information about changing the default setting, see the TABSTOP statement, on page 407. Use
multiple commas together for multiple tabulations between expressions.

Expressions separated by colons are concatenated. That is, the expression following the colon is
printed immediately after the expression preceding the colon. To print a list without a LINEFEED and
RETURN, end print.list with a colon (:).

If NLS is enabled, calculations for the PRINT statement are based on character length rather than
display length. If print.channel has a map associated with it, data is mapped before it is output to the
device. For more information about maps, see the UniVerse NLS Guide.

Examples

A=25;B=30
 C="ABCDE"
 PRINT A+B
 PRINT
 PRINT "ALPHA ":C
 PRINT "DATE ":PRINT "10/11/93"
 *
 PRINT ON 1 "FILE 1"
 * The string "FILE 1" is printed on print file 1.

This is the program output:

55
 ALPHA ABCDE
 DATE 10/11/93

The following example clears the screen:

PRINT @(–1)

The following example prints the letter X at location column 10, row 5:

PRINT @(10,5):'X'

PRINTER statement

301

PRINTER statement
Use the PRINTER statement to direct output either to the screen or to a printer. By default, all output is
sent to the screen unless a PRINTER ON is executed or the P option to the RUN command is used. See
the SETPTR command for more details about redirecting output.

Syntax

PRINTER { ON | OFF | RESET }

PRINTER CLOSE [ON print.channel]

PRINTER ON sends output to the system line printer via print channel 0. The output is stored in a
buffer until a PRINTER CLOSE statement is executed or the program terminates; the output is then
printed (see the PRINTER CLOSE statement).

PRINTER OFF sends output to the screen via print channel 0. When the program is executed, the data
is immediately printed on the screen.

The PRINTER ON or PRINTER OFF statement must precede the PRINT statement that starts the print
file.

Use the PRINTER RESET statement to reset the printing options. PRINTER RESET removes the header
and footer, resets the page count to 1, resets the line count to 1, and restarts page waiting.

Note: Use TPRINT statement to set a delay before printing. See also the TPARM function, on page
427 statement.

The PRINTER CLOSE statement

Use the PRINTER CLOSE statement to print all output data stored in the printer buffer.

You can specify print channel –1 through 255 with the ON clause. If you omit the ON clause from a
PRINTER CLOSE statement, print channel 0 is closed. Only data directed to the printer specified by the
ON clause is printed. Therefore, there must be a corresponding PRINTER CLOSE ON print.channel for
each ON clause specified in a PRINT statement. All print channels are closed when the program stops.
Logical print channel –1 prints the data on the screen, regardless of whether a PRINTER ON statement
has been executed.

If print.channel evaluates to the null value, the PRINTER CLOSE statement fails and the program
terminates with a run-time error message.

In PICK, IN2, and REALITY flavor accounts, the PRINTER CLOSE statement closes all print channels.

Example

PRINTER ON
 PRINT "OUTPUT IS PRINTED ON PRINT FILE 0"
 PRINTER OFF
 PRINT "OUTPUT IS PRINTED ON THE TERMINAL"
 *
 PRINT ON 1 "OUTPUT WILL BE PRINTED ON PRINT FILE 1"
 PRINT ON 2 "OUTPUT WILL BE PRINTED ON PRINT FILE 2"

This is the program output:

OUTPUT IS PRINTED ON THE TERMINAL

Chapter 1: Statements and functions

302

PRINTERR statement
Use the PRINTERR statement to print a formatted error message on the bottom line of the terminal.
The message is cleared by the next INPUT @ statement or is overwritten by the next PRINTERR or
INPUTERR statement. PRINTERR clears the type-ahead buffer.

Syntax

PRINTERR [error.message]

error.message is an expression that evaluates to the error message text. The elements of the
expression can be numeric or character strings, variables, constants, or literal strings. The null value
cannot be an element because it cannot be output. The expression can be a single expression or a
series of expressions separated by commas (,) or colons (:) for output formatting. If no error message
is designated, a blank line is printed. If error.message evaluates to the null value, the default message
is printed:

Message ID is NULL: undefined error

Expressions separated by commas are printed at preset tab positions. The default tabstop setting is 10
characters. For information about changing the default setting, see the TABSTOP statement, on page
407. Use multiple commas together to cause multiple tabulations between expressions.

Expressions separated by colons are concatenated: that is, the expression following the colon is
printed immediately after the expression preceding the colon.

See also the INPUTERR statement, on page 227.

REALITY flavor

In a REALITY flavor account the PRINTERR statement prints a formatted error message from the
ERRMSG file on the bottom line of the terminal. REALITY syntax is:

PRINTERR [dynamic.array] [FROM file.variable]

dynamic.array must contain a record ID and any arguments to the message, with each element
separated from the next by a field mark. If dynamic.array does not specify an existing record ID, a
warning message states that no error message can be found.

If dynamic.array evaluates to the null value, the default error message is printed:

Message ID is NULL: undefined error

The FROM clause lets you read the error message from an open file. If file.variable evaluates to the null
value, the PRINTERR statement fails and the program terminates with a run-time error message.

This statement is similar to the STOP statement on a Pick system except that it does not terminate the
program upon execution. You can use it wherever you can use a STOP or ABORT statement.

To use the REALITY version of the PRINTERR statement in PICK, IN2, INFORMATION, and IDEAL flavor
accounts, use the USE.ERRMSG option of the $OPTIONS statement.

UniVerse provides a standard Pick ERRMSG file. You can construct a local ERRMSG file using the
following syntax in the records. Each field must start with one of these codes, as shown in the
following table:

Code Action

A[(n)] Display next argument left-justified; n specifies field length.
D Display system date.
E [string] Display record ID of message in brackets; string displayed after ID.

PROCREAD statement

303

Code Action

H [string] Display string.
L [(n)] Output newline; n specifies number of newlines.
R [(n)] Display next argument right-justified; n specifies field length.
S [(n)] Output n blank spaces from beginning of line.
T Display system time.

PROCREAD statement
Use the PROCREAD statement to assign the contents of the primary input buffer to a variable. Your
BASIC program must be called by a proc. If your program was not called from a proc, the ELSE
statements are executed; otherwise the THEN statements are executed.

If variable evaluates to the null value, the PROCREAD statement fails and the program terminates with
a run-time error message.

Syntax

PROCREAD variable
 {THEN statements [ELSE statements] | ELSE statements}

PROCWRITE statement
Use the PROCWRITE statement to write string to the primary input buffer. Your program must be
called by a proc.

If string evaluates to the null value, the PROCWRITE statement fails and the program terminates with a
run-time error message.

Syntax

PROCWRITE string

PROGRAM statement
Use the PROGRAM statement to identify a program. The PROGRAM statement is optional; if you use it,
it must be the first noncomment line in the program.

name can be specified for documentation purposes; it need not be the same as the actual program
name.

Syntax

PROG[RAM] [name]

Example

PROGRAM BYSTATE

Chapter 1: Statements and functions

304

PROMPT statement
Use the PROMPT statement to specify the character to be displayed on the screen when user input is
required. If no PROMPT statement is issued, the default prompt character is the question mark (?).

Syntax

PROMPT character

If character evaluates to more than one character, only the first character is significant; all others are
ignored.

The prompt character becomes character when the PROMPT statement is executed. Although the
value of character can change throughout the program, the prompt character remains the same until a
new PROMPT statement is issued or the program ends.

Generally, data the user enters in response to the prompt appears on the screen. If the source of the
input is something other than the keyboard (for example, a DATA statement), the data is displayed on
the screen after the prompt character. Use PROMPT " " to prevent any prompt from being displayed.
PROMPT " " also suppresses the display of input from DATA statements.

If character evaluates to the null value, no prompt appears.

Examples

Source Lines Program Output

A[(n)] Display next argument left-justified; n specifies field length.
D Display system date.
E [string] Display record ID of message in brackets; string displayed after ID.
H [string] Display string.
L [(n)] Output newline; n specifies number of newlines.
R [(n)] Display next argument right-justified; n specifies field length.
S [(n)] Output n blank spaces from beginning of line.
T Display system time.

protocolLogging function
The protocolLogging function starts or stops logging.

Syntax

protocolLogging(log_file, log_action, log_level)

log_file is the name of the file to which the logs will be recorded. The default log file name is httplog
and is created under the current directory.

log_action is either ON or OFF. The default is OFF.

log_level is the detail level of logging. Valid values are 0–10. See the table below for information about
each log level.

The following table describes each log level.

PWR function

305

Log level Description

0 No logging.
1 Socket open/read/write/close action (no real data) HTTP request: hostinfo(URL)
2 Level 1 logging plus socket data statistics (size, and so forth).
3 Level 2 logging plus all data actually transferred.
4-10 More detailed status data to assist debugging.

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.
1 Failed to start logging.

PWR function
Use the PWR function to return the value of expression raised to the power specified by power.

Syntax

PWR (expression, power)

The PWR function operates like exponentiation (that is, PWR(X,Y) is the same as X**Y).

A negative value cannot be raised to a noninteger power. If it is, the result of the function is PWR(-X,Y)
and an error message is displayed.

If either expression or power is the null value, null is returned.

On overflow or underflow, a warning is printed and 0 is returned.

Example

A=3
 B=PWR(5,A)
 PRINT "B= ",B

This is the program output:

B= 125

PyCall function
The PyCall function calls a Python callable object.

Syntax

pyresult = PyCall(PyCallableObject[,arg1, arg2, ...])

Parameters

The following table describes the parameters for this function.

Chapter 1: Statements and functions

306

Parameter Description

pyresult A standard U2 BASIC variable or a PYOBJECT variable.
pycallableobject A PYOBJECT variable pointing to a Python object that is callable, such as a

function object, class object, or method object.
arg1,arg2,… The arguments to the callable Python object that can be evaluated to a

string, a number, or a PYOBJECT.

PyCallFunction function
The PyCallFunction function calls a Python function on a Python module.

Syntax

pyresult = PyCallFunction(moduleName, functionName[, arg1, arg2, ...])

Parameters

The following table describes the parameters for this function.

Parameter Description

pyresult A standard U2 BASIC variable or a PYOBJECT variable.
moduleName The name of the module where the function is defined.
functionName The name of the function to be called.
arg1,arg2 The arguments to the function object that can be evaluated to a string, a

number, or a PYOBJECT.

PyCallMethod function
The PyCallMethod function calls a method on a Python object.

Syntax

pyresult = PyCallMethod(pyobject, methodName [,arg1, arg2, ...]

Parameters

The following table describes the parameters for this function.

Parameter Description

pyresult A standard U2 BASIC variable or a PYOBJECT variable.
pyobject A PYOBJECT variable pointing to a Python object
methodName The name of the method to be called. Must be defined on the class of the

object.
arg1,arg2 The arguments to the method that can be evaluated to a string, a number,

or a PYOBJECT.

PyGetAttr function
The PyGetAttr function gets the value of an attribute of a Python object.

PyImport function

307

Syntax

pyresult = PyGetAttr(pyobject, attrName)

Parameters

The following table describes the parameters for this function.

Parameter Description

pyresult A standard U2 BASIC variable or a PYOBJECT variable.
pyobject A PYOBJECT variable pointing to a Python object.
attrName The name of the attribute whose value is to be retrieved.

PyImport function
The PyImport function imports a Python module.

Syntax

pyresult = PyImport(moduleName)

Parameters

The following table describes the parameters for this function.

Parameter Description

pyresult A PYOBJECT variable pointing to the Python module object.
moduleName The name of the module to be imported.

PySetAttr function
The PySetAttr function sets the value of an attribute of a Python object.

Syntax

pyresult = PySetAttr(pyobject, attrName, value)

Parameters

The following table describes the parameters for this function.

Parameter Description

pyresult An integer value, -1: failure.
pyobject A PYOBJECT variable pointing to a Python object.
attrName The name of the attribute whose value to be set.
value A value expression that can be evaluated to a string, a number, or a

PYOBJECT.

Chapter 1: Statements and functions

308

QUOTE function
Use the QUOTE function to enclose an expression in double quotation marks. If expression evaluates to
the null value, null is returned (without quotation marks).

Syntax

QUOTE (expression)

Example

PRINT QUOTE(12 + 5) : " IS THE ANSWER."
 END

This is the program output:

"17" IS THE ANSWER.

RAISE function
Use the RAISE function to return a value equal to expression, except that system delimiters in
expression are converted to the next higher-level delimiter: value marks are changed to field marks,
subvalue marks are changed to value marks, and so on. If expression evaluates to the null value, null is
returned.

Syntax

RAISE (expression)

The conversions are:

IM CHAR(255) to IM CHAR(255)
FM CHAR(254) to IM CHAR(255)
VM CHAR(253) to FM CHAR(254)
SM CHAR(252) to VM CHAR(253)
TM CHAR(251)

CHAR(250)

CHAR(249)

CHAR(248)

to SM CHAR(252)

CHAR(251)

CHAR(250)

CHAR(249)

PIOPEN flavor

In PIOPEN flavor, the delimiters that can be raised are CHAR(254) through CHAR(251). All other
characters are left unchanged. You can obtain PIOPEN flavor for the RAISE function by:

▪ Compiling your program in a PIOPEN flavor account

▪ Specifying the $OPTIONS INFO.MARKS statement

Examples

In the following examples an item mark is shown by I, a field mark is shown by F, a value mark is
shown by V, and a subvalue mark is shown by S.

RANDOMIZE statement

309

The following example sets A to DDIEEI123I777:

A= RAISE('DD':FM'EE':FM:123:FM:777)

The next example sets B to 1I2F3I4V5:

B= RAISE(1:IM:2:VM:3:FM:4:SM:5)

The next example sets C to 999S888:

C= RAISE(999:TM:888)

RANDOMIZE statement
Use the RANDOMIZE statement with an expression to make the RND function generate the same
sequence of random numbers each time the program is run. expression must be a positive integer or
zero. If no expression is supplied, or if expression evaluates to the null value, the internal time of day is
used (the null value is ignored). In these cases the sequence is different each time the program is run.

Syntax

RANDOMIZE [(expression)]

Example

RANDOMIZE (0)
 FOR N=1 TO 10
 PRINT RND(4):' ':
 NEXT N
 PRINT
 *
 RANDOMIZE (0)
 FOR N=1 TO 10
 PRINT RND(4):' ':
 NEXT
 PRINT
 *
 RANDOMIZE (3)
 FOR N=1 TO 10
 PRINT RND(4):' ':
 NEXT N
 PRINT

This is the program output:

0 2 1 2 0 2 1 2 1 1
 0 2 1 2 0 2 1 2 1 1
 2 0 1 1 2 1 0 1 2 3

READ statements
Use READ statements to assign the contents of a record from a UniVerse file to dynamic.array.

Syntax

READ dynamic.array FROM [file.variable,] record.ID [ON ERROR statements]

Chapter 1: Statements and functions

310

 { THEN statements [ELSE statements] | ELSE statements }

{ READL | READU } dynamic.array FROM [file.variable ,] record.ID
 [ON ERROR statements] [LOCKED statements]
 { THEN statements [ELSE statements] | ELSE statements }

READV dynamic.array FROM [file.variable ,] record.ID , field#
 [ON ERROR statements]
 { THEN statements [ELSE statements] | ELSE statements }

{ READVL | READVU } dynamic.array FROM [file.variable ,] record.ID , field#
 [ON ERROR statements] [LOCKED statements]
 { THEN statements [ELSE statements] | ELSE statements }

Use this
statement...

To do this...

READ Read a record.
READL Acquire a shared record lock and read a record.
READU Acquire an update record lock and read a record.
READV Read a field.
READVL Acquire a shared record lock and read a field.
READVU Acquire an update record lock and read a field.

file.variable specifies an open file. If file.variable is not specified, the default file is assumed (for more
information on default files, see the OPEN statement, on page 283). If the file is neither accessible
nor open, the program terminates with a run-time error message.

If record.ID exists on the specified file, dynamic.array is set to the contents of the record, and the THEN
statements are executed; any ELSE statements are ignored. If no THEN statements are specified,
program execution continues with the next statement. If record.ID does not exist, dynamic.array is set
to an empty string, and the ELSE statements are executed; any THEN statements are ignored.

If file.variable, record.ID, or field# evaluate to the null value, the READ statement fails and the program
terminates with a run-time error message.

Tables

If the file is a table, the effective user of the program must have SQL SELECT privilege to read records
in the file. For information about the effective user of a program, see the AUTHORIZATION statement,
on page 74.

Distributed files

If the file is a distributed file, use the STATUS function after a READ statement to determine the results
of the operation, as follows:

Value Description

-1 The partitioning algorithm does not evaluate to an integer.
-2 The part number is invalid.

READ statements

311

NLS mode

If NLS is enabled, READ and other BASIC statements that perform I/O operations map external data to
the UniVerse internal character set using the appropriate map for the input file.

If the file contains unmappable characters, the ELSE statements are executed.

The results of the READ statements depend on all of the following:

▪ The inclusion of the ON ERROR clause

▪ The setting of the NLSREADELSE parameter in the uvconfig file

▪ The location of the unmappable character

The values returned by the STATUS function are as follows:

Value Description

3 The unmappable character is in the record ID.
4 The unmappable character is in the record’s data.

Note: 4 is returned only if the NLSREADELSE parameter is set to 1. If NLSREADELSE is 0, no value is
returned, data is lost, and you see a run-time error message.

For more information about maps, see the UniVerse NLS Guide.

The ON ERROR clause

The ON ERROR clause is optional in the READ statement. Its syntax is the same as that of the ELSE
clause. The ON ERROR clause lets you specify an alternative for program termination when a fatal
error is encountered during processing of the READ statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

▪ Any uncommitted transactions begun within the current execution environment roll back.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

The LOCKED clause

You can use the LOCKED clause only with the READL, READU, READVL, and READVU statements. Its
syntax is the same as that of the ELSE clause.

The LOCKED clause handles a condition caused by a conflicting lock (set by another user) that
prevents the READ statement from being processed. The LOCKED clause is executed if one of the
following conflicting locks exists:

Chapter 1: Statements and functions

312

In this
statement...

This requested lock... Conflicts with...

READL

READVL

Shared record lock Exclusive file lock

Update record lock
READU

READVU

Update record lock Exclusive file lock

Intent file lock

Shared file lock

Update record lock

Shared record lock

If a READ statement does not include a LOCKED clause, and a conflicting lock exists, the program will
timeout after 60 minutes or until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the terminal number of the
user who owns the conflicting lock.

Releasing Locks

A shared record lock can be released with a CLOSE statement, RELEASE statement, or STOP
statement. An update record lock can be released with a CLOSE statement, DELETE statements,
MATWRITE statements, RELEASE statement, STOP, WRITE statements, or WRITEV statement.

Locks acquired or promoted within a transaction are not released when the previous statements are
processed.

All record locks are released when you return to the UniVerse prompt.

READL and READU statements

Use the READL syntax to acquire a shared record lock and then read the record. This allows other
programs to read the record with no lock or a shared record lock.

Use the READU statement to acquire an update record lock and then read the record. The update
record lock prevents other users from updating the record until the user who owns it releases it.

An update record lock can only be acquired when no shared record lock exists. It can be promoted
from a shared record lock owned by the user requesting the update record lock if no shared record
locks exist.

To prevent more than one program or user from modifying the same record at the same time, use
READU instead of READ.

READV, READVL, and READVU statements

Use the READV statement to assign the contents of a field in a UniVerse file record to dynamic.array.

Use the READVL statement to acquire a shared record lock and then read a field from the record. The
READVL statement conforms to all the specifications of the READL and READV statements.

Use the READVU statement to acquire an update record lock and then read a field from the record. The
READVU statement conforms to all the specifications of the READU and READV statements.

You can specify field# only with the READV, READVL, and READVU statements. It specifies the index
number of the field to be read from the record. You can use a field# of 0 to determine whether the
record exists. If the field does not exist, dynamic.array is assigned the value of an empty string.

READBLK statement

313

PICK, IN2, and REALITY flavors

In PICK, IN2, and REALITY flavor accounts, if record.ID or field# does not exist, dynamic.array retains its
value and is not set to an empty string. The ELSE statements are executed; any THEN statements are
ignored. To specify PICK, IN2, and REALITY flavor READ statements in an INFORMATION or IDEAL flavor
account, use the READ.RETAIN option of the $OPTIONS statement.

Examples

OPEN '','SUN.MEMBER' TO FILE ELSE STOP
 FOR ID=5000 TO 6000
 READ MEMBER FROM FILE, ID THEN PRINT ID ELSE NULL
 NEXT ID
OPEN '','SUN.SPORT' ELSE STOP 'CANT OPEN "SUN.SPORT"'
 READ ID FROM "853333" ELSE
 PRINT 'CANT READ ID "853333" ON FILE "SUN.SPORT"'
 END
X="6100"
 READ PERSON FROM FILE,X THEN PRINT PERSON<1> ELSE
 PRINT "PERSON ":X:" NOT ON FILE"
 END

The next example locks the record N in the file SUN.MEMBER, reads field 3 (STREET) from it, and prints
the value of the field:

OPEN '','SUN.MEMBER' TO FILE ELSE STOP
 FOR N=5000 TO 6000
 READVU STREET FROM FILE,N,3 THEN PRINT STREET ELSE NULL
 RELEASE
 NEXT
OPEN "DICT","MYFILE" TO DICT.FILE ELSE STOP
 OPEN "","MYFILE" ELSE STOP ; *USING DEFAULT FILE VARIABLE
 READU ID.ITEM FROM DICT.FILE,"@ID" ELSE
 PRINT "NO @ID"
 STOP
 END

This is the program output:

5205
 5390
 CANT READ ID "853333" ON FILE "SUN.SPORT"
 MASTERS
 4646 TREMAIN DRIVE
 670 MAIN STREET

READBLK statement
Use the READBLK statement to read a block of data of a specified length from a file opened for
sequential processing and assign it to a variable. The READBLK statement reads a block of data
beginning at the current position in the file and continuing for blocksize bytes and assigns it to
variable. The current position is reset to just beyond the last byte read.

Syntax

READBLK variable FROM file.variable, blocksize

Chapter 1: Statements and functions

314

 THEN statements [ELSE statements] | ELSE statements }

file.variable specifies a file previously opened for sequential processing.

If the data can be read from the file, the THEN statements are executed; any ELSE statements are
ignored. If the file is not readable or if the end of file is encountered, the ELSE statements are executed
and the THEN statements are ignored. If the ELSE statements are executed, variable is set to an empty
string.

If either file.variable or blocksize evaluates to the null value, the READBLK statement fails and the
program terminates with a run-time error message.

Note: A newline in UNIX files is one byte long, whereas in Windows NT it is two bytes long. This
means that for a file with newlines, the same READBLK statement may return a different set of data
depending on the operating system the file is stored under.

In the event of a timeout, READBLK returns no bytes from the buffer, and the entire I/O operation must
be retried.

The difference between the READSEQ statement and the READBLK statement is that the READBLK
statement reads a block of data of a specified length, whereas the READSEQ statement reads a single
line of data.

On Windows NT systems, if you use READBLK to read data from a 1/4-inch cartridge drive (60 or 150
MB) that you open with the OPENDEV statement, on page 286, you must use a block size of 512 bytes
or a multiple of 512 bytes.

For more information about sequential file processing, see the OPENSEQ statement, on page 289,
READSEQ statement, on page 317, and WRITESEQ statement, on page 464.

If NLS is enabled and file.variable has a map associated with it, the data is mapped accordingly. For
more information about maps, see the UniVerse NLS Guide.

Example

OPENSEQ 'FILE.E', 'RECORD4' TO FILE ELSE ABORT
 READBLK VAR1 FROM FILE, 15 THEN PRINT VAR1
 PRINT
 READBLK VAR2 FROM FILE, 15 THEN PRINT VAR2

This is the program output:

FIRST LINE
 SECO

 ND LINE
 THIRD L

READL statement
Use the READL statement to acquire a shared record lock and perform the READ statement.

For details, see the READ statements, on page 309.

READLIST statement

315

READLIST statement
Use the READLIST statement to read the remainder of an active select list into a dynamic array.

Syntax

READLIST dynamic.array [FROM list.number]
 { THEN statements [ELSE statements] | ELSE statements }

list.number is an expression that evaluates to the number of the select list to be read. It can be from 0
through 10. If you do not use the FROM clause, select list 0 is used.

READLIST reads all elements in the active select list. If READ statements are used on the select list
before the READLIST statement, only the elements not read by the READNEXT statement are stored in
dynamic.array. READLIST empties the select list.

If one or more elements are read from list.number, the THEN statements are executed. If there are no
more elements in the select list or if a select list is not active, the ELSE statements are executed; any
THEN statements are ignored.

If list.number evaluates to the null value, the READLIST statement fails and the program terminates
with run-time error message.

In IDEAL and INFORMATION flavor accounts, use the VAR.SELECT option of the $OPTIONS statement to
get READLIST to behave as it does in PICK flavor accounts.

PICK, REALITY, and IN2 flavors

In PICK, REALITY, and IN2 flavor accounts, the READLIST statement has the following syntax:

READLIST dynamic.array FROM listname [SETTING variable]
 {THEN statements [ELSE statements] | ELSE statements}

In these flavors the READLIST statement reads a saved select list from the &SAVEDLISTS& file without
activating a select list. In PICK and IN2 flavor accounts, READLIST lets you access a saved select list
without changing the currently active select list if there is one.

The select list saved in listname in the &SAVEDLISTS& file is put in dynamic.array. The elements of the
list are separated by field marks.

listname can be of the form

record.ID

or

record.IDaccount.name

record.ID specifies the record ID of the list in &SAVEDLISTS&, and account.name specifies the name of
another UniVerse account in which to look for the &SAVEDLISTS& file.

The SETTING clause assigns the count of the elements in the list to variable.

If the list is retrieved successfully (the list must not be empty), the THEN statements are executed; if
not, the ELSE statements are executed. If listname evaluates to the null value, the READLIST statement
fails and the program terminates with a run-time error message.

In PICK, REALITY, and IN2 flavor accounts, use the -VAR.SELECT option of the $OPTIONS statement to
get READLIST to behave as it does in IDEAL flavor accounts.

Chapter 1: Statements and functions

316

READNEXT statement
Use the READNEXT statement to assign the next record ID from an active select list to dynamic.array.

Syntax

READNEXT dynamic.array [,value [,subvalue]] [FROM list]
 {THEN statements [ELSE statements] | ELSE statements}

list specifies the select list. If none is specified, select list 0 is used. list can be a number from 0 through
10 indicating a numbered select list, or the name of a select list variable.

The BASIC SELECT statements, on page 346 or the UniVerse GET.LIST, FORM.LIST, SELECT, or
SSELECT commands create an active select list; these commands build the list of record IDs. The
READNEXT statement reads the next record ID on the list specified in the FROM clause and assigns it to
the dynamic.array.

When the select list is exhausted, dynamic.array is set to an empty string, and the ELSE statements are
executed; any THEN statements are ignored.

If list evaluates to the null value, the READNEXT statement fails and the program terminates with a
run-time error message.

A READNEXT statement with value and subvalue specified accesses an exploded select list. The record
ID is stored in dynamic.array, the value number in value, and the subvalue number in subvalue. If only
dynamic.array is specified, it is set to a multivalued field consisting of the record ID, value number, and
subvalue number, separated by value marks.

INFORMATION flavor

In INFORMATION flavor accounts READNEXT returns an exploded select list. Use the RNEXT.EXPL
option of the $OPTIONS statement to return exploded select lists in other flavors.

Example

OPEN '','SUN.MEMBER' ELSE STOP "CAN'T OPEN FILE"
 SELECT TO 1
 10: READNEXT MEM FROM 1 THEN PRINT MEM ELSE GOTO 15:
 GOTO 10:
 *
 15: PRINT
OPEN '','SUN.SPORT' TO FILE ELSE STOP
 SELECT FILE
 COUNT=0
 20*
 READNEXT ID ELSE
 PRINT 'COUNT= ',COUNT
 STOP
 END
 COUNT=COUNT+1
 GOTO 20

This is the program output:

4108
 6100
 3452
 5390

READSEQ statement

317

 7100
 4500
 2430
 2342
 6783
 5205
 4439
 6203
 7505
 4309
 1111
 COUNT= 14

READSEQ statement
Use the READSEQ statement to read a line of data from a file opened for sequential processing.
Sequential processing lets you process data one line at a time. UniVerse keeps a pointer at the current
position in the file. The $OPTIONS statement sets this pointer to the first byte of the file, and it is
advanced by READSEQ, READBLK statement, WRITESEQ statement, and WRITEBLK statement.

Syntax

READSEQ variable FROM file.variable [ON ERROR statements]
 {THEN statements [ELSE statements] | ELSE statements}

Each READSEQ statement reads data from the current position in the file up to a newline and assigns it
to variable. The pointer is then set to the position following the newline. The newline is discarded.

file.variable specifies a file previously opened for sequential processing. The FROM clause is required.
If the file is neither accessible nor open, or if file.variable evaluates to the null value, the READSEQ
statement fails and the program terminates with a run-time error message.

If data is read from the file, the THEN statements are executed, and the ELSE statements are ignored. If
the file is not readable, or the end of file is encountered, the ELSE statements are executed; any THEN
statements are ignored.

In the event of a timeout, READSEQ returns no bytes from the buffer, and the entire I/O operation must
be retried.

READSEQ affects the STATUS function in the following way:

Value Description

0 The read is successful.
1 The end of file is encountered.
2 A timeout ended the read.
-1 The file is not open for a read.

If NLS is enabled, the READSEQ and other BASIC statements that perform I/O operations always map
external data to the UniVerse internal character set using the appropriate map for the input file if the
file has a map associated with it. For more information about maps, see the UniVerse NLS Guide.

Chapter 1: Statements and functions

318

The ON ERROR clause

The ON ERROR clause is optional in the READSEQ statement. Its syntax is the same as that of the ELSE
clause. The ON ERROR clause lets you specify an alternative for program termination when a fatal
error is encountered during processing of the READSEQ statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

▪ Any uncommitted transactions begun within the current execution environment roll back.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

Example

OPENSEQ 'FILE.E', 'RECORD4' TO FILE ELSE ABORT
 FOR N=1 TO 3
 READSEQ A FROM FILE THEN PRINT A
 NEXT N
 CLOSESEQ FILE

This is the program output:

FIRST LINE
 SECOND LINE
 THIRD LINE

readSocket function
Use the readSocket() function to read data in the socket buffer up to max_read_size characters.

Syntax

readSocket(socket_handle, socket_data, max_read_size, time_out, mode,
actual_read_size)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

socket_handle A handle to the open socket.
socket_data The data to be read from the socket.

READT statement

319

Parameter Description

max_read_size The maximum number of characters to return. If this is 0, then the entire
buffer should be returned.

time_out The time (in milliseconds) before a return in blocking mode. This is
ignored for non-blocking read.

mode 0: using current mode

1: blocking mode (default)

2: non-blocking mode
actual_read_size The number of characters actually read. -1 if error.

Return status

The following table describes the return status of each mode.

Mode Return status

Non-blocking The function will return immediately if there is no data in the socket. If
the max_read_size parameter is greater than the socket buffer then just
the socket buffer will be returned.

Blocking If there is no data in the socket, the function will block until data is put
into the socket on the other end. It will return up to the max_read_size
character setting.

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.
1-41 See Socket function error return codes, on page 599.
107 Encryption error.
108 Decryption error.

READT statement
Use the READT statement to read the next tape record from a magnetic tape unit and assign its
contents to a variable.

Syntax

READT [UNIT (mtu)] variable
 {THEN statements [ELSE statements] | ELSE statements}

The UNIT clause specifies the number of the tape drive unit. Tape unit 0 is used if no unit is specified.

mtu is an expression that evaluates to a code made up of three decimal digits, as shown in the
following table:

Chapter 1: Statements and functions

320

Code Available Options

m (mode) 0 = No conversion

1 = EBCDIC conversion

2 = Invert high bit

3 = Invert high bit and EBCDIC conversion
t (tracks) 0 = 9 tracks. Only 9-track tapes are supported.
u (unit number) 0 through 7

The mtu expression is read from right to left. Therefore, if mtu evaluates to a one-digit code, it
represents the tape unit number. If mtu evaluates to a two-digit code, the rightmost digit represents
the unit number and the digit to its left is the track number; and so on.

If either mtu or variable evaluates to the null value, the READT statement fails and the program
terminates with a run-time error message.

Each tape record is read and processed completely before the next record is read. The program waits
for the completion of data transfer from the tape before continuing.

If the next tape record exists, variable is set to the contents of the record, and the THEN statements are
executed. If no THEN statements are specified, program execution continues with the next statement.

Before a READT statement is executed, a tape drive unit must be attached (assigned) to the user.
Use the ASSIGN command to assign a tape unit to a user. If no tape unit is attached or if the unit
specification is incorrect, the ELSE statements are executed and the value assigned to variable is
empty. Any THEN statements are ignored.

The largest tape record that the READT statement can read is system-dependent. If a tape record is
larger than the system maximum, only the bytes up to the maximum are assigned to variable.

The STATUS function returns 1 if READT takes the ELSE clause, otherwise it returns 0.

If NLS is enabled, the READT and other BASIC statements that perform I/O operations always map
external data to the UniVerse internal character set using the appropriate map for the input file if the
file has a map associated with it. For more information about maps, see the UniVerse NLS Guide.

PIOPEN flavor

If you have a program that specifies the syntax UNIT ndmtu, the nd elements are ignored by the
compiler and no errors are reported.

Examples

The following example reads a tape record from tape drive 0:

READT RECORD ELSE PRINT "COULD NOT READ FROM TAPE"

The next example reads a record from tape drive 3, doing an EBCDIC conversion in the process:

READT UNIT(103) RECORD ELSE PRINT "COULD NOT READ"

READU statement
Use the READU statement to set an update record lock and perform the READ statement.

For details, see the READ statements, on page 309.

In 8.3.3.2, a new LOCK.WAIT clause was introduced into the SQL environment defaulting to 3600
seconds (60 Minutes), which caused the BASIC READU statement to follow that parameter. As a result,
if a program uses the READU statement with no LOCKED clause and waits for 60 minutes attempting

READV statement

321

to gain that lock, because it is already locked somewhere else, the program will proceed with the
ELSE clause of the READU statement. This will cause problems for most developers because the ELSE
clause will normally be followed by REC = "" which could result in unwanted results in the rest of the
program / application in that any subsequent WRITES in that program would be allowed.

The two methods to change this behavior are from UniVerse BASIC or from TCL via SQL. From BASIC
you can ASSIGN a value to SYSTEM(1999) denoting the number of seconds to wait on a READU. For
example, to set the wait time to 2 hours, you would use:

ASSIGN 7200 TO SYSTEM(1999)

You can also specify an indefinite wait time using:

ASSIGN 0 TO SYSTEM(1999)

Note: You cannot inquire on the current contents of SYSTEM(1999). It will always report 0 no
matter what has previously been assigned.

From TCL, you can increase the LOCK.WAIT time parameter as follows:

SET.SQL LOCK.WAIT n

where n is a number of seconds. n must be > 0.

Both of these methods can be done via an account LOGIN paragraph through an account change or
using the UV.LOGIN paragraph to set system wide. This parameter will stay set for the duration of the
UniVerse session.

Note: UniVerse also has a write timeout of 20 Minutes on any locked record and at present there is
no method to override this.

READV statement
Use the READV statement to read the contents of a specified field of a record in a UniVerse file.

For details, see the READ statements, on page 309.

READVL statement
Use the READVL statement to set a shared record lock and perform the READV statement.

For details, see the READ statements, on page 309.

READVU statement
Use the READVU statement to set an update record lock and read the contents of a specified field of a
record in a UniVerse file.

For details, see the READ statements, on page 309.

ReadXMLData function
After you open an XML document, read the document using the ReadXMLData function. UniVerse
BASIC returns the XML data as a dynamic array.

Chapter 1: Statements and functions

322

Syntax

Status=ReadXMLData(xml_data_handle, rec)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xml_data_handle A variable that holds the XML data handle created by the OpenXMLData
function.

rec A mark-delimited dynamic array containing the extracted data. Status if one
of the following:

XML.SUCCESS: Success.

XML.ERROR: Failed

XML.INVALID.HANDLE2: Invalid xml_data_handle

XML.EOF: End of data

After you read the XML document, you can execute any UniVerse BASIC statement or function against
the data.

Example

The following example illustrates use of the ReadXMLData function:

MOREDATA=1
LOOP WHILE (MOREDATA=1)
status = ReadXMLData(STUDENT_XML,rec)
IF status = XML.ERROR THEN
STOP “Error when preparing the XML document. “
END ELSE IF status = XML.EOF THEN
PRINT “No more data”
MOREDATA = 0
END ELSE
PRINT “rec = “:rec
END
REPEAT

REAL function
Use the REAL function to convert number into a floating-point number without loss of accuracy. If
number evaluates to the null value, null is returned.

Syntax

REAL (number)

RECORDLOCK statements
Use RECORDLOCK statements to acquire a record lock on a record without reading the record.

RECORDLOCK statements

323

Syntax

RECORDLOCKL file.variable , record.ID [ON ERROR statements]
 [LOCKED statements]

RECORDLOCKU file.variable , record.ID [ON ERROR statements]
 [LOCKED statements]

Use this
statement...

To acquire this lock without reading the record...

RECORDLOCKL Shared record lock
RECORDLOCKU Update record lock

file.variable is a file variable from a previous OPEN statement.

record.ID is an expression that evaluates to the record ID of the record that is to be locked.

The RECORDLOCKL statement

The RECORDLOCKL statement lets other users lock the record using RECORDLOCK or any other
statement that sets a shared record lock, but cannot gain exclusive control over the record with
FILELOCK statement, or any statement that sets an update record lock.

The RECORDLOCKU statement

The RECORDLOCKU statement prevents other users from accessing the record using a FILELOCK
statement or any statement that sets either a shared record lock or an update record lock. You can
reread a record after you have locked it; you are not affected by your own locks.

The ON ERROR clause

The ON ERROR clause is optional in RECORDLOCK statements. The ON ERROR clause lets you specify
an alternative for program termination when a fatal error is encountered while a RECORDLOCK
statement is being processed.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

▪ Any uncommitted transactions begun within the current execution environment roll back.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

The LOCKED clause

The LOCKED clause is optional, but recommended.

Chapter 1: Statements and functions

324

The LOCKED clause handles a condition caused by a conflicting lock (set by another user) that
prevents the RECORDLOCK statement from processing. The LOCKED clause is executed if one of the
following conflicting locks exists:

In this
statement...

This requested lock... Conflicts with these locks...

RECORDLOCKL Shared record lock Exclusive file lock

Update record lock
RECORDLOCKU Update record lock Exclusive file lock

Intent file lock

Shared file lock

Update record lock

Shared record lock

If the RECORDLOCK statement does not include a LOCKED clause, and a conflicting lock exists, the
program pauses until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the terminal number of the
user who owns the conflicting lock.

Releasing locks

A shared record lock can be released with a CLOSE statement, RELEASE statement, or STOP
statement. An update record lock can be released with a CLOSE statement, DELETE statements,
MATWRITE statements, RELEASE statement, STOP statement, WRITE statements, or WRITEV
statement.

Locks acquired or promoted within a transaction are not released when the previous statements are
processed.

All record locks are released when you return to the UniVerse prompt.

Example

In the following example, the file EMPLOYEES is opened. Record 23694 is locked. If the record was
already locked, the program terminates, and an appropriate message is displayed. The RECORDLOCKL
statement allows other users to read the record with READL or lock it with another RECORDLOCKL, but
prevents any other user from gaining exclusive control over the record.

OPEN '','EMPLOYEES' TO EMPLOYEES ELSE STOP 'Cannot open file'
RECORDLOCKL EMPLOYEES,'23694'
 LOCKED STOP 'Record previously locked by user ':STATUS()

RECORDLOCKED function
Use the RECORDLOCKED function to return the status of a record lock.

Syntax

RECORDLOCKED (file.variable , record.ID)

file.variable is a file variable from a previous OPEN statement.

record.ID is an expression that evaluates to the record ID of the record that is to be checked.

RECORDLOCKED function

325

An insert file of equate names is provided to let you use mnemonics (see the following table). The
insert file is called RECORDLOCKED.INS.IBAS, and is located in the INCLUDE directory in the UV
account directory. In PIOPEN flavor accounts, the VOC file has a file pointer called SYSCOM. SYSCOM
references the INCLUDE directory in the UV account directory.

To use the insert file, specify $INCLUDE SYSCOM RECORDLOCKED.INS.IBAS when you compile the
program.

Equate name Value Meaning

LOCK$MY.FILELOCK 3 This user has a FILELOCK.
LOCK$MY.READU 2 This user has an update record lock.
LOCK$MY.READL 1 This user has a shared record lock.
LOCK$NO.LOCK 0 The record is not locked.
LOCK$OTHER.READL –1 Another user has a shared record lock.
LOCK$OTHER.READU –2 Another user has an update record lock.
LOCK
$OTHER.FILELOCK

–3 Another user has a FILELOCK.

If you have locked the file, the RECORDLOCKED function indicates only that you have the file lock for
that record. It does not indicate any update record or shared record lock that you also have on the
record.

Value returned by the STATUS function

Possible values returned by the STATUS function, and their meanings, are as follows:

Return value Description

> 0 A positive value is the terminal number of the owner of the lock (or the first
terminal number encountered, if more than one user has locked records in the
specified file).

< 0 A negative value is –1 times the terminal number of the remote user who has
locked the record or file.

Examples

The following program checks to see if there is an update record lock or FILELOCK held by the current
user on the record. If the locks are not held by the user, the ELSE clause reminds the user that an
update record lock or FILELOCK is required on the record. This example using the SYSCOM file pointer,
only works in PI/open flavor accounts.

$INCLUDE SYSCOM RECORDLOCKED.INS.IBAS
 OPEN '','EMPLOYEES' TO EMPLOYEES
 ELSE STOP 'CANNOT OPEN FILE'
 .
 .
 .
 IF RECORDLOCKED(EMPLOYEES,RECORD.ID) >= LOCK$MY.READU THEN
 GOSUB PROCESS.THIS.RECORD:
 ELSE PRINT 'Cannot process record : ':RECORD.ID :', READU or FILELOCK required.'

The next program checks to see if the record lock is held by another user and prints a message where
the STATUS function gives the terminal number of the user who holds the record lock:

$INCLUDE SYSCOM RECORDLOCKED.INS.IBAS
 OPEN '','EMPLOYEES' TO EMPLOYEES

Chapter 1: Statements and functions

326

 ELSE STOP 'CANNOT OPEN FILE'
 .
 .
 .
 IF RECORDLOCKED(EMPLOYEES,RECORD.ID) < LOCK$NO.LOCK THEN
 PRINT 'Record locked by user' : STATUS()
 END

RELEASE statement
Use the RELEASE statement to unlock, or release, locks set by a FILELOCK statement, MATREADL
statement, MATREADU statement, READL statement, READU statement, READVL statement, READVU
statement, and OPENSEQ statement. These statements lock designated records to prevent concurrent
updating by other users. If you do not explicitly release a lock that you have set, it is unlocked
automatically when the program terminates.

Syntax

RELEASE [file.variable [,record.ID]] [ON ERROR statements]

file.variable specifies an open file. If file.variable is not specified and a record ID is specified, the default
file is assumed (for more information on default files, see the OPEN statement, on page 283). If the
file is neither accessible nor open, the program terminates with a run-time error message.

record.ID specifies the lock to be released. If it is not specified, all locks in the specified file (that is,
either file.variable or the default file) are released. If either file.variable or record.ID evaluates to the
null value, the RELEASE statement fails and the program terminates with a run-time error message.

When no options are specified, all locks in all files set by any FILELOCK, READL, READU, READVL,
READVU, WRITEU, WRITEVU, MATREADL, MATREADU, MATWRITEU, or OPENSEQ statements during the
current login session are released.

A RELEASE statement within a transaction is ignored.

The ON ERROR Clause

The ON ERROR clause is optional in the RELEASE statement. The ON ERROR clause lets you specify
an alternative for program termination when a fatal error is encountered during processing of the
RELEASE statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

▪ Any uncommitted transactions begun within the current execution environment roll back.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

ReleaseXML function

327

Examples

The following example releases all locks set in all files by the current program:

RELEASE

The next example releases all locks set in the NAMES file:

RELEASE NAMES

The next example releases the lock set on the record QTY in the PARTS file:

RELEASE PARTS, "QTY"

ReleaseXML function
Release the XML dynamic array after closing it using the ReleaseXML function. ReleaseXML
destroys the internal DOM tree and releases the associated memory.

Syntax

ReleaseXML(XMLhandle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

XMLhandle The XML handle created by the PrepareXML() function.

REM function
Use the REM function to calculate the remainder after integer division is performed on the dividend
expression by the divisor expression.

Syntax

REM (dividend, divisor)

The REM function calculates the remainder using the following formula:

REM (X, Y) = X - (INT (X / Y) * Y)

dividend and divisor can evaluate to any numeric value, except that divisor cannot be 0. If divisor is 0, a
division by 0 warning message is printed, and 0 is returned. If either dividend or divisor evaluates to the
null value, null is returned.

The REM function works like the MOD function, on page 269.

Example

X=85; Y=3
 PRINT 'REM (X,Y)= ',REM (X,Y)

This is the program output:

REM (X,Y)= 1

Chapter 1: Statements and functions

328

REM statement
Use the REM statement to insert a comment in a BASIC program. Comments explain or document
various parts of a program. They are part of the source code only and are nonexecutable. They do not
affect the size of the object code.

A comment must be a separate BASIC statement, and can appear anywhere in a program. A comment
must be one of the following comment designators:

REM * ! $*

Any text that appears between a comment designator and the end of a physical line is treated as
part of the comment. If a comment does not fit on one physical line, it can be continued on the next
physical line only by starting the new line with a comment designator. If a comment appears at
the end of a physical line containing an executable statement, you must treat it as if it were a new
statement and put a semicolon (;) after the executable statement, before the comment designator.

Syntax

REM [comment.text]

Example

PRINT "HI THERE"; REM This part is a comment.
 REM This is also a comment and does not print.
 REM
 IF 5<6 THEN PRINT "YES"; REM A comment; PRINT "PRINT ME"
 REM BASIC thinks PRINT "PRINT ME" is also part
 REM of the comment.
 IF 5<6 THEN
 PRINT "YES"; REM Now it doesn't.
 PRINT "PRINT ME"
 END

This is the program output:

HI THERE
 YES
 YES
 PRINT ME

REMOVE function
Use the REMOVE function to successively extract and return dynamic array elements that are
separated by system delimiters, and to indicate which system delimiter was found. When a system
delimiter is encountered, the value of the extracted element is returned. The REMOVE function is more
efficient than the EXTRACT function for extracting successive fields, values, and so on, for multivalue
list processing.

Syntax

REMOVE (dynamic.array, variable)

dynamic.array is the dynamic array from which to extract elements.

REMOVE function

329

variable is set to a code corresponding to the system delimiter which terminates the extracted
element. The contents of variable indicate which system delimiter was found, as follows:

Value Description

0 End of string
1 Item mark ASCII CHAR(255)
2 Field mark ASCII CHAR(254)
3 Value mark ASCII CHAR(253)
4 Subvalue mark ASCII CHAR(252)
5 Text mark ASCII CHAR(251)
6 ASCII CHAR(250)

Note: Not available in the PIOPEN flavor
7 ASCII CHAR(249)

Note: Not available in the PIOPEN flavor
8 ASCII CHAR(248)

Note: Not available in the PIOPEN flavor

The REMOVE function extracts one element each time it is executed, beginning with the first element
in dynamic.array. The operation can be repeated until all elements of dynamic.array are extracted. The
REMOVE function does not change the dynamic array.

As each successive element is extracted from dynamic.array, a pointer associated with dynamic.array
is set to the beginning of the next element to be extracted. Thus the pointer is advanced every time the
REMOVE function is executed.

The pointer is reset to the beginning of dynamic.array whenever dynamic.array is reassigned.
Therefore, dynamic.array should not be assigned a new value until all elements have been extracted
(that is, until variable is 0).

If dynamic.array evaluates to the null value, null is returned and variable is set to 0 (end of string). If an
element in dynamic.array is the null value, null is returned for that element, and variable is set to the
appropriate delimiter code.

Unlike the EXTRACT function, the REMOVE function maintains a pointer into the dynamic array. (The
EXTRACT function always starts processing at the beginning of the dynamic array, counting field
marks, value marks, and subvalue marks until it finds the correct element to extract.)

See the REMOVE statement, on page 330 for the statement equivalent of this function.

Examples

The first example sets the variable FIRST to the string MIKE and the variable X to 2 (field mark). The
second example executes the REMOVE function and PRINT statement until all the elements have been
extracted, at which point A = 0. Printed lines are 12, 4, 5, 7654, and 00.

Source lines Program output

FM=CHAR(254)

NAME='MIKE':FM:'JOHN':FM

X=REMOVE(NAME,FIRST)

PRINT 'FIRST = ':FIRST, 'X = ':X

FIRST = 2 X = MIKE

Chapter 1: Statements and functions

330

Source lines Program output

VM=CHAR(253)

A = 1

Z=12:VM:4:VM:5:VM:7654:VM:00

FOR X=1 TO 20 UNTIL A=0

A = REMOVE(Z,Y)

PRINT 'Y = ':Y, 'A = ':A

NEXT X

Y = 3 A = 12

Y = 3 A = 4

Y = 3 A = 5

Y = 3 A = 7654

Y = 0 A = 0

REMOVE statement
Use the REMOVE statement to successively extract dynamic array elements that are separated
by system delimiters. When a system delimiter is encountered, the extracted element is assigned
to element. The REMOVE statement is more efficient than the EXTRACT function for extracting
successive fields, values, and so on, for multivalue list processing.

Syntax

REMOVE element FROM dynamic.array SETTING variable

dynamic.array is the dynamic array from which to extract elements.

variable is set to a code value corresponding to the system delimiter terminating the element just
extracted. The delimiter code settings assigned to variable are as follows:

Value Description

0 End of string
1 Item mark ASCII CHAR(255)
2 Field mark ASCII CHAR(254)
3 Value mark ASCII CHAR(253)
4 Subvalue mark ASCII CHAR(252)
5 Text mark ASCII CHAR(251)
6 ASCII CHAR(250)

Note: Not supported in the PIOPEN flavor
7 ASCII CHAR(249)

Note: Not supported in the PIOPEN flavor
8 ASCII CHAR(248)

Note: Not supported in the PIOPEN flavor

The REMOVE statement extracts one element each time it is executed, beginning with the first element
in dynamic.array. The operation can be repeated until all elements of dynamic.array are extracted. The
REMOVE statement does not change the dynamic array.

As each element is extracted from dynamic.array to element, a pointer associated with
dynamic.array is set to the beginning of the next element to be extracted. Thus, the pointer is
advanced every time the REMOVE statement is executed.

REPEAT statement

331

The pointer is reset to the beginning of dynamic.array whenever dynamic.array is reassigned.
Therefore, dynamic.array should not be assigned a new value until all elements have been extracted
(that is, until variable = 0).

If an element in dynamic.array is the null value, null is returned for that element.

Unlike the EXTRACT function, the REMOVE statement maintains a pointer into the dynamic array.
(The EXTRACT function always starts processing at the beginning of the dynamic array, counting field
marks, value marks, and subvalue marks until it finds the correct element to extract.)

See the REMOVE function, on page 328 for the function equivalent of this statement.

Examples

The first example sets the variable FIRST to the string MIKE and the variable X to 2 (field mark).
The second example executes the REMOVE and PRINT statements until all the elements have been
extracted, at which point A = 0. Printed lines are 12, 4, 5, 7654, and 00.

Source lines Program output

FM=CHAR(254)

NAME='MIKE':FM:'JOHN':FM

REMOVE FIRST FROM NAME
SETTING X

PRINT 'X= ':X, 'FIRST= ':FIRST

X= 2 FIRST= MIKE

VM=CHAR(253)

A=1

Z=12:VM:4:VM:5:VM:7654:VM:00

FOR X=1 TO 20 UNTIL A=0

REMOVE Y FROM Z SETTING A

PRINT 'Y= ':Y, 'A= ':A

NEXT X

Y= 12 A= 3

Y= 4 A= 3

Y= 5 A= 3

Y= 7654 A= 3

Y= 0 A= 0

REPEAT statement
The REPEAT statement is a loop-controlling statement.

For syntax details, see the LOOP statement, on page 254.

REPLACE function
Use the REPLACE function to return a copy of a dynamic array with the specified field, value, or
subvalue replaced with new data.

Syntax

REPLACE (expression, field#, value#, subvalue# { , | ; } replacement)

REPLACE (expression [,field# [,value#]] ; replacement)

variable < field# [,value# [,subvalue#]] >

Chapter 1: Statements and functions

332

expression specifies a dynamic array.

The expressions field#, value#, and subvalue# specify the type and position of the element to be
replaced. These expressions are called delimiter expressions.

replacement specifies the value that the element is given.

The value# and subvalue# are optional. However, if either subvalue# or both value# and subvalue# are
omitted, a semicolon (;) must precede replacement, as shown in the second syntax.

You can use angle brackets to replace data in dynamic arrays. Angle brackets to the left of an
assignment operator change the specified data in the dynamic array according to the assignment
operator. Angle brackets to the right of an assignment operator indicate that an EXTRACT function is
to be performed (for examples, see the EXTRACT function, on page 157).

variable specifies the dynamic array containing the data to be changed.

The three possible results of delimiter expressions are described as case 1, case 2, and case 3.

Case Description

Case 1: Both value# and subvalue# are omitted or are specified as 0. A field is replaced
by the value of replacement.

▪ If field# is positive and less than or equal to the number of fields in the
dynamic array, the field specified by field# is replaced by the value of
replacement.

▪ If field# is negative, a new field is created by appending a field mark and the
value of replacement to the last field in the dynamic array.

▪ If field# is positive and greater than the number of fields in the dynamic
array, a new field is created by appending the proper number of field marks,
followed by the value of replacement; thus, the value of field# is the number
of the new field.

Case 2: subvalue# is omitted or is specified as 0, and value# is nonzero. A value in the
specified field is replaced with the value of replacement.

▪ If value# is positive and less than or equal to the number of values in
the field, the value specified by the value# is replaced by the value of
replacement.

▪ If value# is negative, a new value is created by appending a value mark and
the value of replacement to the last value in the field.

▪ If value# is positive and greater than the number of values in the field, a
value is created by appending the proper number of value marks, followed
by the value of replacement, to the last value in the field; thus, the value of
value# is the number of the new value in the specified field.

Case 3: field#, value#, and subvalue# are all specified and are nonzero. A subvalue in the
specified value of the specified field is replaced with the value of replacement.

▪ If subvalue# is positive and less than or equal to the number of subvalues in
the value, the subvalue specified by the subvalue# is replaced by the value of
replacement.

▪ If subvalue# is negative, a new subvalue is created by appending a subvalue
mark and the subvalue of replacement to the last subvalue in the value.

▪ If the subvalue# is positive and greater than the number of subvalues in
the value, a new subvalue is created by appending the proper number of
subvalue marks followed by the value of replacement to the last subvalue in
the value; thus, the value of the expression subvalue# is the number of the
new subvalue in the specified value.

REPLACE function

333

In IDEAL, PICK, PIOPEN, and REALITY flavor accounts, if replacement is an empty string and an attempt
is made to append the new element to the end of the dynamic array, field, or value, the dynamic array,
field, or value is left unchanged; additional delimiters are not appended. Use the EXTRA.DELIM option
of the $OPTIONS statement to make the REPLACE function append a delimiter to the dynamic array,
field, or value.

If replacement is the null value, the stored representation of null (CHAR(128)) is inserted into
dynamic.array. If dynamic.array evaluates to the null value, it remains unchanged by the replacement.
If the REPLACE statement references a subelement of an element whose value is the null value, the
dynamic array is unchanged.

INFORMATION and IN2 flavors

In INFORMATION and IN2 flavor accounts, if expression is an empty string and the new element
is appended to the end of the dynamic array, the end of a field, or the end of a value, a delimiter
is appended to the dynamic array, field, or value. Use the -EXTRA.DELIM option of the $OPTIONS
statement to make the REPLACE function work as it does in IDEAL, PICK, and REALITY flavor accounts.

Examples

In the following examples a field mark is shown by F, a value mark is shown by V, and a subvalue mark
is shown by S.

The first example replaces field 1 with # and sets Q to #FAVBVDSEFDFFF:

 R=@FM:"A":@VM:"B":@VM:"D":@SM:"E":@FM:"D":@FM:@FM:"F"
 Q=R
 Q=REPLACE(Q,1;"#")

The next example replaces the first subvalue of the third value in field 2 with # and sets Q to
FAVBV#SEFDFFF:

Q=R
 Q<2,3,1>="#"

The next example replaces field 4 with # and sets Q to FAVBVDSEFDF#FF:

Q=R
 Q=REPLACE(Q,4,0,0;"#")

The next example replaces the first value in fields 1 through 4 with # and sets Q to
#F#VBVDSEF#F#FF:

Q=R
 FOR X=1 TO 4
 Q=REPLACE(Q,X,1,0;"#")
 NEXT

The next example appends a value mark and # to the last value in field 2 and sets Q to
FAVBVDSEV#FDFFF:

Q=R
 Q=REPLACE(Q,2,-1;"#")

Chapter 1: Statements and functions

334

RETURN statement
Use the RETURN statement to terminate a subroutine and return control to the calling program or
statement.

Syntax

RETURN [TO statement.label]

If the TO clause is not specified, the RETURN statement exits either an internal subroutine called
by a GOSUB statement or an external subroutine called by a CALL statement. Control returns to the
statement that immediately follows the CALL or GOSUB statement.

Use a RETURN statement to terminate an internal subroutine called with a GOSUB statement to
ensure that the program proceeds in the proper sequence.

Use a RETURN statement or an END statement to terminate an external subroutine called with a CALL
statement. When you exit an external subroutine called by CALL, all files opened by the subroutine are
closed, except files that are open to common variables.

Use the TO clause to exit only an internal subroutine; control passes to the specified statement label.
If you use the TO clause and statement.label does not exist, an error message appears when the
program is compiled.

Note: Using the TO clause can make program debugging and modification extremely difficult. Be
careful when you use the RETURN TO statement, because all other GOSUBs or CALLs active at the
time the GOSUB is executed remain active, and errors can result.

If the RETURN or RETURN TO statement does not have a place to return to, control is passed to the
calling program or to the command language.

Example

In the following example, subroutine XYZ prints the message “THIS IS THE EXTERNAL SUBROUTINE”
and returns to the main program:

20: GOSUB 80:
 25: PRINT "THIS LINE WILL NOT PRINT"
 30: PRINT "HI THERE"
 40: CALL XYZ

60: PRINT "BACK IN MAIN PROGRAM"
 70: STOP
 80: PRINT "THIS IS THE INTERNAL SUBROUTINE"
 90: RETURN TO 30:
 END

This is the program output:

THIS IS THE INTERNAL SUBROUTINE
 HI THERE
 THIS IS THE EXTERNAL SUBROUTINE
 BACK IN MAIN PROGRAM

RETURN (value) statement

335

RETURN (value) statement
Use the RETURN (value) statement to return a value from a user-written function.

expression evaluates to the value you want the user-written function to return. If you use a RETURN
(value) statement in a user-written function and you do not specify expression, an empty string is
returned by default.

You can use the RETURN (value) statement only in user-written functions. If you use one in a program
or subroutine, an error message appears.

Syntax

RETURN (expression)

REUSE function
Use the REUSE function to specify that the value of the last field, value, or subvalue be reused in a
dynamic array operation.

Syntax

REUSE (expression)

expression is either a dynamic array or an expression whose value is considered to be a dynamic array.

When a dynamic array operation processes two dynamic arrays in parallel, the operation is always
performed on corresponding subvalues. This is true even for corresponding fields, each of which
contains a single value. This single value is treated as the first and only subvalue in the first and only
value in the field.

A dynamic array operation isolates the corresponding fields, values, and subvalues in a dynamic array.
It then operates on them in the following order:

1. The subvalues in the values
2. The values in the fields
3. The fields of each dynamic array

A dynamic array operation without the REUSE function adds zeros or empty strings to the shorter
array until the two arrays are equal. (The DIVS function, on page 138 is an exception. If a divisor
element is absent, the divisor array is padded with ones, so that the dividend value is returned.)

The REUSE function reuses the last value in the shorter array until all elements in the longer array are
exhausted or until the next higher delimiter is encountered.

After all subvalues in a pair of corresponding values are processed, the dynamic array operation
isolates the next pair of corresponding values in the corresponding fields and repeats the procedure.

After all values in a pair of corresponding fields are processed, the dynamic array operation isolates
the next pair of corresponding fields in the dynamic arrays and repeats the procedure.

If expression evaluates to the null value, the null value is replicated, and null is returned for each
corresponding element.

Example

B = (1:@SM:6:@VM:10:@SM:11)
 A = ADDS(REUSE(5),B)

Chapter 1: Statements and functions

336

 PRINT "REUSE(5) + 1:@SM:6:@VM:10:@SM:11 = ": A
 *
 PRINT "REUSE(1:@SM:2) + REUSE(10:@VM:20:@SM:30) = ":
 PRINT ADDS(REUSE(1:@SM:2),REUSE(10:@VM:20:@SM:30))
 *
 PRINT "(4:@SM:7:@SM:8:@VM:10)*REUSE(10) = ":
 PRINT MULS((4:@SM:7:@SM:8:@VM:10),REUSE(10))

This is the program output:

REUSE(5) + 1:@SM:6:@VM:10:@SM:11 = 6S11V15S16
 REUSE(1:@SM:2) + REUSE(10:@VM:20:@SM:30) = 11S12V22S32
 (4:@SM:7:@SM:8:@VM:10)*REUSE(10) = 40S70S80V100

REVREMOVE statement
Use the REVREMOVE statement to successively extract dynamic array elements that are separated
by system delimiters. The elements are extracted from right to left, in the opposite order from those
extracted by the REMOVE statement. When a system delimiter is encountered, the extracted element is
assigned to element.

Syntax

REVREMOVE element FROM dynamic.array SETTING variable

dynamic.array is an expression that evaluates to the dynamic array from which to extract elements.

variable is set to a code value corresponding to the system delimiter terminating the element just
extracted. The delimiter code settings assigned to variable are as follows:

Value Description

0 End of string
1 Item mark ASCII CHAR(255)
2 Field mark ASCII CHAR(254)
3 Value mark ASCII CHAR(253)
4 Subvalue mark ASCII CHAR(252)
5 Text mark ASCII CHAR(251)
6 ASCII CHAR(250)
7 ASCII CHAR(249)
8 ASCII CHAR(248)

The REVREMOVE statement extracts one element each time it is executed, beginning with the “remove
pointer” of the dynamic.array. The operation can be repeated until all elements of dynamic.array are
extracted. The REVREMOVE statement does not change the dynamic array.

As each element is extracted from dynamic.array to element, a pointer associated with dynamic.array
moves back to the beginning of the element just extracted.

The pointer is reset to the beginning of dynamic.array whenever dynamic.array is reassigned.
Therefore, dynamic.array should not be assigned a new value until all elements have been extracted
(that is, until variable = 0).

If an element in dynamic.array is the null value, null is returned for that element.

REWIND statement

337

Use REVREMOVE with the REMOVE statement. After a REMOVE statement, REVREMOVE returns the
same string as the preceding REMOVE, setting the pointer to the delimiter preceding the extracted
element. Thus, a subsequent REMOVE statement extracts the same element yet a third time.

If no REMOVE statement has been performed on dynamic.array or if the leftmost dynamic array
element has been returned, element is set to the empty string and variable indicates end of string (that
is, 0).

Example

DYN = "THIS":@FM:"HERE":@FM:"STRING"
 REMOVE VAR FROM DYN SETTING X
 PRINT VAR
 REVREMOVE NVAR FROM DYN SETTING X
 PRINT NVAR
 REMOVE CVAR FROM DYN SETTING X
 PRINT CVAR

The program output is:

THIS
 THIS
 THIS

REWIND statement
Use the REWIND statement to rewind a magnetic tape to the beginning-of-tape position.

The UNIT clause specifies the number of the tape drive unit. Tape unit 0 is used if no unit is specified. If
the UNIT clause is used, mtu is an expression that evaluates to a code made up of three decimal digits.
Although the mtu expression is a function of the UNIT clause, the REWIND statement uses only the
third digit (the u). Its value must be in the range of 0 through 7. If mtu evaluates to the null value, the
REWIND statement fails and the program terminates with a run-time error message.

Before a REWIND statement is executed, a tape drive unit must be attached to the user. Use the
ASSIGN command to assign a tape unit to a user. If no tape unit is attached or if the unit specification
is incorrect, the ELSE statements are executed.

The STATUS function returns 1 if REWIND takes the ELSE clause, otherwise it returns 0.

Syntax

REWIND [UNIT (mtu)]
 {THEN statements [ELSE statements] | ELSE statements}

PIOPEN flavor

If you have a program that specifies the syntax UNIT ndmtu, the nd elements are ignored by the
compiler and no errors are reported.

Example

REWIND UNIT(002) ELSE PRINT "UNIT NOT ATTACHED"

Chapter 1: Statements and functions

338

RIGHT function
Use the RIGHT function to extract a substring comprising the last n characters of a string. It is
equivalent to the following substring extraction operation:

string [length]

If you use this function, you need not calculate the string length.

If string evaluates to the null value, null is returned. If n evaluates to the null value, the RIGHT function
fails and the program terminates with a run-time error message.

Syntax

RIGHT (string, n)

Example

PRINT RIGHT("ABCDEFGH",3)

This is the program output:

FGH

RND function
Use the RND function to generate any positive or negative random integer or 0.

expression evaluates to the total number of integers, including 0, from which the random number can
be selected. That is, if n is the value of expression, the random number is generated from the numbers
0 through (n - 1).

If expression evaluates to a negative number, a random negative number is generated. If expression
evaluates to 0, 0 is the random number. If expression evaluates to the null value, the RND function fails
and the program terminates with a run-time error message.

See the RANDOMIZE statement, on page 309 for details on generating repeatable sequences of
random numbers.

Syntax

RND (expression)

Example

A=20
 PRINT RND(A)
 PRINT RND(A)
 PRINT RND(A)
 PRINT RND(A)

This is the program output:

10
 3
 6
 10

ROLLBACK statement

339

ROLLBACK statement
Use the ROLLBACK statement to cancel all file I/O changes made during a transaction. The WORK
keyword provides compatibility with SQL syntax conventions; it is ignored by the compiler.

A transaction includes all statements executed since the most recent BEGIN TRANSACTION statement.
The ROLLBACK statement rolls back all changes made to files during the active transaction. If a
subtransaction rolls back, none of the changes resulting from the active subtransaction affect the
parent transaction. If the top-level transaction rolls back, none of the changes made are committed to
disk, and the database remains unaffected by the transaction.

Use the ROLLBACK statement in a transaction without a COMMIT statement to review the results
of a possible change. Doing so does not affect the parent transaction or the database. Executing a
ROLLBACK statement ends the current transaction. After the transaction ends, execution continues
with the statement following the next END TRANSACTION statement.

If no transaction is active, the ROLLBACK statement generates a run-time warning, and the ELSE
statements are executed.

Syntax

ROLLBACK [WORK] [THEN statements] [ELSE statements]

Example

This example begins a transaction that applies locks to rec1 and rec2. If errors occur (such as a failed
READU statement or a failed WRITE statements), the ROLLBACK statements ensure that no changes
are written to the file.

BEGIN TRANSACTION
 READU data1 FROM file1,rec1 ELSE ROLLBACK
 READU data2 FROM file2,rec2 ELSE ROLLBACK
 .
 .
 .
 WRITE new.data1 ON file1,rec1 ELSE ROLLBACK
 WRITE new.data2 ON file2,rec2 ELSE ROLLBACK
 COMMIT WORK
 END TRANSACTION

The update record lock on rec1 is not released on successful completion of the first WRITE statement.

RPC.CALL function
Use the RPC.CALL function to make requests of a connected server. The request is packaged and
sent to the server using the C client RPC library. RPC.CALL returns the results of processing the remote
request: 1 for success, 0 for failure.

Syntax

RPC.CALL (connection.ID, procedure, #args, MAT arg.list, #values, MAT
return.list)

connection.ID is the handle of the open server connection on which to issue the RPC request. The
RPC.CONNECT function, on page 340 gets the connection.ID.

procedure is a string identifying the operation requested of the server.

Chapter 1: Statements and functions

340

#args is the number of elements of arg.list to pass to the RPC server.

arg.list is a two-dimensional array (matrix) containing the input arguments to pass to the RPC server.
The elements of this array represent ordered pairs of values. The first value is the number of the
argument to the server operation, the second value is an argument-type declarator. (Data typing
generalizes the RPC interface to work with servers that are data-type sensitive.)

#values is the number of values returned by the server.

return.list is a dimensioned array containing the results of the remote operation returned by
RPC.CALL. Like arg.list, the results are ordered pairs of values.

RPC.CALL builds an RPC packet from #args and arg.list. Functions in the C client RPC library transmit
the packet to the server and wait for the server to respond. When a response occurs, the RPC packet is
separated into its elements and stored in the array return.list.

Use the STATUS function after an RPC.CALL function is executed to determine the result of the
operation, as follows:

Value Description

81001 Connection closed, reason unspecified.
81002 connection.ID does not correspond to a valid bound connection.
81004 Error occurred while trying to store an argument in the transmission packet.
81005 Procedure access denied because of a mismatch of RPC versions.
81008 Error occurred because of a bad parameter in arg.list.
81009 Unspecified RPC error.
81010 #args does not match expected argument count on remote machine.
81015 Timeout occurred while waiting for response from server.

Example

The following example looks for jobs owned by fred. The server connection was made using the
RPC.CONNECT function.

args (1,1) = "fred"; args (1,2) = UNIRPC.STRING
 IF (RPC.CALL (server.handle, "COUNT.USERS", 1, MAT args,
 return.count, MAT res)) ELSE
 PRINT "COUNT.JOBS request failed, error code is: " STATUS()
 GOTO close.connection:
 END

RPC.CONNECT function
Use the RPC.CONNECT function to establish a connection to a server process. Once the host and
server are identified, the local UVNet daemon tries to connect to the remote server. If the attempt
succeeds, RPC.CONNECT returns a connection ID. If it fails, RPC.CONNECT returns 0. The connection
ID is a nonzero integer used to refer to the server in subsequent calls to RPC.CALL function and
RPC.DISCONNECT function.

Syntax

RPC.CONNECT (host, server)

RPC.DISCONNECT function

341

Note: Beginning at UniVerse 11.2, you must run SET.REMOTE.ID prior to using RPC.CONNECT. A
client prior to UniVerse 11.1.14 will not be able to connect to UniVerse 11.1.14 or greater.

host is the name of the host where the server resides:

▪ UNIX This is defined in the local /etc/hosts file.

▪ Windows NT This is defined in the system32\drivers\etc\hosts file.

server is the name, as defined in the remote /etc/services file, of the RPC server class on the target
host.

If host is not in the /etc/hosts file, or if server is not in the remote /etc/services file, the
connection attempt fails.

Use the STATUS function after an RPC.CONNECT function is executed to determine the result of the
operation, as follows:

Value Description

81005 Connection failed because of a mismatch of RPC versions.
81007 Connection refused because the server cannot accept more clients.
81009 Unspecified RPC error.
81011 Host is not in the local /etc/hosts file.
81012 Remote unirpcd cannot start service because it could not fork the process.
81013 Cannot open the remote unirpcservices file.
81014 Service not found in the remote unirpcservices file.
81015 Connection attempt timed out.

Example

The following example connects to a remote server called MONITOR on HOST.A:

MAT args(1,2), res(1,2)
 server.handle = RPC.CONNECT ("HOST.A", "MONITOR")
 IF (server.handle = 0) THEN
 PRINT "Connection failed, error code is: ": STATUS()
 STOP
 END

RPC.DISCONNECT function
Use the RPC.DISCONNECT function to end an RPC session.

Syntax

RPC.DISCONNECT (connection.ID)

connection.ID is the RPC server connection you want to close.

RPC.DISCONNECT sends a request to end a connection to the server identified by connection.ID.
When the server gets the request to disconnect, it performs any required termination processing. If the
call is successful, RPC.DISCONNECT returns 1. If an error occurs, RPC.DISCONNECT returns 0.

Use the STATUS function after an RPC.DISCONNECT function is executed to determine the result of
the operation, as follows:

Chapter 1: Statements and functions

342

Value Description

81001 The connection was closed, reason unspecified.
81002 connection.ID does not correspond to a valid bound connection.
81009 Unspecified RPC error.

Example

The following example closes the connection to a remote server called MONITOR on HOST.A:

MAT args(1,2), res(1,2)
 server.handle = RPC.CONNECT ("HOST.A", "MONITOR")
 IF (server.handle = 0) THEN
 PRINT "Connection failed, error code is: ": STATUS()
 STOP
 END
 .
 .
 .
 close.connection:
 IF (RPC.DISCONNECT (server.handle)) ELSE
 PRINT "Bizarre disconnect error, result code is: " STATUS()
 END

saveSecurityContext function
The saveSecurityContext() function encrypts and saves a security context to a system security
file. The file is maintained on a per account basis for UniData and UniVerse. The name is used as the
record ID to access the saved security information. Since the information is encrypted, you should not
attempt to directly manipulate it.

You might want your application to save a security context to be used later. Multiple contexts can
be created to suit different needs. For example, you might want to use different protocols to talk to
different servers. These contexts can be saved and reused.

When creating a saved context, you must provide both a name and a passPhrase to be used to encrypt
the contents of the context. The same name and passPhrase must be provided to load the saved
context back. To ensure a high level of security, we recommend that the passPhrase be relatively long,
yet easy to remember.

Syntax

saveSecurityContext(context, name, passPhrase)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

context The security context handle.
name String containing the name of the saved context.
passPhrase String containing the password to encrypt the context contents.

Return code status

The following table describes the status of each return code.

SADD function

343

Return code Status

0 Success.
1 Invalid security context handle.
2 Invalid parameters (empty name or passPhrase).
3 Context could not be saved.

SADD function
Use the SADD function to add two string numbers and return the result as a string number. You can
use this function in any expression where a string or string number is valid, but not necessarily where
a standard number is valid, because string numbers can exceed the range of numbers that standard
arithmetic operators can handle.

Either string number can evaluate to any valid number or string number.

If either string number contains nonnumeric data, an error message is generated, and 0 replaces the
nonnumeric data. If either string number evaluates to the null value, null is returned.

Syntax

SADD (string.number.1, string.number.2)

Example

A = 88888888888888888
 B = 77777777777777777
 X = "88888888888888888"
 Y = "77777777777777777"
 PRINT A + B
 PRINT SADD(X,Y)

This is the program output:

166666666666667000
 166666666666666665

SCMP function
Use the SCMP function to compare two string numbers and return one of the following three numbers:
-1 (less than), 0 (equal), or 1 (greater than). If string.number.1 is less than string.number.2, the result is
-1. If they are equal, the result is 0. If string.number.1 is greater than string.number.2, the result is 1. You
can use this function in any expression where a string or string number is valid.

Either string number can be a valid number or string number. Computation is faster with string
numbers.

If either string number contains nonnumeric data, an error message is generated and 0 is used instead
of the nonnumeric data. If either string number evaluates to the empty string, null is returned.

Syntax

SCMP (string.number.1, string.number.2)

Chapter 1: Statements and functions

344

Example

X = "123456789"
 Y = "123456789"
 IF SCMP(X,Y) = 0 THEN PRINT "X is equal to Y"
 ELSE PRINT "X is not equal to Y"
 END

This is the program output:

X is equal to Y

SDIV function
Use the SDIV function to divide string.number.1 by string.number.2 and return the result as a string
number. You can use this function in any expression where a string or string number is valid, but
not necessarily where a standard number is valid, because string numbers can exceed the range of
numbers which standard arithmetic operators can handle. Either string number can be a valid number
or a string number.

precision specifies the number of places to the right of the decimal point. The default precision is 14.

If either string number contains nonnumeric data, an error message is generated and 0 is used for that
number. If either string number evaluates to the null value, null is returned.

Syntax

SDIV (string.number.1, string.number.2 [,precision])

Example

X = "1"
 Y = "3"
 Z = SDIV (X,Y)
 ZZ = SDIV (X,Y,20)
 PRINT Z
 PRINT ZZ

This is the program output:

0.33333333333333
 0.33333333333333333333

SEEK statement
Use the SEEK statement to move the file pointer by an offset specified in bytes, relative to the current
position, the beginning of the file, or the end of the file.

file.variable specifies a file previously opened for sequential access.

offset is the number of bytes before or after the reference position. A negative offset results in the
pointer being moved before the position specified by relto. If offset is not specified, 0 is assumed.

SEEK statement

345

Note: On Windows NT systems, line endings in files are denoted by the character sequence
RETURN + LINEFEED rather than the single LINEFEED used in UNIX files. The value of offset should
take into account this extra byte on each line in Windows NT file systems.

The permissible values of relto and their meanings follow:

Value Description

0 Relative to the beginning of the file
1 Relative to the current position
2 Relative to the end of the file

If relto is not specified, 0 is assumed.

If the pointer is moved, the THEN statements are executed and the ELSE statements are ignored. If the
THEN statements are not specified, program execution continues with the next statement.

If the file cannot be accessed or does not exist, the ELSE statements are executed; any THEN
statements are ignored.

If file.variable, offset, or relto evaluates to the null value, the SEEK statement fails and the program
terminates with a run-time error message.

Note: On Windows NT systems, if you use the OPENDEV statement to open a 1/4-inch cartridge
tape (60 MB or 150 MB) for sequential processing, you can move the file pointer only to the
beginning or the end of the data. For diskette drives, you can move the file pointer only to the start
of the data.

Seeking beyond the end of the file and then writing creates a gap, or hole, in the file. This hole
occupies no physical space, and reads from this part of the file return as ASCII CHAR 0 (neither the
number nor the character 0).

For more information about sequential file processing, see the OPENSEQ statement, on page 289,
READSEQ statement, on page 317, and WRITESEQ statement, on page 464.

Syntax

SEEK file.variable [, offset [, relto]]
 {THEN statements [ELSE statements] | ELSE statements}

Example

The following example reads and prints the first line of RECORD4. Then the SEEK statement moves the
pointer five bytes from the front of the file, then reads and prints the rest of the current line.

OPENSEQ 'FILE.E', 'RECORD4' TO FILE ELSE ABORT
 READSEQ B FROM FILE THEN PRINT B
 SEEK FILE,5, 0 THEN READSEQ A FROM FILE
 THEN PRINT A ELSE ABORT

This is the program output:

FIRST LINE
 LINE

Chapter 1: Statements and functions

346

SEEK(ARG.) statement
Use the SEEK(ARG.) statement to move the command line argument pointer to the next command line
argument from left to right, or to a command line argument specified by arg#. The command line is
delimited by blanks, and the first argument is assumed to be the first word after the program name.
When a cataloged program is invoked, the argument list starts with the second word in the command
line.

Syntax

SEEK(ARG. [,arg#]) [THEN statements] [ELSE statements]

Blanks in quoted strings are not treated as delimiters. A quoted string is treated as a single argument.

arg# specifies the command line argument to move to. It must evaluate to a number. If arg# is not
specified , the pointer moves to the next command line argument. SEEK(ARG.) works similarly to
GET(ARG.) statement except that SEEK(ARG.) makes no assignments.

THEN and ELSE statements are both optional. The THEN clause is executed if the argument is found.
The ELSE clause is executed if the argument is not found. The SEEK(ARG.) statement fails if arg#
evaluates to a number greater than the number of command line arguments or if the last argument
has been assigned and a SEEK(ARG.) with no arg# is used. To move to the beginning of the argument
list, set arg# to 1.

If arg# evaluates to the null value, the SEEK(ARG.) statement fails and the program terminates with a
run-time error message.

Example

If the command line is:

RUN BP PROG ARG1 ARG2 ARG3

and the program is:

A=5;B=2
 SEEK(ARG.)
 SEEK(ARG.,B)
 SEEK(ARG.)
 SEEK(ARG.,A-B)
 SEEK(ARG.,1)

the system pointer moves as follows:

ARG2
 ARG2
 ARG3
 ARG3
 ARG1

SELECT statements
Use a SELECT statement to create a numbered select list of record IDs from a UniVerse file or a
dynamic array. A subsequent READNEXT statement can access this select list, removing one record ID
at a time from the list. READNEXT instructions can begin processing the select list immediately.

SELECT statements

347

Syntax

SELECT [variable] [TO list.number] [ON ERROR statements]

SELECTN [variable] [TO list.number] [ON ERROR statements]

SELECTV [variable] TO list.variable [ON ERROR statements]

variable can specify a dynamic array or a file variable. If it specifies a dynamic array, the record IDs
must be separated by field marks (ASCII 254). If variable specifies a file variable, the file variable
must have previously been opened. If variable is not specified, the default file is assumed (for more
information on default files, see the OPEN statement, on page 283). If the file is neither accessible
nor open, or if variable evaluates to the null value, the SELECT statement fails and the program
terminates with a run-time error message.

If the file is an SQL table, the effective user of the program must have SQL SELECT privilege to read
records in the file. For information about the effective user of a program, see the AUTHORIZATION
statement, on page 74.

You must use a file lock with the SELECT statement when it is within a transaction running at isolation
level 4 (serializable). This prevents phantom reads.

The TO clause specifies the select list that is to be used. list.number is an integer from 0 through 10. If
no list.number is specified, select list 0 is used.

The record IDs of all the records in the file, in their stored order, form the list. Each record ID is one
entry in the list.

The SELECT statement does not process the entire file at once. It selects record IDs group by group.
The @SELECTED variable is set to the number of elements in the group currently being processed.

You often want a select list with the record IDs in an order different from their stored order or with
a subset of the record IDs selected by some specific criteria. To do this, use the SELECT or SSELECT
commands in a BASIC EXECUTE statement. Processing the list by READNEXT is the same, regardless of
how the list is created.

Use the SELECTV statement to store the select list in a named list variable instead of to a numbered
select list. list.variable is an expression that evaluates to a valid variable name. This is the default
behavior of the SELECT statement in PICK, REALITY, and IN2 flavor accounts. You can also use the
VAR.SELECT option of the $OPTIONS statement to make the SELECT statement act as it does in PICK,
REALITY, and IN2 flavor accounts.

The ON ERROR clause

The ON ERROR clause is optional in the SELECT statement. The ON ERROR clause lets you specify an
alternative for program termination when a fatal error is encountered during processing of the SELECT
statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

▪ Any uncommitted transactions begun within the current execution environment roll back.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

▪ A file is not open.

Chapter 1: Statements and functions

348

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS statement is the error number.

PICK, REALITY, and IN2 flavors

In a PICK, REALITY, or IN2 flavor account, the SELECT statement has the following syntax:

SELECT [V][variable] TO list.variable

SELECTN [variable] TO list.number

You can use either the SELECT or the SELECTV statement to create a select list and store it in a named
list variable. The only useful thing you can do with a list variable is use a READNEXT statement to read
the next element of the select list.

Use the SELECTN statement to store the select list in a numbered select list. list.number is an
expression that evaluates to a number from 0 through 10. You can also use the -VAR.SELECT option
of the $OPTIONS statement to make the SELECT statement act as it does in IDEAL and INFORMATION
flavor accounts.

Example

The following example opens the file SUN.MEMBER to the file variable MEMBER.F, then creates an
active select list of record IDs. The READNEXT statement assigns the first record ID in the select list to
the variable @ID, then prints it. Next, the file SUN.SPORT is opened to the file variable SPORT.F, and a
select list of its record IDs is stored as select list 1. The READNEXT statement assigns the first record ID
in the select list to the variable A, then prints DONE.

OPEN '','SUN.MEMBER' TO MEMBER.F ELSE PRINT "NOT OPEN"
 SELECT
 READNEXT @ID THEN PRINT @ID
 *
 OPEN '','SUN.SPORT' TO SPORT.F ELSE PRINT "NOT OPEN"
 SELECT TO 1
 READNEXT A FROM 1 THEN PRINT "DONE" ELSE PRINT "NOT"

This is the program output:

4108
 DONE

SELECTE statement
Use the SELECTE statement to assign the contents of select list 0 to list.variable. list.variable is
activated in place of select list 0 and can be read with the READNEXT statement.

Syntax

SELECTE TO list.variable

SELECTINDEX statement
Use the SELECTINDEX statement to create select lists from secondary indexes.

SELECTINDEX statement

349

Syntax

SELECTINDEX index [, alt.key] FROM file.variable [TO list.number]

index is an expression that evaluates to the name of an indexed field in file.variable. index must be the
name of the field that was used in the CREATE.INDEX command when the index was built.

alt.key is an expression that evaluates to a secondary index key. If alt.key is specified, a select list is
created of the record IDs referenced by alt.key. If alt.key is not specified, a select list is created of the
record IDs referenced by all of the index’s keys.

file.variable specifies an open file.

list.number is an expression that evaluates to the select list number. It can be a number from 0 through
10. The default list number is 0.

Note: In PICK, REALITY, and IN2 flavors, list.number is a variable rather than a list number.

Note: If index is multivalued, each value is indexed even if the field contains duplicate values in the
same record. Except in PIOPEN flavor accounts, such duplicate values are returned to list.number.
To prevent the return of duplicate key values, use the PIOPEN.SELIDX option of the $OPTIONS
statement.

If the field is not indexed, the select list is empty, and the value of the STATUS function is 1; otherwise
the STATUS function is 0. If index, alt.key, or file.variable evaluates to the null value, the SELECTINDEX
statement fails and the program terminates with a run-time error message.

PIOPEN flavor

In a PIOPEN flavor account, the SELECTINDEX statement eliminates duplicate key values when it
creates a select list from index. To do this in other flavors, use the PIOPEN.SELIDX option of the
$OPTIONS statement.

Example

In the following example, the first SELECTINDEX selects all data values to list 1. The second
SELECTINDEX selects record IDs referenced by STOREDVAL to list 2.

OPEN "", "DB" TO FV ELSE STOP "OPEN FAILED"
 SELECTINDEX "F1" FROM FV TO 1
 EOV = 0
 LOOP
 SELECTINDEX "F1" FROM FV TO 1

UNTIL EOV DO
 SELECTINDEX "F1", STOREDVAL FROM FV TO 2
 EOK = 0
 LOOP
 READNEXT KEY FROM 2 ELSE EOK=1
 UNTIL EOK DO
 PRINT "KEY IS ":KEY:" STOREDVAL IS ":STOREDVAL
 REPEAT
 REPEAT
 END

Chapter 1: Statements and functions

350

SELECTINFO function
Use the SELECTINFO function to determine whether a select list is active, or to determine the
number of items it contains.

list is an expression evaluating to the number of the select list for which you require information. The
select list number must be in the range of 0 through 10.

key specifies the type of information you require. You can use equate names for the keys as follows:

Syntax

SELECTINFO (list, key)

Key Description

IK$SLACTIVE Returns 1 if the select list specified is active, and returns 0 if the select list
specified is not active.

IK$SLCOUNT Returns the number of items in the select list. 0 is returned if the select list is not
active or is an empty select list.

Equate names

An insert file of equate names is provided for the SELECTINFO keys. To use the equate names, specify
the directive $INCLUDE UNIVERSE.INCLUDE INFO_KEYS.INS.IBAS when you compile your program.

Example

In the following example, the insert file containing the equate name is inserted by the $INCLUDE
statement. The conditional statement tests if select list 0 is active.

$INCLUDE SYSCOM INFO_KEYS.INS.IBAS
 IF SELECTINFO(0,IK$SLACTIVE)
 THEN PRINT 'SELECT LIST ACTIVE'
 ELSE PRINT 'SELECT LIST NOT ACTIVE'
 END

SEND statement
Use the SEND statement to write a block of data to a device. The SEND statement can be used to write
data to a device that has been opened for I/O using the OPENDEV statement or OPENSEQ statement.

Syntax

SEND output [:] TO device
 { THEN statements [ELSE statements] | ELSE statements }

output is an expression evaluating to a data string that will be written to device. If the optional colon is
used after output, the terminating newline is not generated.

device is a valid file variable resulting from a successful OPENDEV or OPENSEQ statement. This is the
handle to the I/O device that supplies the data stream for the operation of the SEND statement.

SENTENCE function

351

The SEND syntax requires that either a THEN or an ELSE clause, or both, be specified. If data is
successfully sent, the SEND statement executes the THEN clause. If data cannot be sent, it executes
the ELSE clause.

The data block specified by output is written to the device followed by a newline. Upon successful
completion of the SEND operation, program control is passed to the THEN clause if specified. If an
error occurs during the SEND operation, program control is passed to the ELSE clause if specified.

Example

The following code fragment shows how the SEND statement is used to write a series of messages on a
connected device:

OPENDEV "TTY10" TO TTYLINE ELSE STOP "CANNOT OPEN TTY10"
 LOOP
 INPUT MESSAGE
 WHILE MESSAGE # "QUIT" DO
 SEND MESSAGE TO TTYLINE
 ELSE
 STOP "ERROR WRITING DATA TO TTY10"
 END
 REPEAT

SENTENCE function
Use the SENTENCE function to return the stored sentence that invoked the current process. Although
the SENTENCE function uses no arguments, parentheses are required to identify it as a function. The
SENTENCE function is a synonym for the @SENTENCE system variable.

A PERFORM statement in a program updates the system variable, @SENTENCE, with the command
specified in the PERFORM statement.

Syntax

SENTENCE ()

Example

PRINT SENTENCE()

This is the program output:

RUN BP TESTPROGRAM

SEQ function
Use the SEQ function to convert an ASCII character to its numeric string equivalent.

Syntax

SEQ (expression)

expression evaluates to the ASCII character to be converted. If expression evaluates to the null value,
null is returned.

The SEQ function is the inverse of the CHAR function, on page 90.

Chapter 1: Statements and functions

352

In NLS mode, use the UNISEQ function to return Unicode values in the range x0080 through x00F8.

Using the SEQ function to convert a character outside its range results in a run-time message, and the
return of an empty string.

For more information about these ranges, see the UniVerse NLS Guide.

PICK, IN2, and REALITY flavors

In PICK, IN2, and REALITY flavors SEQ(" ") is 255 instead of 0. In IDEAL and INFORMATION flavor
accounts, use the SEQ.255 option of the $OPTIONS statement to cause SEQ(" ") to be interpreted as
255.

Example

G="T"
 A=SEQ(G)
 PRINT A, A+1
 PRINT SEQ("G")

This is the program output:

84 85
 71

SEQS function
Use the SEQS function to convert a dynamic array of ASCII characters to their numeric string
equivalents.

Syntax

SEQS (dynamic.array)

CALL -SEQS (return.array, dynamic.array)

CALL !SEQS (return.array, dynamic.array)

dynamic.array specifies the ASCII characters to be converted. If dynamic.array evaluates to the null
value, null is returned. If any element of dynamic.array is the null value, null is returned for that
element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

In NLS mode, you can use the UNISEQS function to return Unicode values in the range x0080 through
x00F8.

Using the SEQS function to convert a character outside its range results in a run-time message, and
the return of an empty string.

For more information about these ranges, see the UniVerse NLS Guide.

Example

G="T":@VM:"G"
 A=SEQS(G)
 PRINT A
 PRINT SEQS("G")

setAuthenticationDepth function

353

This is the program output:

84V71
 71

setAuthenticationDepth function
The setAuthenticationDepth() function sets how deeply UniData and UniVerse should verify
before deciding that a certificate is not valid.

Syntax

setAuthenticationDepth(context, depth, ServerOrClient)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

context The security context handle.
depth Numeric value for verification depth.
ServerOrClient Flag:

1- Server (SSL_SERVER)

2- Client (SSL_CLIENT)

Any other value is treated as a value of 1.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid security context handle.
2 Invalid depth (must be greater than or equal to 0).
3 Invalid value for ServerOrClient (must be 1 or 2)

This function can be used to set both server authentication and client certification, determined by the
value in parameter ServerOrClient. The default depth for both is 1.

The depth is the maximum number of intermediate issuer certificate, or CA certificates which must be
examined while verifying an incoming certificate. Specifically, a depth of 0 means that the certificate
must be self-signed. A depth of 1 means that the incoming certificate can be either self-signed, or
signed by a CA which is known to the context.

You should set this value according to your organization’s Public Key Infrastructure setup. Usually it
should not be more than 5, but it should be large enough to allow the whole certificate chain to be
examined.

Chapter 1: Statements and functions

354

setCipherSuite function
The setCipherSuite() function allows you to identify which cipher suites should be supported for
the specified context. It affects the cipher suites and public key algorithms supported during the SSL/
TLS handshake and subsequent data exchanges.

When a context is created, its cipher suites will all be set to SSLv3 suites by default.

Syntax

setCipherSuite(context,cipherSpecs)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

context The security context handle.
CipherSpecs String containing cipher suite specification described above.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid security context handle.
2 Invalid cipher suite specification.

The CipherSpecs parameter is a string containing cipher-spec separated by colons. An SSL cipher
specification in cipher-spec is composed of 4 major attributes as well as several, less significant
attributes. These are defined below.

Some of this information on ciphers is excerpted from the mod_ssl open source package of the Apache
web server.

▪ Key Exchange Algorithm - RSA or Diffie-Hellman variants.

▪ Authentication Algorithm - RSA, Diffie-Hellman, DSS or none.

▪ Cipher/Encryption Algorithm - AES, DES, Triple-DES, RC4, RC2 or none.

▪ MAC Digest Algorithm - MD5, SHA, SHA1, or the SHA2 family.

An SSL cipher can also be an export cipher and is either an SSLv2 or SSLv3/TLSv1 cipher (here TLSv1
is equivalent to SSLv3). To specify which ciphers to use, one can either specify all the ciphers, one at a
time, or use aliases to specify the preference and order for the ciphers.

The following table describes each tag for the Key Exchange Algorithm.

Tag Description

KRSA RSA key exchange
kEDH Ephemeral (temp.key) Diffie-Hellman key exchange (no cert)

The following table describes each tag for the Authentication Algorithm.

setCipherSuite function

355

Tag Description

aNULL No authentication
aRSA RSA authentication
aDSS DSS authentication
aDH Diffie-Hellman authentication

The following table describes each tag for the Cipher Encoding Algorithm.

Tag Description

eNULL No encoding
DES DES encoding
3DES Triple-DES encoding
RC4 RC4 encoding
RC2 RC2 encoding
AES AES encoding

The following table describes each tag for the MAC Digest Algorithm.

Tag Description

MD5 MD5 hash function
SHA2 SHA2 family of hash functions
SHA1 SHA1 hash function
SHA SHA hash function

The following table describes each of the Aliases.

Alias Description

SSLv3 All SSL version 3.0 ciphers
TLSv1 All TLS version 1.0 ciphers
EXP All export ciphers
LOW All low strength ciphers (no export, single DES)
MEDIUM All ciphers with 128 bit encryption
HIGH All ciphers using Triple-DES
RSA All ciphers using RSA key exchange
DH All ciphers using Diffie-Hellman key exchange
EDH All ciphers using Ephemeral Diffie-Hellman key exchange
ADH All ciphers using Anonymous Diffie-Hellman key exchange
DSS All ciphers using DSS authentication
NULL All cipher using no encryption

These can be put together to specify the order and ciphers you wish to use. To speed this up there are
also aliases (SSLv2, SSLv3, TLSv1, EXP, LOW, MEDIUM, HIGH) for certain groups of ciphers. These tags
can be joined together with prefixes to form the cipher-spec.

The following table describes the available prefixes.

Tag Description

none Add cipher to the list

Chapter 1: Statements and functions

356

Tag Description

+ Add ciphers to the list and pull them to the current location in the list
- Remove the cipher from the list (it can be added again later)
! Kill the cipher from the list completely (cannot be added again later)

A more practical way of looking at all of this is to use the getCipherSuite() function, which
provides a nice way to successively create the correct cipher-spec string. The default setup for a cipher-
spec string is shown in the following example:

“ALL:!ADH=RC4+RSA:+HIGH:+MEDIUM:+LOW:SSLV2:+EXP”

As shown in the example, you must first remove from consideration any ciphers that do not
authenticate, for example, for SSL only the Anonymous Diffie-Hellman ciphers. Next, use ciphers using
RC4 and RSA. Next include the high, medium, and then the low security ciphers. Finally pull all SSLv2
and export the ciphers to the end of the list.

 Example:
 SetCipherSuite(ctxHandle,“RSA:!EXP:!NULL:+HIGH:+MEDIUM:-LOW”)
SetCipherSuite(ctxHandle,”SSLv3”)

To see a full list of the available ciphers, open a command prompt and navigate to the UniData or
UniVerse bin directory. Enter the following command:

 openssl ciphers -v

TLSv1.3 CipherSpecs are not compatible with TLSv1.2. Conversely, TLSv1.2 CipherSpecs are not
compatible with TLSv1.3.

Parameters for TLSv1.3

Table 1:

Parameter Description

context The security context handle.
CipherSpecs A colon (:) separated list of TLSv1.3 ciphersuite

names in order of preference. Valid TLSv1.3
ciphersuite names are:

▪ TLS_AES_128_GCM_SHA256

▪ TLS_AES_256_GCM_SHA384

▪ TLS_CHACHA20_POLY1305_SHA256

▪ TLS_AES_128_CCM_SHA256

▪ TLS_AES_128_CCM_8_SHA256

setClientAuthentication function
The setClientAuthentication() function turns on or off client authentication for a server
socket.

When option is set to on, during the initial SSL handshake, the server sends a client authentication
request to the client. It also receives the client certificate and performs authentication according to
the issuer’s certificate (or certificate chain) set in the security context.

setIpv

357

Syntax

setClientAuthentication(context,option)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

context The security context handle.
option 1 - ON (SSL_CLIENT_AUTH)

2 - OFF (SSL_NO_CLIENT_AUTH)

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid security context handle.

setIpv
Use the setIpv function to set the default IPv connection for the whole system or for only Socket
networks or UVNet. The function also returns the setting back for display.

Syntax

setIpv (option[,sockettype])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

option The option name. Enter one of the following options:

IPV4 specifies using IPv4 only.

IPV6 specifies using IPv6 only.

IPVANY specifies using any available IPv option.

IPV4_IPV6 specifies using IPv4 as the first option and then IPv6.

IPV6_IPV4 specifies using IPv6 as the first option and then IPv4.
sockettype Available socket type options:

Socket specifies the socket network type.

UVNET specifies the NFA network type.

Example

stat1=setIpv("IPV6_IPV4", "SOCKET")
CRT stat1

Chapter 1: Statements and functions

358

stat2=getIpv("SOCKET")
CRT stat2

The return code is the value of the current option. Invalid options will not change the current IP
version.

setPrivateKey function
The setPrivateKey() function loads the private key into a security context so that it can be used by
SSL functions. If the context already had a set private key, it will be replaced.

Syntax

setPrivateKey(key, format, keyLoc, passPhrase, validate, context,
p12pass)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

Key A string containing either the key or path for a key file.
format 1 - PEM (Base64 encoded) format (SSL_FMT_PEM)

2 - DER (ASN.1 binary) format (SSL_FMT_DER)

3 - PKCS #12 format (SSL_FMT_P12)
KeyLoc 1 - key contained in key string (SSL_LOC_STRING)

2 - key is in a file specified by key (SSL_LOC_FILE)
passPhrase String containing the passPhrase required for gaining access to the key.

It can be empty if the key is not pass-phrase protected.

Warning: This method is not recommended.
Validate 1 - Validate against matching public key (SSL_VALIDATE)

0 - Won’t bother to validate (SSL_NO_VALIDATE)
context The security context handle.
p12pass Optional. Sets a password on the PKCS #12 file. This parameter should

only be included if using a PKCS #12 certificate that has a password.
Otherwise the parameter should be omitted.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid security context handle.
2 Invalid format
3 Invalid key type
4 Key file cannot be accessed (non-existent or wrong pass phrase)
5 Certificate cannot be accessed

setRandomSeed function

359

Return code Status

6 Private key does not match public key in certificate
7 Private key cannot be interpreted
99 Other errors that prevent private key from being accepted by UniData or

UniVerse.

SSL depends on public-key crypto algorithms to perform its functions. A pair of keys is needed for each
communicating party to transfer data over SSL. The public key is usually contained in a certificate,
signed by a CA, while the private key is kept secretly by the user.

A private key is used to digitally sign a message or encrypt a symmetric secret key to be used for data
encryption.

The Key parameter contains either the key string itself or a path that specifies a file that contains the
key. UniData and UniVerse only accept PKCS #8 style private keys.

The Format parameter specifies if the key is in binary format or Base64 encoded format. If the key is in
a file, Base64 format also means that it must be in PEM format.

The KeyLoc parameter specifies if the key is provided in a file or in a dynamic array string.

If the key is previously encrypted, a correct passPhrase must be given to decrypt the key first. It
is recommended that the private key be always in encrypted form. Note that if the private key is
generated by the generateKey() function described in the generateKey function, on page 186,
then it is always in PEM format and always encrypted by a pass phrase.

If the validate parameter is set, the private key is verified with the public key contained in the
certificate specified for either the server or client. They must match for SSL to work. In some cases
there is no need or it is impossible to check against a certificate. For example, the certificate might
already be distributed to the other end and there is no need for a user application to authenticate
itself. In that case, validate can be set to 0 (SSL_NO_VALIDATE).

If validate is required, the corresponding certificate should be added first by calling the
addCertificate() function.

The direct form of this function might be preferred by some applications where a hard coded private
key can be incorporated into the application, eliminating the need to access an external key file, which
might be considered a security hazard.

Note: The private key is the single most important piece of secret information for a public-
key-based crypto system. You must take every precaution to keep it secure. If the private key is
compromised, there will be no data security. This is especially true for server private keys.

setRandomSeed function
The setRandomSeed() function generates a random seed file from a series of source files and sets
that file as the default seed file for the supplied security context.

Syntax

setRandomSeed(inFiles, outFile, length, context)

Parameters

The following table describes each parameter of the syntax.

Chapter 1: Statements and functions

360

Parameter Description

inFiles A string containing source file names.
outFile A string containing the generated seed file.
length The number of bytes that should be generated (the default is 1024 if less

than 1024 is specified).
context The security context handle.

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid parameter(s).
2 Random file generation error.
3 Random file set error.

The strength of cryptographic functions depends on the true randomness of the keys. This function
generates and sets the random seed file used by many of the UniData and UniVerse cryptographic
functions. By default, UniData and UniVerse use the .rnd file in your UniData or UniVerse
application’s current UDTHOME or UVHOME directory. You can override the default by calling this
function.

Note: Your application on a U2 server might be running under a system directory such as C:
\WINDOWS\system32 or /usr/ud82 (UniData) or /usr/uv112 (UniVerse), which might not
allow the file to be created. To avoid this situation, you should always specify a location that allows
random files to be created.

The random seed file is specified by outFile, which is generated based on source files specified
in inFiles. For Windows platforms, multiple files must be separated by a semi-colon (;). For UNIX
platforms, multiple files must be separated by a colon (:).

The length parameter specifies how many bytes of seed data should be generated.

If no source is specified in the inFiles parameter, then the outFile parameter must already exist.

If context is not specified, the seed file will be used as a global seed file that applies to all
cryptographic functions. However, a seed file setting in a particular security context will always
override the global setting.

SET TRANSACTION ISOLATION LEVEL statement
Use the SET TRANSACTION ISOLATION LEVEL statement to set the default transaction isolation level
you need for your program.

Syntax

SET TRANSACTION ISOLATION LEVEL level

setHTTPDefault function

361

Note: The isolation level you set with this statement remains in effect until another such
statement is issued. This affects all activities in the session, including UniVerse commands and SQL
transactions.

The SET TRANSACTION ISOLATION LEVEL statement cannot be executed while a transaction exists.
Attempting to do so results in a run-time error message, program failure, and the rolling back of all
uncommitted transactions started in the execution environment.

level has the following syntax:

{n | keyword | expression}

level is an expression that evaluates to 0 through 4, or one of the following keywords:

Integer Keyword Effect on This Transaction

0 NO.ISOLATION Prevents lost updates.

Lost updates are prevented if the ISOMODE
configurable parameter is set to 1 or 2.

1 READ.UNCOMMITTED Prevents lost updates.
2 READ.COMMITTED Prevents lost updates and dirty reads.
3 REPEATABLE.READ Prevents lost updates, dirty reads, and

nonrepeatable reads.
4 SERIALIZABLE Prevents lost updates, dirty reads, nonrepeatable

reads, and phantom writes.

Examples

The following example sets the default isolation level to 3 then starts a transaction at isolation level 4.
The isolation level is reset to 3 after the transaction finishes.

SET TRANSACTION ISOLATION LEVEL REPEATABLE.READ
 PRINT "We are at isolation level 3."
 BEGIN TRANSACTION ISOLATION LEVEL SERIALIZABLE
 PRINT "We are at isolation level 4."
 COMMIT WORK
 END TRANSACTION
 PRINT "We are at isolation level 3"

The next example uses an expression to set the transaction level:

PRINT "Enter desired transaction isolation level:":
 INPUT TL
 SET TRANSACTION LEVEL TL
 BEGIN TRANSACTION
 .
 .
 .
 END TRANSACTION

setHTTPDefault function
The setHTTPDefault function configures the default HTTP settings, including proxy server and
port, buffer size, authentication credential, HTTP version, and request header values. These settings
are used with every HTTP request that follows.

Chapter 1: Statements and functions

362

Syntax

setHTTPDefault(option, value)

If you require all outgoing network traffic to go through a proxy server, you should call
setHTTPDefault() with values containing the proxy server name or IP address, as well as the port
(if other than the default of 80).

option is a string containing an option name. See the table below for the options currently defined.

value is a string containing the appropriate option value.

The following table describes the available options for setHTTPDefault.

Option Description

PROXY_NAME Name or IP address of the proxy server.
PROXY_PORT The port number to be used on the proxy server. This only needs to be specified

if the port is other than the default of 80.
VERSION The version of HTTP to be used. The default version is 1.0, but it can be set to 1.1

for web servers that understand the newer protocol. The string should be “1.0”
or “1.1.”

BUFSIZE The size of the buffer for HTTP data transfer between UniVerse and the web
server. The default is 4096, however, the buffer size can be increased to improve
performance. It should be entered as an integer greater than or equal to 4096.

AUTHENTICATE The user name and password to gain access. The string should be
“username:password.” Default Basic authentication can also be set. If a request
is denied (HTTP status 401/407), UniVerse BASIC will search for the default
credential to automatically resubmit the request.

HEADERS The header to be sent with the HTTP request. If default_headers contains
an empty string, any current user-specified default header will be cleared.
Currently, the only default header UniVerse BASIC sets automatically is “User-
Agent UniVerse 9.6.” If you do not want to send out this header, you should
overwrite it with setHTTPDefault().

 Per RFC 2616, for “net politeness” an HTTP client should always send out
this header. UniVerse BASIC also sends a date/time stamp with every HTTP
request. According to RFC 2616, the stamp represents time in Universal Time
(UT) format. A header should be entered as a dynamic array in the form of
<HeaderName>@VM<HeaderValue>@Fm<HeaderName>@VM<HeaderValue>.

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid option.
2 Invalid Value.

setRequestHeader function

363

Note: All defaults set by setHTTPDefault() stay in effect until the end of the current UniVerse
session. If you do not want the setting to affect subsequent programs, you need to clear it before
exiting the current program. If the you want to set the “Authorization” or “Proxy-Authorization”
header as defaults, see the description under setRequestHeader(). To clear the default
settings, pass an empty string with PROXY_NAME, AUTHENTICATE and HEADERS, and 0 for
PROXY_PORT and BUFSIZE.

setRequestHeader function
The setRequestHeader function enables you to set additional headers for a request.

request_handle is the handle to the request returned by createRequest().

header_name is the name of the header.

header_value is the value of the header.

Syntax

setRequestHeader(request_handle, header_name, header_value)

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid request handle.
2 Invalid header (Incompatible with method).
3 Invalid header value.

Note: Since a user-defined header or header value can be transferred, it is difficult to check the
validity of parameters passed to the function. UniVerse BASIC currently will not perform syntax
checking on the parameters, although it will reject setting a response header to a request. Refer
to RFC 2616 for valid request headers. The header set by this function will overwrite settings by
setHTTPDefault().
The header set by this function will overwrite settings by setHTTPDefault().

Example

The following example changes the default Content-Type of the HTTP header from “Content-Type:
application/x-www-form-urlencoded” to “Content-Type: text/xml; charset=utf-8.”

ret=setRequestHeader(REQUEST.HANDLE, "Content-Type",
 "text/xml; charset=utf-8")

SETLOCALE function
In NLS mode, use the SETLOCALE function to enable or disable a locale for a specified category or
change its setting.

Chapter 1: Statements and functions

364

Syntax

SETLOCALE (category, value)

category is one of the following tokens that are defined in the UVNLSLOC.H file:

Category Description

UVLC$ALL Sets or disables all categories as specified in value. value is the name of a
locale, OFF, or DEFAULT. value can also be a dynamic array whose elements
correspond to the categories.

UVLC$TIME Sets or disables the Time category. value is the name of a locale, OFF, or
DEFAULT.

UVLC$NUMERIC Sets or disables the Numeric category. value is the name of a locale, OFF, or
DEFAULT.

Note: Programs must be compiled in the locale in which the numeric
constraints were intended. For example, if LOCALE CH-GERMAN is enabled in
a US-ENGLISH locale, incorrect results are returned. The US-ENGLISH locale
must be compiled with LOCALE US-ENGLISH.

UVLC$MONETARY Sets or disables the Monetary category. value is the name of a locale, OFF, or
DEFAULT.

UVLC$CTYPE Sets or disables the Ctype category. value is the name of a locale, OFF, or
DEFAULT.

UVLC$COLLATE Sets or disables the Collate category. value is the name of a locale, OFF, or
DEFAULT.

UVLC$SAVE Saves the current locale state, overwriting any previous saved locale. value
is ignored.

UVLC$RESTORE Restores the saved locale state. value is ignored.

value specifies either a dynamic array whose elements are separated by field marks or the string OFF.
An array can have one or five elements:

▪ If the array has one element, all categories are set or unset to that value.

▪ If the array has five elements, it specifies the following values in this order: TIME, NUMERIC,
MONETARY, CTYPE, and COLLATE.

The MD, MR, and ML conversions require both Numeric and Monetary categories to be set in order for
locale information to be used.

The STATUS function returns 0 if SETLOCALE is successful, or one of the following error tokens if it
fails:

Error token Description

LCE$NO.LOCALES UniVerse locales are disabled.
LCE$BAD.LOCALE value is not the name of a locale that is currently loaded, or the string OFF.
LCE$BAD.CATEGORY You specified an invalid category.
LCE$NULL.LOCALE value has more than one field and a category is missing.

The error tokens are defined in the UVNLSLOC.H file.

For more information about locales, see the UniVerse NLS Guide.

Examples

The following example sets all the categories in the locale to FR-FRENCH:

SETREM statement

365

status = SETLOCALE(UVLC$ALL,"FR-FRENCH")

The next example saves the current locale. This is the equivalent of executing the SAVE.LOCALE
command.

status = SETLOCALE(UVLC$SAVE,"")

The next example sets the Monetary category to DE-GERMAN:

status = SETLOCALE(UVLC$MONETARY,"DE-GERMAN")

The next example disables the Monetary category. UniVerse behaves as though there were no locales
for the Monetary category only.

status = SETLOCALE(UVLC$MONETARY,"OFF")

The next example completely disables locale support for all categories:

status = SETLOCALE(UVLC$ALL,"OFF")

The next example restores the locale setting saved earlier:

status = SETLOCALE(UVLC$RESTORE,"")

SETREM statement
Use the SETREM statement to set the remove pointer in dynamic.array to the position specified by
position.

Syntax

SETREM position ON dynamic.array

position is an expression that evaluates to the number of bytes you want to move the pointer forward.
If it is larger than the length of dynamic.array, the length of dynamic.array is used. If it is less than 0, 0
is used.

dynamic.array must be a variable that evaluates to a string. If it does not evaluate to a string, an
improper data type warning is issued.

If the pointer does not point to the first character after a system delimiter, subsequent REMOVE
statement and REVREMOVE statement act as follows:

▪ A REMOVE statement returns a substring, starting from the pointer and ending at the next
delimiter.

▪ A REVREMOVE statement returns a substring, starting from the previous delimiter and ending at
the pointer.

If NLS is enabled and you use a multibyte character set, use GETREM function to ensure that position is
at the start of a character. For more information about locales, see the UniVerse NLS Guide.

Example

DYN = "THIS":@FM:"HERE":@FM:"STRING"
 REMOVE VAR FROM DYN SETTING X
 A = GETREM(DYN)
 REMOVE VAR FROM DYN SETTING X
 PRINT VAR
 SETREM A ON DYN
 REMOVE VAR FROM DYN SETTING X
 PRINT VAR

Chapter 1: Statements and functions

366

The program output is:

HERE
 HERE

setSocketMap function
The setSocketMap() function sets the default NLS map for either server or client sockets. If you
call openSocket() or acceptConnection() prior to calling setSocketMap(), UniVerse uses the
default map defined in uvconfig.

Syntax

setSocketMap(mapname)

setSocketOptions function
The setSocketOptions() function sets the current value for a socket option associated with a
socket of any type.

Syntax

setSocketOptions(socket_handle, options)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

socket_handle The socket handle from openSocket(), acceptSocket(), or
initServerSocket().

options Dynamic Array containing information about the socket options and their
current settings. The dynamic array is configured as:

optName1<VM>optValue1a[<VM>optValue1b]<FM>
optName2<VM>optValue2a[<VM>optValue2b]<FM>
optName3...

Where optName is specified by the caller and must be an option name
string listed below. For all options other than LINGER, the first optValue
specifies whether the option is ON or OFF and must be one of two
possible values: “1” for ON or “2” for OFF. The second optValue is
optional and can hold additional data for a specific option.

For the LINGER option, the first value will be zero for OFF and non-zero
for ON. The second optValue is the timeout value, which is the number
of time units to wait before closing the socket. The timeout value's
unit type (seconds, milliseconds, and so forth) is dependent on the
implementation of the SELECT() function on your operating system.

The following table describes the available options (case-sensitive) for setSocketOptions.

Option Description

DEBUG Enable/disable recording of debug information.

showSecurityContext function

367

Option Description

REUSEADDR Enable/disable the reuse of a location address (default)
KEEPALIVE Enable/disable keeping connections alive.
DONTROUTE Enable/disable routing bypass for outgoing messages.
LINGER Linger on close if data is present.
BROADCAST Enable/disable permission to transmit broadcast messages.
OOBINLINE Enable/disable reception of out-of-band data in band.
SNDBUF Set buffer size for output (the default value depends on operating-system

type).
RCVBUF Set buffer size for input (the default value depends on operating-system

type).

Return codes

The following table describes the status of each return code.

Return code Description

0 Success.
Non-zero See Socket function error return codes, on page 599.

showSecurityContext function
The showSecurityContext() function dumps the SSL configuration parameters of a security
context into a readable format.

The security context handle must have been returned by a successful execution of
createSecurityContext() or loadSecurityContext().

The configuration information includes: protocol, version, certificate, cipher suite used by this
connection and other properties.

Warning: For security reasons, the privateKey installed into the context is not displayed. Once
installed, there is no way for you to extract it.

Syntax

showSecurityContext(context, config)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

context The security context handle.
config A dynamic array containing the security context data.

Return code status

The following table describes the status of each return code.

Chapter 1: Statements and functions

368

Return code Status

0 Success.
1 Invalid security context handle.
2 Configuration data could not be obtained.

SIGNATURE function
The SIGNATURE() function generates a digital signature or verifies a signature using the supplied
key. Digital signature is generally created over a piece of data or document by some cryptographic
algorithm and used to prove the authenticity and integrity of the data or document, for example, the
recipient of the data with a valid digital signature has reason to believe that the data is from a trusted
sender and its contents are not modified.

The algorithm parameter specifies the digest algorithm used to construct the signature. There are four
actions that can be specified: RSA-Sign, RSA-Verify, DSA-Sign, and DSA-Verify. Note that if DSA is
chosen, only SHA1 can be specified in algorithm.

The data to be signed or verified against a signature can be supplied either directly in data, or read
from a file whose names is in data.

For signing action, a private key should be specified. For verification, a public key is usually expected.
However, a private key is also accepted for verification purposes. Key can be either in PEM or DER
format. If a private key is password protected, the password must be supplied with pass.

For verification, key can also contain a certificate or name of a certificate file. A signature is expected in
sigIn.

For signing action, the generated signature is put into result.

Syntax

SIGNATURE(algorithm, action, data, dataLoc, key, keyLoc, keyFmt, pass,
sigIn, result, p12pass)

Parameters

The following table describes each parameter of the syntax.

SIGNATURE function

369

Parameter Description

algorithm A string containing the digest algorithm name (uppercase or lowercase).
UniVerse 11.3.2+ supports the following algorithms:

▪ MD4

▪ MD5

▪ SHA

▪ SHA1

▪ SHA224

▪ SHA256

▪ SHA384

▪ SHA512

▪ SHA512-224

▪ SHA512-226

▪ SHA3-224

▪ SHA3-256

▪ SHA3-384

▪ SHA3-512

Versions prior to 11.2.4 support MD2, MDC2, and RMD160. These
algorithms are no longer supported in later versions.

action 1 - RSA-Sign (SSL_RSA_SIGN)

2 - RSA-Verify (SSL_RSA_VERIFY)

3 - DSA-Sign (SSL_DSA_SIGN)

4 - DSA-Verify (SSL_DSA_VERIFY)
data Data or the name of the file containing the data to be signed or verified.
dataLoc 1 - Data in a string (SSL_LOC_STRING)

2 - Data in a file (SSL_LOC_FILE)
key The key or the name of the file containing the key to be used to sign or

verify. In the case of verification, key can be a certificate string or a file.
keyLoc 1 - Key is in a string (SSL_LOC_STRING)

2 - Key is in a file (SSL_LOC_FILE)

3 - Key is in a certificate for verification. (Currently, no constant is
defined)

keyFmt 1 - PEM (SSL_FMT_PEM)

2 - DER (SSL_FMT_DER)

3 - PKCS #12 (SSL_FMT_P12)
pass A string containing the pass phrase for the private key.
sigIn A string containing a digital signature.
result A generated signature or a file to store the signature.
p12pass Optional. Sets a password on the PKCS #12 file. This parameter should

only be included if using a PKCS #12 certificate that has a password.
Otherwise the parameter should be omitted.

Chapter 1: Statements and functions

370

Return code status

The following table describes the status of each return code.

Return code Status

0 Success.
1 Unsupported digest algorithm.
2 The data cannot be read.
3 Message digest cannot be obtained.
4 Invalid parameters.
5 Key cannot be read or is in the wrong format / algorithm.
6 Incorrect password.
7 Signature cannot be generated.
8 Signature cannot be verified.

SIN function
Use the SIN function to return the trigonometric sine of an expression. expression represents
the angle expressed in degrees. Numbers greater than 1E17 produce a warning message, and 0 is
returned. If expression evaluates to the null value, null is returned.

Syntax

SIN (expression)

Example

PRINT SIN(45)

This is the program output:

0.7071

SINH function
Use the SINH function to return the hyperbolic sine of expression. expression must be numeric and
represents the angle expressed in degrees. If expression evaluates to the null value, null is returned.

Syntax

SINH (expression)

Example

PRINT "SINH(2) = ":SINH(2)

This is the program output:

SINH(2) = 3.6269

SLEEP statement

371

SLEEP statement
Use the SLEEP statement to suspend execution of a BASIC program, pausing for a specified number of
seconds.

seconds is an expression evaluating to the number of seconds for the pause. If seconds is not specified,
a value of 1 is used. If seconds evaluates to the null value, it is ignored and 1 is used.

Syntax

SLEEP [seconds]

Example

In the following example the program pauses for three seconds before executing the statement after
the SLEEP statement. The EXECUTE statement clears the screen.

PRINT "STUDY THE FOLLOWING SENTENCE CLOSELY:"
 PRINT
 PRINT
 PRINT "There are many books in the"
 PRINT "the library."
 SLEEP 3
 EXECUTE 'CS'
 PRINT "DID YOU SEE THE MISTAKE?"

This is the program output:

STUDY THE FOLLOWING SENTENCE CLOSELY:

 There are many books in the
 the library.
 DID YOU SEE THE MISTAKE?

SMUL function
Use the SMUL function to multiply two string numbers and return the result as a string number. You
can use this function in any expression where a string or string number is valid, but not necessarily
where a standard number is valid, because string numbers can exceed the range of numbers that
standard arithmetic operators can handle.

Syntax

SMUL (string.number.1, string.number.2)

Either string number can be any valid number or string number.

If either string number contains nonnumeric data, an error message is generated and 0 is used for that
number. If either string number evaluates to the null value, null is returned.

Example

X = "5436"
 Y = "234"
 Z = SMUL (X,Y)

Chapter 1: Statements and functions

372

 PRINT Z

This is the program output:

1272024

SOAPCreateRequest function
The SOAPCreateRequest function creates a SOAP request and returns a handle to the request.

Syntax

SOAPCreateRequest(URL, soapAction, Request)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

URL A string containing the URL where the web service is located. UniVerse sends the
SOAP request to this URL. For information about the format of the URL, see URL
format, on page 372. [IN]

soapAction A string UniVerse uses as the SOAPAction HTTP header for this SOAP request.
[IN]

Request The returned handle to the SOAP request. You can use this handle can be used
in subsequent calls to the SOAP API for UniVerse BASIC. [OUT]

URL format

The URL you specify must follow the syntax defined in RFS 1738. The general format is:

http://<host>:<port>/path>?<searchpart>

The following table describes each parameter of the syntax.

Parameter Description

host Either a name string or an IP address of the host system.
port The port number to which you want to connect. If you do not specify port,

UniVerse defaults to 80. Omit the preceding colon if you do not specify this
parameter.

path Defines the file you want to retrieve on the web server. If you do not specify
path, UniVerse defaults to the home page.

searchpart Use searchpart to send additional information to a web server.

Note: If the URL you define contains a searchpart, you must define it in its encoded format. For
example, a space is converted to +, and other nonalphanumeric characters are converted to
%HH format. You do not need to specify the host and path parameters in their encoded formats.
UniVerse BASIC encodes these parameters prior to communicating with the web server.

Return codes

The following table describes the status of each return code.

SOAPCreateSecureRequest function

373

Return code Status

0 Success.
1 Invalid URL (Syntactically).
2 Invalid HTTP method (indicates the POST method is not supported by the HTTP

server).

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

Example

The following code segment illustrates the SOAPCreateRequest function:

* Create the Request
Ret = SoapCreateRequest(URL, SoapAction, SoapReq)
IF Ret <> 0 THEN
 STOP "Error in SoapCreateRequest: " : Ret
END
.
.

SOAPCreateSecureRequest function
The SOAPCreateSecureRequest function creates a secure SOAP request and returns a handle to
the request.

Syntax

SOAPCreateSecureRequest(URL, soapAction, Request, security_context)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

URL A string containing the URL where the web service is located. UniVerse sends
the SOAP request to this URL. For information about the format of the URL, see
SOAPCreateRequest function, on page 372. [IN]

soapAction A string UniVerse uses as the SOAPAction HTTP header for this SOAP request.
[IN]

Request The returned handle to the SOAP request. You can use this handle can be used
in subsequent calls to the SOAP API for UniVerse BASIC. [OUT]

security_context A handle to the security context.

URL format

The URL you specify must follow the syntax defined in RFS 1738. The general format is:

http://<host>:<port>/path>?<searchpart>

The following table describes each parameter of the syntax.

Parameter Description

host Either a name string or an IP address of the host system.

Chapter 1: Statements and functions

374

Parameter Description

port The port number to which you want to connect. If you do not specify port,
UniVerse defaults to 80. Omit the preceding colon if you do not specify this
parameter.

path Defines the file you want to retrieve on the web server. If you do not specify
path, UniVerse defaults to the home page.

searchpart Use searchpart to send additional information to a web server.

Note: If the URL you define contains a searchpart, you must define it in its encoded format. For
example, a space is converted to +, and other nonalphanumeric characters are converted to
%HH format. You do not need to specify the host and path parameters in their encoded formats.
UniVerse BASIC encodes these parameters prior to communicating with the web server.

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid URL (Syntactically).
2 Invalid HTTP method (indicates the POST method is not supported by the HTTP

server).
101 Invalid security context handle.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

Example

The following code segment illustrates the SOAPCreateSecureRequest function:

* Create the Request
Ret = SoapCreateSecureRequest(URL, SoapAction, SoapReq, SecurityContext)
IF Ret <> 0 THEN
 STOP "Error in SoapCreateSecureRequest: " : Ret
END
.
.

SOAPGetDefault function
The SOAPGetDefault function retrieves default SOAP settings, such as the SOAP version.

Syntax

SOAPGetDefault(option, value)

Parameters

The following table describes each parameter of the syntax.

SOAPGetFault function

375

Parameter Description

option A string containing an option name. UniVerse currently only supports the
VERSION option. [IN]

value A string returning the option value. [OUT]

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid option (currently, UniVerse only supports the VERSION option).

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

SOAPGetFault function
If the SOAPSubmitRequest function receives a SOAP Fault, the SOAPGetFault function parses
the response data from SOAPSubmitRequest into a dynamic array of SOAP Fault components.

Syntax

SOAPGetFault(respData, soapFault)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

respData Response data from SOAPSubmitRequest after receiving a SOAP fault. [IN]
soapFault Dynamic array consisting of Fault Code, Fault String, and optional Fault Detail,

for example:

<faultcode>@AM<faultstring>@AM<faultdetail>@AM<faultactor>

Fault code values are XML-qualified names, consisting of:

▪ VersionMismatch

▪ MustUnderstand

▪ DTDNotSupported

▪ DataEncoding Unknown

▪ Sender

▪ Receiver

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid response data, possibly not a valid XML document.

Chapter 1: Statements and functions

376

Return code Status

2 SOAP Fault not found in response data.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

SOAPGetResponseHeader function
The SOAPGetResponseHeader function gets a specific response header after issuing a SOAP
request.

Syntax

SOAPGetResponseHeader(Request, headerName, headerValue)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

Request Handle to the request created with SOAPCreateRequest function. [IN]
headerName The header name whose value is being queried. [IN]
headerValue The header value, if present in the response, or empty string if not (in which

case the return status of the function is 2). [OUT]

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid request handle.
2 Header not found in set of response headers.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

SOAPSetRequestBody function
The SOAPSetRequestBody function sets up a SOAP request body directly, as opposed to having it
constructed via the SOAPSetParameters function. With this function, you can also attach multiple
body blocks to the SOAP request.

Each SOAP request should include at least one body block.

Syntax

SOAPSetRequestBody(Request, value)

Parameters

The following table describes each parameter of the syntax.

SOAPSetRequestContent function

377

Parameter Description

Request Handle to the request created with SOAPCreateRequest function. [IN]
value A dynamic array containing SOAP body blocks, for example:

<body block>@AM<body block>... [IN]

Return codes

The following table describes the status of each return code.

Return code Description

0 Success.
1 Invalid request handle.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

SOAPSetRequestContent function
The SOAPSetRequestContent function sets the entire SOAP request's content from an input
string or from a file.

Syntax

SOAPSetRequestContent(Request, reqDoc, docTypeFlag)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

Request Handle to the request created with SOAPCreateRequest function. [IN]
reqDoc The input document to use as the SOAP request content. [IN]
docTypeFlag A flag indicating whether reqDoc is a string holding the actual content, or the

path to a file holding the content.

▪ 0 – reqDoc is a file holding the request content.

▪ 1 – reqDoc is a string holding the request content.

[IN]

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid request handle.
2 Unable to open the file named by reqDoc.
3 Unable to read the file named by reqDoc.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

Chapter 1: Statements and functions

378

SOAPSetRequestHeader function
The SOAPSetRequestHeader function sets up a SOAP request header. By default, there is no SOAP
header.

Syntax

SOAPSetRequestHeader(Request, value)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

Request Handle to the request created with SOAPCreateRequest function. [IN]
value A dynamic array containing SOAP header blocks, for example:

<header block>@AM<header block>...[IN]

Return codes

The following table describes the status of each return code.

Return code Description

0 Success.
1 Invalid request handle.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

SOAPRequestWrite function
The SOAPRequestWrite function outputs the SOAP request, in XML format, to a string or to a file.

Syntax

SOAPRequestWrite(Request, reqDoc, docTypeFlag)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

Request Handle to the request created with SOAPCreateRequest function. [IN]
reqDoc Depending on docTypeFlag, either an output string containing the SOAP request

content, or a path to a file where the SOAP request content will be written.
[OUT]

SOAPSetDefault function

379

Parameter Description

docTypeFlag A flag indicating whether reqDoc is an output string that is to hold the request
content, or a path to a file where the SOAP request content will be written.

▪ 0 – reqDoc is a file where the request content will be written upon successful
completion.

▪ 1 – reqDoc is a string that will hold the request upon successful completion.
[IN]

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid request handle.
2 Unable to open the file named by reqDoc.
3 Unable to write to the file named by reqDoc.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

SOAPSetDefault function
Use the SOAPSetDefault function to define default SOAP settings, such as the SOAP version. By
default, the SOAP version is 1.1, although you can specify version 1.2.

Syntax

SOAPSetDefault(option, value)

For SOAP version 1.1, the namespace prefixes "env" and "enc" are associated with the SOAP
namespace names http://schemas.xmlsoap.org/soap/envelope/ and http://schemas.xmlsoap.org/
soap/encoding/ respectively. The namespace prefixed "xsi" and "xsd" are associated with the
namespace names http://www.w3.org/1999/XMLSchema-instance and http://www.w3.org/1999/
XMLSchema respectively.

The SOAP version can be set to 1.2 to support the newer SOAP 1.2 protocol. The namespace prefixes
"env" and "enc" are associated with the SOAP namespace names "http://www.w3.org/2001/12/soap-
envelope" and "http://www.w3.org/2001/12/soap-encoding" respectively. The namespace prefixes
"xsd" and "xsi" will be associated with the namespace names "http://www.w3.org/2001/XMLSchema"
and "http://www.w3.org/2001/XMLSchema-instance" respectively.

Note: All defaults set by SOAPSetDefault remain in effect until the end of the current UniVerse
session. If you do not want the setting to affect subsequent programs, clear it before exiting the
current program.

Along with SOAPSetDefault, you can use the CallHTTP function setHTTPDefault to set HTTP-
specific settings or headers, if the HTTP default settings are not sufficient.

Parameters

The following table describes each parameter of the syntax.

Chapter 1: Statements and functions

380

Parameter Description

option A string containing an option name. UniVerse currently only supports the
“VERSION” option. [IN]

value A string containing the appropriate option value. For the VERSION option, the
string should be 1.0, 1.1, or 1.2. [IN]

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid option (currently, UniVerse only supports VERSION).
2 Invalid value. If you do not specify a value, UniVerse uses the default of 1.1.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

SOAPSetParameters function
The SOAPSetParameters function sets up the SOAP request body, specifying a remote method to
call along with the method's parameter list.

Syntax

SOAPSetParameters(Request, URI, serviceName, paramArray)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

Request Handle to the request created with SOAPCreateRequest function. [IN]
namespace A string is used as the namespace URI for the SOAP call. [IN]
serviceName The name of the SOAP service. [IN]
paramArray A dynamic array containing the method parameters for the SOAP call. Each

method parameter consists of the following values:

▪ A parameter name

▪ A parameter value

▪ A parameter type (if type is omitted, xsd:string will be used.

name, value, and type are separated by @VM. Additional parameters are sepa-
rated by @AM, as shown in the following example:

<param1Name>@VM<param1Value>@VM<param1Type>@AM
<param2Name>@VM<param2Value>@VM<param2Type>...[IN]

Return codes

The following table describes the status of each return code.

SOAPSubmitRequest function

381

Return code Description

0 Success.
1 Invalid request handle.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

Example

As an example, the following inputs:

Input Description

serviceName “getStockQuote”
namespace “http://host/#StockQuoteService”
paramArray “symbol”:@VM:”U2”:@VM:”xsd:string”

set the SOAP body as follows:

<SOAP-ENV:Body>
 <ns1:getStockQuote
 xmlns:ns1="http://host/#StockQuoteService">
 <symbol xsi:type="xsd:string">U2</symbol>
 </ns1:getQuote>
<SOAP-ENV:Body>

The following code example illustrates the SOAPSetParameters function:

* Set up the Request Body

Ret = SoapSetParameters(SoapReq, NameSpace, Method, MethodParms)
IF Ret <> 0 THEN
 STOP "Error in SoapSetParameters: " : Ret
END

SOAPSubmitRequest function
The SOAPSubmitRequest function submits a request and gets the response.

Internally, SOAPSubmitRequest utilizes CallHTTP's submitRequest() function to send the
SOAP message. The soapStatus variable holds the status from the underlying CallHTTP function. If
an error occurs on the SOAP server while processing the request, soapStatus will indicate an HTTP
500 "Internal Server Error", and respData will be a SOAP Fault message indicating the server-side
processing error.

Syntax

SOAPSubmitRequest(Request, timeout, respHeaders, respData, soapStatus)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

Request Handle to the request created with SOAPCreateRequest function. [IN]
timeout Timeout, in milliseconds, to wait for a response. [IN]

Chapter 1: Statements and functions

382

Parameter Description

respHeaders Dynamic array of HTTP response headers and their associated values. [OUT]
respData The SOAP response message. [OUT]
soapStatus Dynamic array containing status code and explanatory text. [OUT]

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid request handle.
2 Request timed out.
3 Network error occurred.
4 Other error occurred.
99 UniVerse failed to obtain a license for an interactive PHANTOM process.

You can also use the UniVerse BASIC STATUS() function to obtain the return status from the function.

Example

The following code sample illustrates the SOAPSubmitRequest function:

* Submit the Request
Ret = SoapSubmitRequest(SoapReq, Timeout, RespHeaders, RespData, SoapStatus)
IF Ret <> 0 THEN
STOP "Error in SoapSubmitRequest: " : Ret
END
PRINT "Response status : " : SoapStatus
PRINT "Response headers: " : RespHeaders
PRINT "Response data : " : RespData
.
.
.

SOUNDEX function
The SOUNDEX function evaluates expression and returns the most significant letter in the input string
followed by a phonetic code. Non-alphabetic characters are ignored. If expression evaluates to the null
value, null is returned.

This function uses the soundex algorithm (the same as the one used by the SAID keyword in RetrieVe)
to analyze the input string. The soundex algorithm returns the first letter of the alphabetic string
followed by a one- to three-digit phonetic code.

Syntax

SOUNDEX (expression)

SPACE function

383

Example

Source lines Program output

DATA "MCDONALD", "MACDONALD", "MACDOUGALL"

FOR I=1 TO 3

INPUT CUSTOMER

PHONETIC.CODE=SOUNDEX(CUSTOMER)

PRINT PHONETIC.CODE

NEXT

?MCDONALD

M235

?MACDONALD

M235

?MACDOUGALL

M232

SPACE function
Use the SPACE function to return a string composed of blank spaces. expression specifies the number
of spaces in the string. If expression evaluates to the null value, the SPACE function fails and the
program terminates with a run-time error message.

There is no limit to the number of blank spaces that can be generated.

Syntax

SPACE (expression)

Example

PRINT "HI":SPACE(20):"THERE"
 *
 *
 VAR=SPACE(5)
 PRINT "TODAY IS":VAR:OCONV(DATE(),"D")

This is the program output:

HI THERE
 TODAY IS 18 JUN 1992

SPACES function
Use the SPACES function to return a dynamic array with elements composed of blank spaces.
dynamic.array specifies the number of spaces in each element. If dynamic.array or any element of
dynamic.array evaluates to the null value, the SPACES function fails and the program terminates with
a run-time error message.

There is no limit to the number of blank spaces that can be generated except available memory.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Syntax

SPACES (dynamic.array)

CALL -SPACES (return.array, dynamic.array)

Chapter 1: Statements and functions

384

CALL !SPACES (return.array, dynamic.array)

SPLICE function
Use the SPLICE function to create a dynamic array of the element-by-element concatenation of two
dynamic arrays, separating concatenated elements by the value of expression.

Syntax

SPLICE (array1, expression, array2)

CALL -SPLICE (return.array, array1, expression, array2)

CALL !SPLICE (return.array, array1, expression, array2)

Each element of array1 is concatenated with expression and with the corresponding element of array2.
The result is returned in the corresponding element of a new dynamic array. If an element of one
dynamic array has no corresponding element in the other dynamic array, the element is returned
properly concatenated with expression. If either element of a corresponding pair is the null value, null
is returned for that element. If expression evaluates to the null value, null is returned for the entire
dynamic array.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Example

A="A":@VM:"B":@SM:"C"
 B="D":@SM:"E":@VM:"F"
 C='-'
 PRINT SPLICE(A,C,B)

This is the program output:

A-DS-EVB-FSC-

SQRT function
Use the SQRT function to return the square root of expression. expression must evaluate to a numeric
value that is greater than or equal to 0. If expression evaluates to a negative value, the result of the
function is SQRT(-n) and an error message is printed. If expression evaluates to the null value, null is
returned.

Syntax

SQRT (expression)

Example

A=SQRT(144)
 PRINT A
 *
 PRINT "SQRT(45) IS ":SQRT(45)

This is the program output:

12

SQUOTE function

385

 SQRT(45) IS 6.7082

SQUOTE function
Use the SQUOTE function to enclose an expression in single quotation marks. If expression evaluates
to the null value, null is returned, without quotation marks.

Syntax

SQUOTE (expression)

CALL !SQUOTE (quoted.expression, expression)

quoted.expression is the quoted string.

expression is the input string.

Example

PRINT SQUOTE(12 + 5) : " IS THE ANSWER."
 END

This is the program output:

'17' IS THE ANSWER.

SSELECT statement
Use an SSELECT statement to create:

▪ A numbered select list of record IDs in sorted order from a UniVerse file

▪ A numbered select list of record IDs from a dynamic array. A select list of record IDs from a dynamic
array is not in sorted order.

You can then access this select list by a subsequent READNEXT statement which removes one record
ID at a time from the list.

Syntax

SSELECT [variable] [TO list.number] [ON ERROR statements]

SSELECTN [variable] [TO list.number] [ON ERROR statements]

SSELECTV [variable] TO list.variable [ON ERROR statements]

variable can specify a dynamic array or a file variable. If it specifies a dynamic array, the record IDs
must be separated by field marks (ASCII 254). If variable specifies a file variable, the file variable
must have previously been opened. If variable is not specified, the default file is assumed (for more
information on default files, see the OPEN statement). If the file is neither accessible nor open, or if
variable evaluates to the null value, the SSELECT statement fails and the program terminates with a
run-time error message.

Chapter 1: Statements and functions

386

Note: The select list created by the SSELECT command is only sorted when you supply a file
variable as an argument to the command. If you supply a dynamic array, UniVerse returns the
information in the dynamic array as a select list sorted in the same order as the dynamic array.

If the file is an SQL table, the effective user of the program must have SQL SELECT privilege to read
records in the file. For information about the effective user of a program, see the AUTHORIZATION
statement, on page 74.

You must use a file lock with the SSELECT statement when it is within a transaction running at
isolation level 4 (serializable). This prevents phantom reads.

The TO clause specifies the select list that is to be used. list.number is an integer from 0 through 10. If
no list.number is specified, select list 0 is used.

The record IDs of all the records in the file form the list. The record IDs are listed in ascending order.
Each record ID is one entry in the list.

You often want a select list with the record IDs in an order different from their stored order or with a
subset of the record IDs selected by some specific criteria. To do this, use the SELECT statements or
SSELECT commands in a BASIC EXECUTE statement. Processing the list by READNEXT statement is
the same, regardless of how the list is created.

Use the SSELECTV statement to store the select list in a named list variable instead of to a numbered
select list. list.variable is an expression that evaluates to a valid variable name. This is the default
behavior of the SSELECT statement in PICK, REALITY, and IN2 flavor accounts. You can also use the
VAR.SELECT option of the $OPTIONS statement to make the SSELECT statement act as it does in PICK,
REALITY, and IN2 flavor accounts.

In NLS mode when locales are enabled, the SSELECT statements use the Collate convention of the
current locale to determine the collating order. For more information about locales, see the UniVerse
NLS Guide.

The ON ERROR clause

The ON ERROR clause is optional in SSELECT statements. The ON ERROR clause lets you specify an
alternative for program termination when a fatal error is encountered during processing of a SSELECT
statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

▪ Any uncommitted transactions begun within the current execution environment roll back.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

SSUB function

387

PICK, REALITY, and IN2 flavors

In a PICK, REALITY, or IN2 flavor account, the SSELECT statement has the following syntax:

SSELECT[V] [variable] TO list.variable
SSELECTN [variable] TO list.number

You can use either the SSELECT or the SSELECTV statement to create a select list and store it in a
named list variable. The only useful thing you can do with a list variable is use a READNEXT statement
to read the next element of the select list.

Use the SSELECTN statement to store the select list in a numbered select list. list.number is an
expression that evaluates to a number from 0 through 10. You can also use the -VAR.SELECT option of
the $OPTIONS statement to make the SSELECT statement act as it does in IDEAL and INFORMATION
flavor accounts.

Example

The following example opens the file SUN.MEMBER to the file variable MEMBER.F, then creates an
active sorted select list of record IDs. The READNEXT statement assigns the first record ID in the select
list to the variable @ID, then prints it. Next, the file SUN.SPORT is opened to the file variable SPORT.F,
and a sorted select list of its record IDs is stored as select list 1. The READNEXT statement assigns the
first record ID in the select list to the variable A, then prints DONE.

OPEN '','SUN.MEMBER' ELSE PRINT "NOT OPEN"
 SSELECT
 READNEXT @ID THEN PRINT @ID
 *
 OPEN '','SUN.SPORT' ELSE PRINT "NOT OPEN"
 SSELECT TO 1
 READNEXT A FROM 1 THEN PRINT "DONE" ELSE PRINT "NOT"

This is the program output:

0001
 DONE

SSUB function
Use the SSUB function to subtract string.number.2 from string.number.1 and return the result as a
string number. You can use this function in any expression where a string or string number is valid, but
not necessarily where a standard number is valid, because string numbers can exceed the range of
numbers that standard arithmetic operators can handle.

Either string number can be any valid number or string number.

If either string number contains nonnumeric data, an error message is generated, and 0 replaces the
nonnumeric data. If either string number evaluates to the null value, null is returned.

Syntax

SSUB (string.number.1, string.number.2)

Example

X = "123456"
 Y = "225"

Chapter 1: Statements and functions

388

 Z = SSUB (X,Y)
 PRINT Z

This is the program output:

123231

STATUS function
Use the STATUS function to determine the results of the operations performed by certain statements
and functions.

The parentheses must be used with the STATUS function to distinguish it from potential user-named
variables called STATUS. However, no arguments are required with the STATUS function.

Syntax

STATUS ()

The following sections describe STATUS function values.

After a BSCAN statement, on page 81:

Value Description

0 The scan proceeded beyond the leftmost or rightmost leaf node. ID.variable and
rec.variable are set to empty strings.

1 The scan returned an existing record ID, or a record ID that matches record.
2 The scan returned a record ID that does not match record. ID.variable is either

the next or the previous record ID in the B-tree, depending on the direction of
the scan.

3 The file is not a B-tree (type 25) file, or, if the USING clause is used, the file has
no active secondary indexes.

4 indexname does not exist.
5 seq does not evaluate to A or D.
6 The index specified by indexname needs to be built, or is currently being built

concurrently.
10 An internal error was detected.

After a DELETE statement:

After DELETE statements with an ON ERROR clause, the value returned is the error number. In some
instances, the error number returned corresponds to a record in the SYS.MESSAGE file. Record IDs in
the SYS.MESSAGE file are numeric and consist of six digits. The error message number returned does
not contain leading zeros. If the number returned is less than six digits, it should be prefixed with zeros
before reading from the SYS.MESSAGE file.

After a FILEINFO function:

After a successful execution of the FILEINFO function, STATUS returns 0. If the function fails to execute,
STATUS returns a nonzero value. For complete information, see the FILEINFO function.

After a FILELOCK statement:

After a FILELOCK statement with a LOCKED clause, the value returned is the terminal number of the
user who has a conflicting lock.

STATUS function

389

After an FMT function:

Value Description

0 The conversion is successful.
1 The string expression passed as an argument is invalid.

If NLS is enabled: the data supplied cannot be converted.
2 The conversion code passed as an argument to the function is invalid.

After a GET or GETX statement:

Value Description

0 The timeout limit expired.
Any nonzero value A device input error occurred.

After an ICONV or OCONV function:

Value Description

0 The conversion is successful.
1 The string expression passed as an argument to the function is not convertible

using the conversion code passed. An empty string is returned as the value of
the function.

2 The conversion code passed as an argument to the function is invalid. An empty
string is returned as the value of the function.

3 Successful conversion of a possibly invalid date.

After an INPUT @ statement:

A 0 is returned if the statement was completed by a Return. The trap number is returned if the
statement was completed by one of the trapped keys (see the INPUT @ and KEYTRAP statement, on
page 240).

After a MATWRITE, WRITE, WRITEU, WRITEV, or WRITEVU statement:

Value Description

0 The record was locked before the operation.
3 In NLS mode, the unmappable character is in the record ID.
4 In NLS mode, the unmappable character is in the record’s data.
-2 The record was unlocked before the operation.
-3 The record failed an SQL integrity check.
-4 The record failed a trigger program.
-6 Failed to write to a published file while the subsystem was shut down.

After an OPEN, OPENCHECK, OPENPATH, or OPENSEQ statement:

The file type is returned if the file is opened successfully. If the file is not opened successfully, the
following values may return:

Value Description

-1 File name not found in the VOC file.
-2 A generic error that can occur for various reasons.

Null file name or file. This error may also occur when you cannot open a file
across UVNet.

Chapter 1: Statements and functions

390

Value Description

-3 Operating system access error that occurs when you do not have permission to
access a UniVerse file in a directory. For example, this may occur when trying to
access a type 1 or type 30 file.

-4 Access error when you do not have operating system permissions or if DATA.30
is missing for a type 30 file.

-5 Read error detected by the operating system.
-6 Unable to lock file header.
-7 Invalid file revision or wrong byte-ordering for the platform.
-8 Invalid part file information.
-9 Invalid type 30 file information in a distributed file.
-10 A problem occurred while the file was being rolled forward during warmstart

recovery. Therefore, the file is marked “inconsistent.”
-11 The file is a view, therefore it cannot be opened by a BASIC program.
-12 No SQL privileges to open the table.
-13 Index problem.
-14 Cannot open the NFS file.
-15 There is a problem with the OVER.30 file in a dynamic file.
-16 Modulo over limit.
-17 Freechain corruption.
-18 SICA corruption.
-19 External Database Access (EDA) setup error.
-20 Automatic Data Encryption (ADE) setup error.

After a READ statement:

If the file is a distributed file, the STATUS function returns the following:

Value Description

-1 The partitioning algorithm does not evaluate to an integer.
-2 The part number is invalid.

After a READBLK statement:

Value Description

0 The read is successful.
1 The end of file is encountered, or the number of bytes passed in was less than or

equal to 0.
2 The read failed.
3 A partial read failed.
-1 The file is not open for a read.

After a READL, READU, READVL, or READVU statement:

If the statement includes the LOCKED clause, the returned value is the terminal number, as returned
by the WHO command, of the user who set the lock.

If NLS is enabled, the results depend on the following:

▪ The existence of the ON ERROR clause

STATUS function

391

▪ The setting of the NLSREADELSE parameter in the uvconfig file

▪ The location of the unmappable character.

Value Description

3 The unmappable character is in the record ID.
4 The unmappable character is in the record’s data.

After a READSEQ statement:

Value Description

0 The read is successful.
1 The end of file is encountered, or the number of bytes passed in was less than or

equal to 0.
2 A timeout ended the read.
-1 The file is not open for a read.

After a READT, REWIND, WEOF, or WRITET statement:

If the statement takes the ELSE clause, the returned value is 1. Otherwise the returned value is 0.

After an RPC.CALL function, RPC.CONNECT function, or RPC.DISCONNECT function:

Value Description

81001 A connection was closed for an unspecified reason.
81002 connection.ID does not correspond to a valid bound connection.
81004 Error occurred while trying to store an argument in the transmission packet.
81005 Procedure access denied because of a mismatch of RPC versions.
81007 Connection refused because the server cannot accept more clients.
81008 Error occurred because of a bad parameter in arg.list.
81009 An unspecified RPC error occurred.
81010 #args does not match the expected argument count on the remote machine.
81011 Host was not found in the local /etc/hosts file.
81012 Remote unirpcd cannot start the service because it could not fork the process.
81013 The remote unirpcservices file cannot be opened.
81014 Service was not found in the remote unirpcservices file.
81015 A timeout occurred while waiting for a response from the server.

After a SETLOCALE function:

The STATUS function returns 0 if SETLOCALE function, on page 363 is successful, or one of the
following error tokens if it fails:

Value Description

LCE$NO.LOCALES UniVerse locales are disabled.
LCE$BAD.LOCALE The specified locale name is not currently loaded, or the string OFF.
LCE
$BAD.CATEGORY

You specified an invalid category.

LCE$NULL.LOCALE The specified locale has more than one field and a category is missing.

Chapter 1: Statements and functions

392

After a WRITESEQ, WRITESEQF, or WRITEBLK statement:

The STATUS function returns –4 if a write operation runs out of disk space on the device being written
to.

Example

Source lines Program output

OPEN '','EX.BASIC' TO FILE ELSE STOP PRINT
'STATUS() IS ':STATUS()

Q=123456 Q=OCONV(Q,"MD2") PRINT
'STATUS() IS ':STATUS()

Q='ASDF' Q=OCONV(Q,"D2/") PRINT 'STATUS()
IS ':STATUS()

STATUS() IS 1

STATUS() IS 0

STATUS() IS 1

STATUS statement
Use the STATUS statement to determine the status of an open file. The STATUS statement returns the
file status as a dynamic array and assigns it to dynamic.array.

Syntax

STATUS dynamic.array FROM file.variable
 {THEN statements [ELSE statements] | ELSE statements}

The following table lists the values of the dynamic array returned by the STATUS statement:

Field Stored value Description

1 Current position in the
file

Offset in bytes from beginning of the file.

2 End of file reached 1 if EOF, 0 if not.
3 Error accessing file 1 if error, 0 if not.
4 Number of bytes

available to read
5 File mode UNIX: A combination of permissions (convert to octal) and file type.

For example, if the permissions were 777, this value would be:

‘100777’ : standard file’ ‘40777’ : directory (for example, type 1 or
19) ‘10777’ : pipe

Windows platforms. This is the UNIX owner-group-other format as
converted from the full Windows NT ACL format by the C run-time
libraries.

6 File size In bytes.
7 Number of hard links 0 if no links.

Windows NT: The value is always 1 on non-NTFS partitions, > 0 on
NTFS partitions.

8 User ID of owner UNIX: The number assigned in /etc/passwd.

Windows NT: It is a UniVerse pseudo user ID based on the user
name and domain of the user.

STATUS statement

393

Field Stored value Description

9 Group ID of owner UNIX: The number assigned in /etc/passwd.

Windows NT: It is always 0.
10 I-node number Unique ID of file on file system; on Windows NT the value is the

Pelican internal version of the i-node for a file. For dynamic files,
the i-node number is the number of the directory holding the
components of the dynamic file.

11 Device on which i-
node resides

Number of device. The value is an internally calculated value on
Windows NT.

12 Device for special
character or block

Number of device. The value is the drive number of the disk
containing the file on Windows NT.

13 Time of last access Time in internal format.
14 Date of last access Date in internal format.
15 Time of last

modification
Time in internal format.

16 Date of last
modification

Date in internal format.

17 Time and date of last
status change

Time and date in internal format. On Windows NT it is the time the
file was created.

18 Date of last status
change

Date in internal format. On Windows NT it is the date the file was
created.

19 Number of bytes
left in output queue
(applicable to
terminals only)

20 Operating system file
name

The internal path name UniVerse uses to access the file.

21 UniVerse file type For file types 1–19, 25, or 30.
22 UniVerse file modulo For file types 2–18 only.
23 UniVerse file

separation
For file types 2–18 only.

24 Part numbers of part
files belonging to a
distributed file

Multivalued list. If file is a part file, this field contains the part
number, and field 25 is empty.

25 Path names of part
files belonging to a
distributed file

Multivalued list. If file is a part file, this field is empty.

26 File names of part
files belonging to a
distributed file

Multivalued list. If file is a part file, this field is empty.

27 Full path name The full path name of the file. On Windows NT, the value begins
with the UNC share name, if available; if not, the drive letter.

Chapter 1: Statements and functions

394

Field Stored value Description

28 Integer from 1 through
7

SQL file privileges:

1 write-only

2 read-only

3 read/write

4 delete-only

5 delete/write

6 delete/read

7 delete/read/write
29 1 if this is an SQL table, 0 if not. If the file is a view, the STATUS

statement fails. (No information on a per-column basis is
returned.)

30 User name User name of the owner of the file.
31 File revision stamp One of the following:

ACEF01xx = 32-bit file

ACEF02xx = 64-bit file

xx is the file revision level
32 Addressing and

Header Support Style
1 = old style file header, 32-bit addressing

3 = new style file header, 32-bit addressing

5 = new style file header, 64-bit addressing
33 Maximum record ID

length
See the following table.

file.variable specifies an open file. If file.variable evaluates to the null value, the STATUS statement
fails and the program terminates with a run-time error message.

If the STATUS array is assigned to dynamic.array, the THEN statements are executed and the ELSE
statements are ignored. If no THEN statements are present, program execution continues with the
next statement. If the attempt to assign the array fails, the ELSE statements are executed; any THEN
statements are ignored.

The following table shows maximum record ID lengths for different file sizes:

Separation Block size Maximum ID
length

Comments

1 512 256 Existing maximum
2 1024 512
3 1536 768
4 2048 1024 Dynamic file GROUP.SIZE of 1
5 2560 1280
6 3076 1538
7 3584 1792
8 4096 2048 Dynamic file GROUP.SIZE of 2
9 or higher 4608 and up 2048 All remaining separations

STOP statement

395

Example

OPENSEQ '/etc/passwd' TO test THEN PRINT "File Opened" ELSE ABORT
 STATUS stat FROM test THEN PRINT stat
 field5 = stat<5,1,1>
 field6 = stat<6,1,1>
 field8 = stat<8,1,1>
 PRINT "permissions:": field5
 PRINT "filesize:": field6
 PRINT "userid:": field8
 CLOSESEQ test

This is the program output:

File Opened
 0F0F0F4164F33188F4164F1F0F2F2303F
 0F6856F59264F6590F42496F6588F42496F6588
 F0F/etc/passwdF0F0F0
 permissions:33188
 filesize:4164
 userid:0

STOP statement
Use the STOP statement to terminate program execution and return system control to the invoking
process. To terminate a subroutine and return to the calling program, use the RETURN statement.

When expression is specified, its value is displayed before the STOP statement is executed. If
expression evaluates to the null value, nothing is printed.

To stop all processes and return to the command level, use the ABORT statement.

Use the ERRMSG statement if you want to display a formatted error message from the ERRMSG file
when the program stops.

Syntax

STOP [expression]

STOPE [expression]

STOPM [expression]

STOPE and STOPM statements

The STOPE statement uses the ERRMSG file for error messages instead of using text specified by
expression. The STOPM statement uses text specified by expression rather than messages in the
ERRMSG file. If expression in the STOPE statement evaluates to the null value, the default error
message is printed:

Message ID is NULL: undefined error

PICK, IN2, and REALITY flavors

In PICK, IN2, and REALITY flavor accounts, the STOP statement uses the ERRMSG file for error
messages instead of using text specified by expression. Use the STOP.MSG option of the $OPTIONS
statement to get this behavior in IDEAL and INFORMATION flavor accounts.

Chapter 1: Statements and functions

396

Example

PRINT "1+2=":1+2
 STOP "THIS IS THE END"

This is the program output:

1+2=3
 THIS IS THE END

STORAGE statement
The STORAGE statement performs no function. It is provided for compatibility with other Pick systems.

Syntax

STORAGE arg1arg2arg3

STR function
Use the STR function to produce a specified number of repetitions of a particular character string.

Syntax

STR (string, repeat)

string is an expression that evaluates to the string to be generated.

repeat is an expression that evaluates to the number of times string is to be repeated. If repeat does
not evaluate to a value that can be truncated to a positive integer, an empty string is returned.

If string evaluates to the null value, null is returned. If repeat evaluates to the null value, the STR
function fails and the program terminates with a run-time error message.

Example

PRINT STR('A',10)
 *
 X=STR(5,2)
 PRINT X
 *
 X="HA"
 PRINT STR(X,7)

This is the program output:

AAAAAAAAAA
 55
 HAHAHAHAHAHAHA

STRS function

397

STRS function
Use the STRS function to produce a dynamic array containing the specified number of repetitions of
each element of dynamic.array.

Syntax

STRS (dynamic.array, repeat)

CALL -STRS (return.array, dynamic.array, repeat)

CALL !STRS (return.array, dynamic.array, repeat)

dynamic.array is an expression that evaluates to the strings to be generated.

repeat is an expression that evaluates to the number of times the elements are to be repeated. If it
does not evaluate to a value that can be truncated to a positive integer, an empty string is returned for
dynamic.array.

If dynamic.array evaluates to the null value, null is returned. If any element of dynamic.array is the null
value, null is returned for that element. If repeat evaluates to the null value, the STRS function fails
and the program terminates with a run-time error message.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Example

ABC="A":@VM:"B":@VM:"C"
 PRINT STRS(ABC,3)

This is the program output:

AAAVBBBVCCC

submitRequest function
The submitRequest function will submit a request and get a response.

Syntax

submitRequest(request_handle, time_out,
post_data,response_headers,response_data, http_status)

The request is formed on the basis of default HTTP settings and previous setRequestHeader()
and addRequestParameter() values. Specifically, for a GET method with parameters added, a
parameter string (properly encoded) is created and attached to the URL string after the “?” character.

For a POST request with nonempty post_data, the data is attached to the request message as is.
No encoding is performed, and any parameters added through addRequestParameter() will be
totally ignored. Otherwise the following processing will be performed.

For a POST request with default content type, the parameter string is assembled, a Content-Length
header created, and then the string is attached as the last part of the request message.

For a POST request with multipart/* content type, a unique boundary string is created
and then multiple parts are generated in the sequence they were added through calling
addRequestParameter(). Each will have a unique boundary, followed by optional Content-*

Chapter 1: Statements and functions

398

headers, and data part. The total length is calculated and a Content-Length header is added to the
message header.

The request is then sent to the Web server identified by the URL supplied with the request and created
through createRequest() (maybe via a proxy server). UniVerse BASIC then waits for the web server
to respond. Once the response message is received, the status contained in the response is analyzed.

If the response status indicates that redirection is needed (status 301, 302, 305 or 307), it will be
performed automatically, up to five consecutive redirections (the limit is set to prevent looping,
suggested by RFC 2616).

If the response status is 401 or 407 (access denied), the response headers are examined to see if the
server requires (or accepts) BASIC authentication. If no BASIC authentication request is found, the
function returns with an error. Otherwise, default Authentication (set by setHTTPDefault) is used
to re-send the request. If no default authentication is set, and no other cached user authentication is
found, the function will return with an error.

If the user provides authentication information through “Authorization” or “Proxy-Authorization”
header, the encoded information is cached. If later, a Basic authentication request is raised, no default
authentication is found, and only one user/password encoding is cached, it will be used to re-send the
request.

The response from the HTTP server is disposed into response_header and response_data. It is the
user’s responsibility to parse the headers and data. UniVerse BASIC only performs transfer encoding
(chunked encoding), and nothing else is done on the data. In other words, content-encoding (gzip,
compress, deflate, and so forth) are supposed to be handled by the user, as with all MIME types.

Also, if a response contains header “Content-type: multipart/*”, all the data (multiple bodies enclosed
in “boundary delimiters,” see RFC 2046) is stored in response_data. It is the user’s responsibility to
parse it according to “boundary” parameter.

request_handle is the handle to the request.

time_out is the timeout value (in milliseconds) before the wait response is abandoned.

post_data is the data sent with the POST request.

response_headers is a dynamic array to store header/value pairs.

response_data is the resultant data (may be in binary format).

http_status is a dynamic array containing the status code and explanatory ext.

Return codes

The following table describes the status of each return code.

Return code Status

0 Success.
1 Invalid request handle.
2 Timed out.
3 Network Error.
4 Other Errors.
99 UniVerse failed to obtain a license for an interactive PHANTOM process.

SUBR function
Use the SUBR function to return the value of an external subroutine. The SUBR function is commonly
used in I-descriptors.

SUBR function

399

Syntax

SUBR (name, [argument [,argument …]])

name is an expression that evaluates to the name of the subroutine to be executed. This subroutine
must be cataloged in either a local catalog or the system catalog, or it must be a record in the same
object file as the calling program. If name evaluates to the null value, the SUBR function fails and the
program terminates with a run-time error message.

argument is an expression evaluating to a variable name whose value is passed to the subroutine. You
can pass up to 254 variables to the subroutine.

Subroutines called by the SUBR function must have a special syntax. The SUBROUTINE statement
defining the subroutine must specify a dummy variable as the first parameter. The value of the
subroutine is the value of the dummy variable when the subroutine finishes execution. Because the
SUBROUTINE statement has this dummy parameter, the SUBR function must specify one argument
less than the number of parameters in the SUBROUTINE statement. In other words, the SUBR
function does not pass any argument to the subroutine through the first dummy parameter. The first
argument passed by the SUBR function is referenced in the subroutine by the second parameter in the
SUBROUTINE statement, and so on.

Example

The following example uses the globally cataloged subroutine *TEST:

OPEN "","SUN.MEMBER" TO FILE ELSE STOP "CAN'T OPEN DD"
 EXECUTE "SELECT SUN.MEMBER"
 10*
 READNEXT KEY ELSE STOP
 READ ITEM FROM FILE,KEY ELSE GOTO 10
 X=ITEM<7> ;* attribute 7 of file contains year
 Z=SUBR("*TEST",X)
 PRINT "YEARS=", Z
 GOTO 10

This is the subroutine TEST:

SUBROUTINE TEST(RESULT,X)
 DATE=OCONV(DATE(),"D2/")
 YR=FIELD(DATE,'/',3)
 YR='19':YR
 RESULT=YR-X
 RETURN

This is the program output:

15 records selected to Select List #0
 YEARS= 3
 YEARS= 5
 YEARS= 2
 YEARS= 6
 YEARS= 1
 YEARS= 0
 YEARS= 0
 YEARS= 1
 YEARS= 4
 YEARS= 6
 YEARS= 1
 YEARS= 2
 YEARS= 7

Chapter 1: Statements and functions

400

 YEARS= 1
 YEARS= 0

SUBROUTINE statement
Use the SUBROUTINE statement to identify an external subroutine. The SUBROUTINE statement
must be the first noncomment line in the subroutine. Each external subroutine can contain only one
SUBROUTINE statement.

An external subroutine is a separate program or set of statements that can be executed by other
programs or subroutines (called calling programs) to perform a task. The external subroutine must be
compiled and cataloged before another program can call it.

The SUBROUTINE statement can specify a subroutine name for documentation purposes; it need
not be the same as the program name or the name by which it is called. The CALL statement must
reference the subroutine by its name in the catalog, in the VOC file, or in the object file.

variables are variable names used in the subroutine to pass values between the calling programs and
the subroutine. To pass an array, you must precede the array name with the keyword MAT. When an
external subroutine is called, the CALL statement must specify the same number of variables as are
specified in the SUBROUTINE statement. See the CALL statement, on page 84 for more information.

Syntax

SUBROUTINE [name] [([MAT] variable [, [MAT] variable …])]

Example

The following SUBROUTINE statements specify three variables, EM, GROSS, and TAX, the values of
which are passed to the subroutine by the calling program:

SUBROUTINE ALONE(EM, GROSS, TAX)

 SUBROUTINE STATE(EM,GROSS,TAX)

SUBS function
Use the SUBS function to create a dynamic array of the element-by-element subtraction of two
dynamic arrays.

Each element of array2 is subtracted from the corresponding element of array1 with the result being
returned in the corresponding element of a new dynamic array.

If an element of one dynamic array has no corresponding element in the other dynamic array, the
missing element is evaluated as 0. If either of a corresponding pair of elements is the null value, null is
returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Syntax

SUBS (array1, array2)

CALL -SUBS (return.array, array1, array2)

CALL !SUBS (return.array, array1, array2)

SUBSTRINGS function

401

Example

A=2:@VM:4:@VM:6:@SM:18
 B=1:@VM:2:@VM:3:@VM:9
 PRINT SUBS(A,B)

This is the program output:

1V2V3S18V-9

SUBSTRINGS function
Use the SUBSTRINGS function to create a dynamic array each of whose elements are substrings of
the corresponding elements of dynamic.array.

Syntax

SUBSTRINGS (dynamic.array, start, length)

CALL -SUBSTRINGS (return.array, dynamic.array, start, length)

CALL !SUBSTRINGS (return.array, dynamic.array, start, length)

start indicates the position of the first character of each element to be included in the substring. If
start is 0 or a negative number, the starting position is assumed to be 1. If start is greater than the
number of characters in the element, an empty string is returned.

length specifies the total length of the substring. If length is 0 or a negative number, an empty string
is returned. If the sum of start and length is larger than the element, the substring ends with the last
character of the element.

If an element of dynamic.array is the null value, null is returned for that element. If start or length
evaluates to the null value, the SUBSTRINGS function fails and the program terminates with a run-
time error message.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

Example

A="ABCDEF":@VM:"GH":@SM:"IJK"
 PRINT SUBSTRINGS(A,3,2)

This is the program output:

CDVSK

SUM function
Use the SUM function to calculate the sum of numeric data. Only elements at the lowest delimiter level
of a dynamic array are summed. The total is returned as a single element at the next highest delimiter
level.

The delimiters from highest to lowest are field, value, and subvalue.

There are seven levels of delimiters from CHAR(254) to CHAR(248): field mark, value mark, subvalue
mark, text mark, CHAR(250), CHAR(249), and CHAR(248).

Chapter 1: Statements and functions

402

The SUM function removes the lowest delimiter level from a dynamic array. In a dynamic array that
contains fields, values, and subvalues, the SUM function sums only the subvalues, returning the sums
as values. In a dynamic array that contains fields and values, the SUM function sums only the values,
returning the sums as fields. In a dynamic array that contains only fields, the SUM function sums the
fields, returning the sum as the only field of the array. SUM functions can be applied repeatedly to raise
multilevel data to the highest delimiter level or to a single value.

Nonnumeric values, except the null value, are treated as 0. If dynamic.array evaluates to the null value,
null is returned. Any element that is the null value is ignored, unless all elements of dynamic.array are
null, in which case null is returned.

Syntax

SUM (dynamic.array)

Examples

In the following examples a field mark is shown by F, a value mark is shown by V, and a subvalue mark
is shown by S.

Source lines Program output

X=20:@VM:18:@VM:9:@VM:30:@VM:80

PRINT "SUM(X)=",SUM(X)

SUM(X)= 157

X=17:@FM:18:@FM:15

Y=10:@FM:20

PRINT "SUM(X)+SUM(Y)= ",SUM(X)+SUM(Y)

SUM(X)+SUM(Y)= 80

X=3:@SM:4:@SM:10:@VM:3:@VM:20

Y=SUM(X)

PRINT "Y= ",Y

Z=SUM(Y)

PRINT "Z= ",Z

Y= 17V3V20

Z= 40

SUMMATION function
Use the SUMMATION function to return the sum of all the elements in dynamic.array. Nonnumeric
values, except the null value, are treated as 0.

Syntax

SUMMATION (dynamic.array)

CALL !SUMMATION (result , dynamic.array)

result is a variable containing the result of the sum.

dynamic.array is the dynamic array whose elements are to be added together.

Example

A=1:@VM:"ZERO":@SM:20:@FM:-25
 PRINT "SUMMATION(A)=",SUMMATION(A)

SWAP statement

403

This is the program output:

SUMMATION(A)= -4

SWAP statement
The SWAP statement interchanges the values in the variables you specify. variable can be any valid
variable, for example, integers, numbers, characters, and so forth.

You must ensure that the descriptor contains valid values for SWAP.

Syntax

For variables: SWAP variable1, variable2

For arrays: SWAP MAT variable1, MAT variable2

Example

The following example illustrates the SWAP statement.

A=123
b=123.45
SWAP A, B
PRINT A, B
123.45 123

SYSTEM function
Use the SYSTEM function to check on the status of a system function. Use the SYSTEM function to test
whether NLS is on when you run a program, and to display information about NLS settings.

Syntax

SYSTEM (expression)

expression evaluates to the number of the system function you want to check. If expression evaluates
to the null value, the SYSTEM function fails and the program terminates with a run-time error
message.

The following table lists the values for expression and their meanings. Values 100 through 107 (read-
only) for the SYSTEM function contain NLS information. See the include file UVNLS.H for their tokens.

Value Action

1 Checks to see if the PRINTER ON statement has turned the printer on. Returns 1 if the
printer is on and 0 if it is not.

2 Returns the page width as defined by the terminal characteristic settings.
3 Returns the page length as defined by the terminal characteristic settings.
4 Returns the number of lines remaining on the current page.
5 Returns the current page number.
6 Returns the current line number.
7 Returns the terminal code for the type of terminal the system believes you are using.

Chapter 1: Statements and functions

404

Value Action

8,n Checks whether the tape is attached. Returns the current block size if it is and -1 if it is
not. n is the number of the tape unit. If it is not specified, tape unit 0 is assumed.

9 Returns the current CPU millisecond count.
10 Checks whether the DATA stack is active. Returns 1 if it is active and 0 if it is not.
11 Checks whether select list 0 is active. Returns 1 if select list 0 is active and 0 if it is not.
12 By default, returns the current system time in seconds (local time). If the

TIME.MILLISECOND option is set (see $OPTIONS statement, on page 26), returns the
current system time in milliseconds.

13 Not used. Returns 0.
14 Not used. Returns 0.
15 Not used. Returns 0.
16 Returns 1 if running from a proc, otherwise returns 0.
17 Not used. Returns 0.
18 Returns the terminal number.
19 Returns the login name.
20 Not used. Returns 0.
21 Not used. Returns 0.
22 Not used. Returns 0.
23 Checks whether the Break key is enabled. Returns 1 if the Break key is enabled and 0 if it

is not.
24 Checks whether character echoing is enabled. Returns 1 if character echoing is enabled

and 0 if it is not.
25 Returns 1 if running from a phantom process, otherwise returns 0.
26 Returns the current prompt character.
27 Returns the user ID of the person using the routine.
28 Returns the effective user ID of the person using the routine.

Windows NT: This is the same value as 27.
29 Returns the group ID of the person using the routine.

Windows NT: This value is 0.
30 Returns the effective group ID of the person using the routine.

Windows NT: This value is 0.
31 Returns the UniVerse serial number.
32 Returns the location of the UV account directory.
33 Returns the last command on the command stack.
34 Returns data pending.
35 Returns the number of users currently in UniVerse.
36 Returns the maximum number of UniVerse users.
37 Returns the number of UNIX users; on Windows NT systems returns same value as 35.
38 Returns the path name of the temporary directory.
42 Returns an empty string. On Windows NT systems returns the current value of the telnet

client’s IP address, or an empty string if the process evaluating the SYSTEM function is
not the main UniVerse telnet process.

43 Returns 1 if db suspension is on, returns 0 if it is not.
44 Returns the number of UniVerse processes.

SYSTEM function

405

Value Action

45 Returns the BREAK count, which is the number of times breaks were disabled.
50 Returns the field number of the last READNEXT statement when reading an exploded

select list.
51 Returns information about device licensing. If you are not using device licensing,

SYSTEM(51) returns a null string. If device licensing is enabled but you are not using
uvdls as a shell, UniVerse returns an IP address of 0.0.0.0.

55 Returns the number of the Python level at which the current BASIC program is
running.Returns 0 without Python.

Returns the value of a positive integer with Python.

Note: SYSTEM(55) has been implemented to return the same value as @U2PY.
60 Returns the current value of the UniVerse configurable parameter TXMODE. The value

can be either 1 or 0.
61 Returns the status of the transaction log daemon. 1 indicates the daemon is active; 0

indicates it is inactive.
62 MODFPTRS status.
63 BLKMAX value.
64 MAXKEYSIZE value.
91 Returns 0; on Windows NT, returns 1.
99 Returns the system time in the number of seconds since midnight Coordinated

Universal Time (UTC), January 1, 1970.
100 Returns 1 if NLS is enabled, otherwise returns 0.
101 Returns the value of the NLSLCMODE parameter, otherwise returns 0.
102 Reserved for future NLS extensions.
103 Returns the terminal map name assigned to the current terminal print channel,

otherwise returns 0.
104 Returns the auxiliary printer map name assigned to the current terminal print channel,

otherwise returns 0.
105 Returns a dynamic array with field marks separating the elements, containing the

current values of the uvconfig file parameters for NLS maps, otherwise 0. Starting at
11.3.1, the value of NLSDEFSOCKMAP is reported in attribute 18 of the result. See the
UVNLS.H include file for a list of tokens that define the field order.

106 Returns the current map name used for sequential I/O. Token is NLS$SEQMAP unless
overridden by a SET.SEQ.MAP command.

107 Returns the current map name for GCI string arguments unless overridden by a
SET.GCI.MAP command.

108 NLSsvrmap
109 Returns or sets the AUTOLOGOUT value. The value returned and/or passed to this

function uses a unit of seconds. The TCL command AUTOLOGOUT uses a unit of
minutes.

1000 Q_PGBRK
1001 Returns the UniVerse flavor: 1 for IDEAL, 2 for PICK, 4 for INFORMATION, 8 for REALITY, 16

for IN2, and 64 for PIOPEN.
1002-1016 Printer definition settings.
1017 Returns the user’s supplementary UNIX groups in a dynamic array.
1020 Reuse.
1021 Returns the GCI error number.

Chapter 1: Statements and functions

406

Value Action

1022 NLSopenelse
1030 Parse @SENTENCE.
1031 Turn string into a quoted argument. This is used for quoting SQL table names.
1050 Returns a dynamic array of key_cntrl_entries.
1200,
hostname

Returns the UVNet link number associated with hostname. If there is an internal error
adding hostname, 0 returns. hostname is an expression that contains the host name
from a file opened through UVNet. It refers to the host name portion of the file’s path
name. For example, in the path name ORION!/u1/filename, hostname is ORION.

1201,
hostname

Returns the RPC connection number associated with hostname. The UVNet REMOTE.B
interface program uses this number. If there is an internal error adding hostname, or if
RPC has not yet opened, 0 returns. If the RPC connection was opened but is now closed,
–1 returns.

1202,
hostname

Returns the timeout associated with hostname. If there is no timeout associated with
hostname, 0 returns.

1203 Returns the last RPC connection error number. This number is in the range 81000
through 81999. 81015 indicates that a timeout occurred. These error numbers
correspond to error messages in the SYS.MESSAGE file.

1210 Changes a string of 4 characters (IEEE float) to a double (number).
1300 Set to “TRUE” if uvadm is installed. Otherwise it is set to “FALSE.”
1301 User name.
1302 Returns information for the !GET.USERS function call in UniVerse BASIC.
1401 Returns all local user accounts on the local machine.
1402 Returns all global users accounts on the domain (MSWIN).
1403 Returns all local group accounts on the system.
1999 Assigns a delay per session to exclusive read locks (READU).
3001-3005 Assigns a value database wide to the UniVerse performance counter, visible through

XAdmin (5 counters).
4000 Mode (HP only).
4001 Class (HP only).
4002 Prompt (HP only).
9000 R+R timestamp set up features.
9001 Returns the call stack.
9002 Changes the GtatolTrunc flag.
9003 MCT conversion.
9004 TCL CASe support.
9005 For the XTOOLSUB subroutine, gets the Driver list.
9006 For the XTOOLSUB subroutine, function with LOGTO.
9007 The MAXRLOCK value.
9010 The database type.
9012 Returns 1 if the client access is from InterCall, UniObjects, or other client tools;

otherwise 0.
9013 Returns the hostname.

TABSTOP statement

407

Examples

The first example returns the number of lines left to print on a page, with the maximum defined by the
TERM command. The second example returns the current page number.

Source lines Program output

Q=4

PRINT
'SYSTEM(Q)',SYSTEM(Q)

SYSTEM(Q) 20

PRINT 'X=',SYSTEM(5) X= 0

The next example sets a 30-second timeout for the UVNet connection to the system ORION:

TIMEOUT SYSTEM(1200, "ORION"), 30

TABSTOP statement
Use the TABSTOP statement to set the current tabstop width for PRINT statement. The initial tabstop
setting is 10.

If expression evaluates to the null value, the TABSTOP statement fails and the program terminates
with a run-time error message.

Syntax

TABSTOP expression

Example

1A="FIRST"
B="LAST"
PRINT A,B
TABSTOP 15
PRINT A,B

This is the program output:

FIRST LAST
 FIRST LAST

TAN function
Use the TAN function to return the trigonometric tangent of expression. expression represents an angle
expressed in degrees.

Trying to take the tangent of a right angle results in a warning message, and a return value of 0.
Numbers greater than 1E17 produce a warning message, and 0 is returned. If expression evaluates to
the null value, null is returned.

Syntax

TAN (expression)

Chapter 1: Statements and functions

408

Example

PRINT TAN(45)

This is the program output:

1

TANH function
Use the TANH function to return the hyperbolic tangent of expression. expression must be numeric and
represents the angle expressed in degrees. If expression evaluates to the null value, null is returned.

Syntax

TANH (expression)

Example

PRINT TANH(45)

This is the program output:

1

TERMINFO function
Use the TERMINFO function to access the device-independent terminal handler string defined for
the current terminal type. The TERMINFO function returns a dynamic array containing the terminal
characteristics for the terminal type set by TERM or SET.TERM.TYPE.

Syntax

TERMINFO (argument)

argument can be 0 or 1, depending on whether the terminal characteristics are returned as stored,
or converted to printable form. If argument is 0, the function returns the terminal characteristics in
the form usable by BASIC applications for device-independent terminal handling with the TPARM
function and the TPRINT statement. If argument is 1, the function returns characteristics in terminfo
source format. Boolean values are returned as Y = true and N = false. The terminfo files contain many
unprintable control characters that may adversely affect your terminal.

If argument evaluates to the null value, the TERMINFO function fails and the program terminates with
a run-time error message.

The easiest way to access the terminfo characteristics is by including the BASIC file
UNIVERSE.INCLUDE TERMINFO in your program. The syntax is:

$INCLUDE UNIVERSE.INCLUDE TERMINFO

The file contains lines that equate each dynamic array element returned by TERMINFO with a name,
so that each element can be easily accessed in your program. Once this file has been included in your
program, you can use the defined names to access terminal characteristics. The following table lists
the contents of this file:

terminfo contents

terminfo$ = terminfo(0)

TERMINFO function

409

terminfo contents

EQU TERMINAL.NAME TO terminfo$<1>
EQU COLUMNS TO terminfo$<2>
EQU LINES TO terminfo$<3>
EQU CARRIAGE.RETURN TO terminfo$<4>
EQU LINE.FEED TO terminfo$<5>
EQU NEWLINE TO terminfo$<6>
EQU BACKSPACE TO terminfo$<7>
EQU BELL TO terminfo$<8>
EQU SCREEN.FLASH TO terminfo$<9>
EQU PADDING.CHARACTER TO terminfo$<10>
EQU PAD.BAUD.RATE TO terminfo$<11>
EQU HARD.COPY TO terminfo$<12>
EQU OVERSTRIKES TO terminfo$<13>
EQU ERASES.OVERSTRIKE TO terminfo$<14>
EQU AUTOMATIC.RIGHT.MARGIN TO terminfo$<15>
EQU RIGHT.MARGIN.EATS.NEWLINE TO terminfo$<16>
EQU AUTOMATIC.LEFT.MARGIN TO terminfo$<17>
EQU UNABLE.TO.PRINT.TILDE TO terminfo$<18>
EQU ERASE.SCREEN TO terminfo$<19>
EQU ERASE.TO.END.OF.SCREEN TO terminfo$<20>
EQU ERASE.TO.BEGINNING.OF.SCREEN TO terminfo$<21>
EQU ERASE.LINE TO terminfo$<22>
EQU ERASE.TO.END.OF.LINE TO terminfo$<23>
EQU ERASE.TO.BEGINNING.OF.LINE TO terminfo$<24>
EQU ERASE.CHARACTERS TO terminfo$<25>
EQU MOVE.CURSOR.TO.ADDRESS TO terminfo$<26>
EQU MOVE.CURSOR.TO.COLUMN TO terminfo$<27>
EQU MOVE.CURSOR.TO.ROW TO terminfo$<28>
EQU MOVE.CURSOR.RIGHT TO terminfo$<29>
EQU MOVE.CURSOR.LEFT TO terminfo$<30>
EQU MOVE.CURSOR.DOWN TO terminfo$<31>
EQU MOVE.CURSOR.UP TO terminfo$<32>
EQU MOVE.CURSOR.RIGHT.PARM TO terminfo$<33>
EQU MOVE.CURSOR.LEFT.PARM TO terminfo$<34>
EQU MOVE.CURSOR.DOWN.PARM TO terminfo$<35>
EQU MOVE.CURSOR.UP.PARM TO terminfo$<36>
EQU MOVE.CURSOR.TO.HOME TO terminfo$<37>
EQU MOVE.CURSOR.TO.LAST.LINE TO terminfo$<38>
EQU CURSOR.SAVE TO terminfo$<39>
EQU CURSOR.RESTORE TO terminfo$<40>
EQU INSERT.CHARACTER TO terminfo$<41>
EQU INSERT.CHARACTER.PARM TO terminfo$<42>
EQU INSERT.MODE.BEGIN TO terminfo$<43>

Chapter 1: Statements and functions

410

terminfo contents

EQU INSERT.MODE.END TO terminfo$<44>
EQU INSERT.PAD TO terminfo$<45>
EQU MOVE.INSERT.MODE TO terminfo$<46>
EQU INSERT.NULL.SPECIAL TO terminfo$<47>
EQU DELETE.CHARACTER TO terminfo$<48>
EQU DELETE.CHARACTER.PARM TO terminfo$<49>
EQU INSERT.LINE TO terminfo$<50>
EQU INSERT.LINE.PARM TO terminfo$<51>
EQU DELETE.LINE TO terminfo$<52>
EQU DELETE.LINE.PARM TO terminfo$<53>
EQU SCROLL.UP TO terminfo$<54>
EQU SCROLL.UP.PARM TO terminfo$<55>
EQU SCROLL.DOWN TOterminfo$<56>
EQU SCROLL.DOWN.PARM TOterminfo$<57>
EQU CHANGE.SCROLL.REGION TOterminfo$<58>
EQU SCROLL.MODE.END TOterminfo$<59>
EQU SCROLL.MODE.BEGIN TOterminfo$<60>
EQU VIDEO.NORMAL TO terminfo$<61>
EQU VIDEO.REVERSE TO terminfo$<62>
EQU VIDEO.BLINK TO terminfo$<63>
EQU VIDEO.UNDERLINE TO terminfo$<64>
EQU VIDEO.DIM TO terminfo$<65>
EQU VIDEO.BOLD TO terminfo$<66>
EQU VIDEO.BLANK TO terminfo$<67>
EQU VIDEO.STANDOUT TO terminfo$<68>
EQU VIDEO.SPACES TO terminfo$<69>
EQU MOVE.VIDEO.MODE TO terminfo$<70>
EQU TAB TO terminfo$<71>
EQU BACK.TAB TO terminfo$<72>
EQU TAB.STOP.SET TO terminfo$<73>
EQU TAB.STOP.CLEAR TO terminfo$<74>
EQU CLEAR.ALL.TAB.STOPS TO terminfo$<75>
EQU TAB.STOP.INITIAL TO terminfo$<76>
EQU WRITE.PROTECT.BEGIN TO terminfo$<77>
EQU WRITE.PROTECT.END TO terminfo$<78>
EQU SCREEN.PROTECT.BEGIN TO terminfo$<79>
EQU SCREEN.PROTECT.END TO terminfo$<80>
EQU WRITE.PROTECT.COLUMN TO terminfo$<81>
EQU PROTECT.VIDEO.NORMAL TO terminfo$<82>
EQU PROTECT.VIDEO.REVERSE TO terminfo$<83>
EQU PROTECT.VIDEO.BLINK TO terminfo$<84>
EQU PROTECT.VIDEO.UNDERLINE TO terminfo$<85>
EQU PROTECT.VIDEO.DIM TO terminfo$<86>

TERMINFO function

411

terminfo contents

EQU PROTECT.VIDEO.BOLD TO terminfo$<87>
EQU PROTECT.VIDEO.BLANK TO terminfo$<88>
EQU PROTECT.VIDEO.STANDOUT TO terminfo$<89>
EQU BLOCK.MODE.BEGIN TO terminfo$<90>
EQU BLOCK.MODE.END TO terminfo$<91>
EQU SEND.LINE.ALL TO terminfo$<92>
EQU SEND.LINE.UNPROTECTED TO terminfo$<93>
EQU SEND.PAGE.ALL TO terminfo$<94>
EQU SEND.PAGE.UNPROTECTED TO terminfo$<95>
EQU SEND.MESSAGE.ALL TO terminfo$<96>
EQU SEND.MESSAGE.UNPROTECTED TO terminfo$<97>
EQU TERMINATE.FIELD TO terminfo$<98>
EQU TERMINATE.LINE TO terminfo$<99>
EQU TERMINATE.PAGE TO terminfo$<100>
EQU STORE.START.OF.MESSAGE TO terminfo$<101>
EQU STORE.END.OF.MESSAGE TO terminfo$<102>
EQU LINEDRAW.BEGIN TO terminfo$<103>
EQU LINEDRAW.END TO terminfo$<104>
EQU MOVE.LINEDRAW.MODE TO terminfo$<105>
EQU LINEDRAW.CHARACTER TO terminfo$<106>
EQU LINEDRAW.UPPER.LEFT.CORNER TO terminfo$<107>
EQU LINEDRAW.UPPER.RIGHT.CORNER TO terminfo$<108>
EQU LINEDRAW.LOWER.LEFT.CORNER TO terminfo$<109>
EQU LINEDRAW.LOWER.RIGHT.CORNER TO terminfo$<110>
EQU LINEDRAW.LEFT.VERTICAL TO terminfo$<111>
EQU LINEDRAW.CENTER.VERTICAL TO terminfo$<112>
EQU LINEDRAW.RIGHT.VERTICAL TO terminfo$<113>
EQU LINEDRAW.UPPER.HORIZONTAL TO terminfo$<114>
EQU LINEDRAW.CENTER.HORIZONTAL TO terminfo$<115>
EQU LINEDRAW.LOWER.HORIZONTAL TO terminfo$<116>
EQU LINEDRAW.UPPER.TEE TO terminfo$<117>
EQU LINEDRAW.LOWER.TEE TO terminfo$<118>
EQU LINEDRAW.LEFT.TEE TO terminfo$<119>
EQU LINEDRAW.RIGHT.TEE TO terminfo$<120>
EQU LINEDRAW.CROSS TO terminfo$<121>
EQU CURSOR.NORMAL TO terminfo$<122>
EQU CURSOR.VISIBLE TO terminfo$<123>
EQU CURSOR.INVISIBLE TO terminfo$<124>
EQU SCREEN.VIDEO.ON TO terminfo$<125>
EQU SCREEN.VIDEO.OFF TO terminfo$<126>
EQU KEYCLICK.ON TO terminfo$<127>
EQU KEYCLICK.OFF TO terminfo$<128>
EQU KEYBOARD.LOCK.ON TO terminfo$<129>

Chapter 1: Statements and functions

412

terminfo contents

EQU KEYBOARD.LOCK.OFF TO terminfo$<130>
EQU MONITOR.MODE.ON TO terminfo$<131>
EQU MONITOR.MODE.OFF TO terminfo$<132>
EQU PRINT.SCREEN TO terminfo$<133>
EQU PRINT.MODE.BEGIN TO terminfo$<134>
EQU PRINT.MODE.END TO terminfo$<135>
EQU HAS.STATUS.LINE TO terminfo$<136>
EQU STATUS.LINE.WIDTH TO terminfo$<137>
EQU STATUS.LINE.BEGIN TO terminfo$<138>
EQU STATUS.LINE.END TO terminfo$<139>
EQU STATUS.LINE.DISABLE TO terminfo$<140>
EQU HAS.FUNCTION.LINE TO terminfo$<141>
EQU FUNCTION.LINE.BEGIN TO terminfo$<142>
EQU FUNCTION.LINE.END TO terminfo$<143>
EQU KEY.BACKSPACE TO terminfo$<144>
EQU KEY.MOVE.CURSOR.RIGHT TO terminfo$<145>
EQU KEY.MOVE.CURSOR.LEFT TO terminfo$<146>
EQU KEY.MOVE.CURSOR.DOWN TO terminfo$<147>
EQU KEY.MOVE.CURSOR.UP TO terminfo$<148>
EQU KEY.MOVE.CURSOR.TO.HOME TO terminfo$<149>
EQU KEY.MOVE.CURSOR.TO.LAST.LINE TO terminfo$<150>
EQU KEY.INSERT.CHARACTER TO terminfo$<151>
EQU KEY.INSERT.MODE.ON TO terminfo$<152>
EQU KEY.INSERT.MODE.END TO terminfo$<153>
EQU KEY.INSERT.MODE.TOGGLE TO terminfo$<154>
EQU KEY.DELETE.CHARACTER TO terminfo$<155>
EQU KEY.INSERT.LINE TO terminfo$<156>
EQU KEY.DELETE.LINE TO terminfo$<157>
EQU KEY.ERASE.SCREEN TO terminfo$<158>
EQU KEY.ERASE.END.OF.LINE TO terminfo$<159>
EQU KEY.ERASE.END.OF.SCREEN TO terminfo$<160>
EQU KEY.BACK.TAB TO terminfo$<161>
EQU KEY.TAB.STOP.SET TO terminfo$<162>
EQU KEY.TAB.STOP.CLEAR TO terminfo$<163>
EQU KEY.TAB.STOP.CLEAR.ALL TO terminfo$<164>
EQU KEY.NEXT.PAGE TO terminfo$<165>
EQU KEY.PREVIOUS.PAGE TO terminfo$<166>
EQU KEY.SCROLL.UP TO terminfo$<167>
EQU KEY.SCROLL.DOWN TO terminfo$<168>
EQU KEY.SEND.DATA TO terminfo$<169>
EQU KEY.PRINT TO terminfo$<170>
EQU KEY.FUNCTION.0 TO terminfo$<171>
EQU KEY.FUNCTION.1 TO terminfo$<172>

TERMINFO function

413

terminfo contents

EQU KEY.FUNCTION.2 TO terminfo$<173>
EQU KEY.FUNCTION.3 TO terminfo$<174>
EQU KEY.FUNCTION.4 TO terminfo$<175>
EQU KEY.FUNCTION.5 TO terminfo$<176>
EQU KEY.FUNCTION.6 TO terminfo$<177>
EQU KEY.FUNCTION.7 TO terminfo$<178>
EQU KEY.FUNCTION.8 TO terminfo$<179>
EQU KEY.FUNCTION.9 TO terminfo$<180>
EQU KEY.FUNCTION.10 TO terminfo$<181>
EQU KEY.FUNCTION.11 TO terminfo$<182>
EQU KEY.FUNCTION.12 TO terminfo$<183>
EQU KEY.FUNCTION.13 TO terminfo$<184>
EQU KEY.FUNCTION.14 TO terminfo$<185>
EQU KEY.FUNCTION.15 TO terminfo$<186>
EQU KEY.FUNCTION.16 TO terminfo$<187>
EQU LABEL.KEY.FUNCTION.0 TO terminfo$<188>
EQU LABEL.KEY.FUNCTION.1 TO terminfo$<189>
EQU LABEL.KEY.FUNCTION.2 TO terminfo$<190>
EQU LABEL.KEY.FUNCTION.3 TO terminfo$<191>
EQU LABEL.KEY.FUNCTION.4 TO terminfo$<192>
EQU LABEL.KEY.FUNCTION.5 TO terminfo$<193>
EQU LABEL.KEY.FUNCTION.6 TO terminfo$<194>
EQU LABEL.KEY.FUNCTION.7 TO terminfo$<195>
EQU LABEL.KEY.FUNCTION.8 TO terminfo$<196>
EQU LABEL.KEY.FUNCTION.9 TO terminfo$<197>
EQU LABEL.KEY.FUNCTION.10 TO terminfo$<198>
EQU LABEL.KEY.FUNCTION.11 TO terminfo$<199>
EQU LABEL.KEY.FUNCTION.12 TO terminfo$<200>
EQU LABEL.KEY.FUNCTION.13 TO terminfo$<201>
EQU LABEL.KEY.FUNCTION.14 TO terminfo$<202>
EQU LABEL.KEY.FUNCTION.15 TO terminfo$<203>
EQU LABEL.KEY.FUNCTION.16 TO terminfo$<204>
EQU KEYEDIT.FUNCTION TO terminfo$<205>
EQU KEYEDIT.ESCAPE TO terminfo$<206>
EQU KEYEDIT.EXIT TO terminfo$<207>
EQU KEYEDIT.BACKSPACE TO terminfo$<208>
EQU KEYEDIT.MOVE.BACKWARD TO terminfo$<209>
EQU KEYEDIT.MOVE.FORWARD TO terminfo$<210>
EQU KEYEDIT.INSERT.CHARACTER TO terminfo$<211>
EQU KEYEDIT.INSERT.MODE.BEGIN TO terminfo$<212>
EQU KEYEDIT.INSERT.MODE.END TO terminfo$<213>
EQU KEYEDIT.INSERT.MODE.TOGGLE TO terminfo$<214>
EQU KEYEDIT.DELETE.CHARACTER TO terminfo$<215>

Chapter 1: Statements and functions

414

terminfo contents

EQU KEYEDIT.ERASE.END.OF.FIELD TO terminfo$<216>
EQU KEYEDIT.ERASE.FIELD TO terminfo$<217>
EQU AT.NEGATIVE.1 TO terminfo$<218>
EQU AT.NEGATIVE.2 TO terminfo$<219>
EQU AT.NEGATIVE.3 TO terminfo$<220>
EQU AT.NEGATIVE.4 TO terminfo$<221>
EQU AT.NEGATIVE.5 TO terminfo$<222>
EQU AT.NEGATIVE.6 TO terminfo$<223>
EQU AT.NEGATIVE.7 TO terminfo$<224>
EQU AT.NEGATIVE.8 TO terminfo$<225>
EQU AT.NEGATIVE.9 TO terminfo$<226>
EQU AT.NEGATIVE.10 TO terminfo$<227>
EQU AT.NEGATIVE.11 TO terminfo$<228>
EQU AT.NEGATIVE.12 TO terminfo$<229>
EQU AT.NEGATIVE.13 TO terminfo$<230>
EQU AT.NEGATIVE.14 TO terminfo$<231>
EQU AT.NEGATIVE.15 TO terminfo$<232>
EQU AT.NEGATIVE.16 TO terminfo$<233>
EQU AT.NEGATIVE.17 TO terminfo$<234>
EQU AT.NEGATIVE.18 TO terminfo$<235>
EQU AT.NEGATIVE.19 TO terminfo$<236>
EQU AT.NEGATIVE.20 TO terminfo$<237>
EQU AT.NEGATIVE.21 TO terminfo$<238>
EQU AT.NEGATIVE.22 TO terminfo$<239>
EQU AT.NEGATIVE.23 TO terminfo$<240>
EQU AT.NEGATIVE.24 TO terminfo$<241>
EQU AT.NEGATIVE.25 TO terminfo$<242>
EQU AT.NEGATIVE.26 TO terminfo$<243>
EQU AT.NEGATIVE.27 TO terminfo$<244>
EQU AT.NEGATIVE.28 TO terminfo$<245>
EQU AT.NEGATIVE.29 TO terminfo$<246>
EQU AT.NEGATIVE.30 TO terminfo$<247>
EQU AT.NEGATIVE.31 TO terminfo$<248>
EQU AT.NEGATIVE.32 TO terminfo$<249>
EQU AT.NEGATIVE.33 TO terminfo$<250>
EQU AT.NEGATIVE.34 TO terminfo$<251>
EQU AT.NEGATIVE.35 TO terminfo$<252>
EQU AT.NEGATIVE.36 TO terminfo$<253>
EQU AT.NEGATIVE.37 TO terminfo$<254>
EQU AT.NEGATIVE.38 TO terminfo$<255>
EQU AT.NEGATIVE.39 TO terminfo$<256>
EQU AT.NEGATIVE.40 TO terminfo$<257>
EQU AT.NEGATIVE.41 TO terminfo$<258>

TERMINFO function

415

terminfo contents

EQU AT.NEGATIVE.42 TO terminfo$<259>
EQU AT.NEGATIVE.43 TO terminfo$<260>
EQU AT.NEGATIVE.44 TO terminfo$<261>
EQU AT.NEGATIVE.45 TO terminfo$<262>
EQU AT.NEGATIVE.46 TO terminfo$<263>
EQU AT.NEGATIVE.47 TO terminfo$<264>
EQU AT.NEGATIVE.48 TO terminfo$<265>
EQU AT.NEGATIVE.49 TO terminfo$<266>
EQU AT.NEGATIVE.50 TO terminfo$<267>
EQU AT.NEGATIVE.51 TO terminfo$<268>
EQU AT.NEGATIVE.52 TO terminfo$<269>
EQU AT.NEGATIVE.53 TO terminfo$<270>
EQU AT.NEGATIVE.54 TO terminfo$<271>
EQU AT.NEGATIVE.55 TO terminfo$<272>
EQU AT.NEGATIVE.56 TO terminfo$<273>
EQU AT.NEGATIVE.57 TO terminfo$<274>
EQU AT.NEGATIVE.58 TO terminfo$<275>
EQU AT.NEGATIVE.59 TO terminfo$<276>
EQU AT.NEGATIVE.60 TO terminfo$<277>
EQU AT.NEGATIVE.61 TO terminfo$<278>
EQU AT.NEGATIVE.62 TO terminfo$<279>
EQU AT.NEGATIVE.63 TO terminfo$<280>
EQU AT.NEGATIVE.64 TO terminfo$<281>
EQU AT.NEGATIVE.65 TO terminfo$<282>
EQU AT.NEGATIVE.66 TO terminfo$<283>
EQUAT.NEGATIVE.67 TO terminfo$<284>
EQUAT.NEGATIVE.68 TO terminfo$<285>
EQU AT.NEGATIVE.69 TO terminfo$<286>
EQU AT.NEGATIVE.70 TO terminfo$<287>
EQU AT.NEGATIVE.71 TO terminfo$<288>
EQU AT.NEGATIVE.72 TO terminfo$<289>
EQU AT.NEGATIVE.73 TO terminfo$<290>
EQU AT.NEGATIVE.74 TO terminfo$<291>
EQU AT.NEGATIVE.75 TO terminfo$<292>
EQU AT.NEGATIVE.76 TO terminfo$<293>
EQU AT.NEGATIVE.77 TO terminfo$<294>
EQUAT.NEGATIVE.78 TO terminfo$<295>
EQU AT.NEGATIVE.79 TO terminfo$<296>
EQU AT.NEGATIVE.80 TO terminfo$<297>
EQU AT.NEGATIVE.81 TO terminfo$<298>
EQU AT.NEGATIVE.82 TO terminfo$<299>
EQU AT.NEGATIVE.83 TO terminfo$<300>
EQU AT.NEGATIVE.84 TO terminfo$<301>

Chapter 1: Statements and functions

416

terminfo contents

EQU AT.NEGATIVE.85 TO terminfo$<302>
EQU AT.NEGATIVE.86 TO terminfo$<303>
EQU AT.NEGATIVE.87 TO terminfo$<304>
EQU AT.NEGATIVE.88 TO terminfo$<305>
EQU AT.NEGATIVE.89 TO terminfo$<306>
EQU AT.NEGATIVE.90 TO terminfo$<307>
EQU AT.NEGATIVE.91 TO terminfo$<308>
EQU AT.NEGATIVE.92 TO terminfo$<309>
EQU AT.NEGATIVE.93 TO terminfo$<310>
EQU AT.NEGATIVE.94 TO terminfo$<311>
EQU AT.NEGATIVE.95 TO terminfo$<312>
EQU AT.NEGATIVE.96 TO terminfo$<313>
EQU AT.NEGATIVE.97 TO terminfo$<314>
EQU AT.NEGATIVE.98 TO terminfo$<315>
EQU AT.NEGATIVE.99 TO terminfo$<316>
EQU AT.NEGATIVE.100 TO terminfo$<317>
EQU AT.NEGATIVE.101 TO terminfo$<318>
EQU AT.NEGATIVE.102 TO terminfo$<319>
EQU AT.NEGATIVE.103 TO terminfo$<320>
EQU AT.NEGATIVE.104 TO terminfo$<321>
EQU AT.NEGATIVE.105 TO terminfo$<322>
EQU AT.NEGATIVE.106 TO terminfo$<323>
EQU AT.NEGATIVE.107 TO terminfo$<324>
EQU AT.NEGATIVE.108 TO terminfo$<325>
EQU AT.NEGATIVE.109 TO terminfo$<326>
EQU AT.NEGATIVE.110 TO terminfo$<327>
EQU AT.NEGATIVE.111 TO terminfo$<328>
EQU AT.NEGATIVE.112 TO terminfo$<329>
EQU AT.NEGATIVE.113 TO terminfo$<330>
EQU AT.NEGATIVE.114 TO terminfo$<331>
EQU AT.NEGATIVE.115 TO terminfo$<332>
EQU AT.NEGATIVE.116 TO terminfo$<333>
EQU AT.NEGATIVE.117 TO terminfo$<334>
EQU AT.NEGATIVE.118 TO terminfo$<335>
EQU AT.NEGATIVE.119 TO terminfo$<336>
EQU AT.NEGATIVE.120 TO terminfo$<337>
EQU AT.NEGATIVE.121 TO terminfo$<338>
EQU AT.NEGATIVE.122 TO terminfo$<339>
EQU AT.NEGATIVE.123 TO terminfo$<340>
EQU AT.NEGATIVE.124 TO terminfo$<341>
EQU AT.NEGATIVE.125 TO terminfo$<342>
EQU AT.NEGATIVE.126 TO terminfo$<343>
EQU AT.NEGATIVE.127 TO terminfo$<344>

TERMINFO function

417

terminfo contents

EQU AT.NEGATIVE.128 TO terminfo$<345>
EQU DBLE.LDRAW.UP.LEFT.CORNER TO terminfo$<379>
EQU DBLE.LDRAW.UP.RIGHT.CORNER TO terminfo$<380>
EQU DBLE.LDRAW.LO.LEFT.CORNER TO terminfo$<381>
EQU DBLE.LDRAW.LO.RIGHT.CORNER TO terminfo$<382>
EQU DBLE.LDRAW.HORIZ TO terminfo$<383>
EQU DBLE.LDRAW.VERT TO terminfo$<384>
EQU DBLE.LDRAW.UP.TEE TO terminfo$<385>
EQU DBLE.LDRAW.LO.TEE TO terminfo$<386>
EQU DBLE.LDRAW.LEFT.TEE TO terminfo$<387>
EQU DBLE.LDRAW.RIGHT.TEE TO terminfo$<388>
EQU DBLE.LDRAW.CROSS TO terminfo$<389>
EQU LDRAW.LEFT.TEE.DBLE.HORIZ TO terminfo$<390>
EQU LDRAW.LEFT.TEE.DBLE.VERT TO terminfo$<391>
EQU LDRAW.RIGHT.TEE.DBLE.HORIZ TO terminfo$<392>
EQU LDRAW.RIGHT.TEE.DBLE.VERT TO terminfo$<393>
EQU LDRAW.LOWER.TEE.DBLE.HORIZ TO terminfo$<394>
EQU LDRAW.LOWER.TEE.DBLE.VERT TO terminfo$<395>
EQU LDRAW.UP.TEE.DBLE.HORIZ TO terminfo$<396>
EQU LDRAW.UP.TEE.DBLE.VERT TO terminfo$<397>
EQU LDRAW.UP.LEFT.CORNER.DBLE.HORIZ TO terminfo$<398>
EQU LDRAW.UP.LEFT.CORNER.DBLE.VERT TO terminfo$<399>
EQU LDRAW.UP.RIGHT.CORNER.DBLE.HORIZ TO terminfo$<400>
EQU LDRAW.UP.RIGHT.CORNER.DBLE.VERT TO terminfo$<401>
EQU LDRAW.LO.LEFT.CORNER.DBLE.HORIZ TO terminfo$<402>
EQU LDRAW.LO.LEFT.CORNER.DBLE.VERT TO terminfo$<403>
EQU LDRAW.LO.RIGHT.CORNER.DBLE.HORIZ TO terminfo$<404>
EQU LDRAW.LO.RIGHT.CORNER.DBLE.VERT TO terminfo$<405>
EQU LDRAW.CROSS.DBLE.HORIZ TO terminfo$<406>
EQU LDRAW.CROSS.DBLE.VERT TO terminfo$<407>
EQU NO.ESC.CTLC TO terminfo$<408>
EQU CEOL.STANDOUT.GLITCH TO terminfo$<409>
EQU GENERIC.TYPE TO terminfo$<410>
EQU HAS.META.KEY TO terminfo$<411>
EQU MEMORY.ABOVE TO terminfo$<412>
EQU MEMORY.BELOW TO terminfo$<413>
EQU STATUS.LINE.ESC.OK TO terminfo$<414>
EQU DEST.TABS.MAGIC.SMSO TO terminfo$<415>
EQU TRANSPARENT.UNDERLINE TO terminfo$<416>
EQU XON.XOFF TO terminfo$<417>
EQU NEEDS.XON.XOFF TO terminfo$<418>
EQU PRTR.SILENT TO terminfo$<419>
EQU HARD.CURSOR TO terminfo$<420>

Chapter 1: Statements and functions

418

terminfo contents

EQU NON.REV.RMCUP TO terminfo$<421>
EQU NO.PAD.CHAR TO terminfo$<422>
EQU LINES.OF.MEMORY TO terminfo$<423>
EQU VIRTUAL.TERMINAL TO terminfo$<424>
EQU NUM.LABELS TO terminfo$<425>
EQU LABEL.HEIGHT TO terminfo$<426>
EQU LABEL.WIDTH TO terminfo$<427>
EQU LINE.ATTRIBUTE TO terminfo$<428>
EQU COMMAND.CHARACTER TO terminfo$<429>
EQU CURSOR.MEM.ADDRESS TO terminfo$<430>
EQU DOWN.HALF.LINE TO terminfo$<431>
EQU ENTER.CA.MODE TO terminfo$<432>
EQU ENTER.DELETE.MODE TO terminfo$<433>
EQU ENTER.PROTECTED.MODE TO terminfo$<434>
EQU EXIT.ATTRIBUTE.MODE TO terminfo$<435>
EQU EXIT.CA.MODE TO terminfo$<436>
EQU EXIT.DELETE.MODE TO terminfo$<437>
EQU EXIT.STANDOUT.MODE TO terminfo$<438>
EQU EXIT.UNDERLINE.MODE TO terminfo$<439>
EQU FORM.FEED TO terminfo$<440>
EQU INIT.1STRING TO terminfo$<441>
EQU INIT.2STRING TO terminfo$<442>
EQU INIT.3STRING TO terminfo$<443>
EQU INIT.FILE TO terminfo$<444>
EQU INS.PREFIX TO terminfo$<445>
EQU KEY.IC TO terminfo$<446>
EQU KEYPAD.LOCAL TO terminfo$<447>
EQU KEYPAD.XMIT TO terminfo$<448>
EQU META.OFF TO terminfo$<449>
EQU META.ON TO terminfo$<450>
EQU PKEY.KEY TO terminfo$<451>
EQU PKEY.LOCAL TO terminfo$<452>
EQU PKEY.XMIT TO terminfo$<453>
EQU REPEAT.CHAR TO terminfo$<454>
EQU RESET.1STRING TO terminfo$<455>
EQU RESET.2STRING TO terminfo$<456>
EQU RESET.3STRING TO terminfo$<457>
EQU RESET.FILE TO terminfo$<458>
EQU SET.ATTRIBUTES TO terminfo$<459>
EQU SET.WINDOW TO terminfo$<460>
EQU UNDERLINE.CHAR TO terminfo$<461>
EQU UP.HALF.LINE TO terminfo$<462>
EQU INIT.PROG TO terminfo$<463>

TERMINFO function

419

terminfo contents

EQU KEY.A1 TO terminfo$<464>
EQU KEY.A3 TO terminfo$<465>
EQU KEY.B2 TO terminfo$<466>
EQU KEY.C1 TO terminfo$<467>
EQU KEY.C3 TO terminfo$<468>
EQU PRTR.NON TO terminfo$<469>
EQU CHAR.PADDING TO terminfo$<470>
EQU LINEDRAW.CHARS TO terminfo$<471>
EQU PLAB.NORM TO terminfo$<472>
EQU ENTER.XON.MODE TO terminfo$<473>
EQU EXIT.XON.MODE TO terminfo$<474>
EQU ENTER.AM.MODE TO terminfo$<475>
EQU EXIT.AM.MODE TO terminfo$<476>
EQU XON.CHARACTER TO terminfo$<477>
EQU XOFF.CHARACTER TO terminfo$<478>
EQU ENABLE.LINEDRAW TO terminfo$<479>
EQU LABEL.ON TO terminfo$<480>
EQU LABEL.OFF TO terminfo$<481>
EQU KEY.BEG TO terminfo$<482>
EQU KEY.CANCEL TO terminfo$<483>
EQU KEY.CLOSE TO terminfo$<484>
EQU KEY.COMMAND TO terminfo$<485>
EQU KEY.COPY TO terminfo$<486>
EQU KEY.CREATE TO terminfo$<487>
EQU KEY.END TO terminfo$<488>
EQU KEY.ENTER TO terminfo$<489>
EQU KEY.EXIT TO terminfo$<490>
EQU KEY.FIND TO terminfo$<491>
EQU KEY.HELP TO terminfo$<492>
EQU KEY.MARK TO terminfo$<493>
EQU KEY.MESSAGE TO terminfo$<494>
EQU KEY.MOVE TO terminfo$<495>
EQU KEY.NEXT TO terminfo$<496>
EQU KEY.OPEN TO terminfo$<497>
EQU KEY.OPTIONS TO terminfo$<498>
EQU KEY.PREVIOUS TO terminfo$<499>
EQU KEY.REDO TO terminfo$<500>
EQU KEY.REFERENCE TO terminfo$<501>
EQU KEY.REFRESH TO terminfo$<502>
EQU KEY.REPLACE TO terminfo$<503>
EQU KEY.RESTART TO terminfo$<504>
EQU KEY.RESUME TO terminfo$<505>
EQU KEY.SAVE TO terminfo$<506>

Chapter 1: Statements and functions

420

terminfo contents

EQU KEY.SUSPEND TO terminfo$<507>
EQU KEY.UNDO TO terminfo$<508>
EQU KEY.SBEG TO terminfo$<509>
EQU KEY.SCANCEL TO terminfo$<510>
EQU KEY.SCOMMAND TO terminfo$<511>
EQU KEY.SCOPY TO terminfo$<512>
EQU KEY.SCREATE TO terminfo$<513>
EQU KEY.SDC TO terminfo$<514>
EQU KEY.SDL TO terminfo$<515>
EQU KEY.SELECT TO terminfo$<516>
EQU KEY.SEND TO terminfo$<517>
EQU KEY.SEOL TO terminfo$<518>
EQU KEY.SEXIT TO terminfo$<519>
EQU KEY.SFIND TO terminfo$<520>
EQU KEY.SHELP TO terminfo$<521>
EQU KEY.SHOME TO terminfo$<522>
EQU KEY.SIC TO terminfo$<523>
EQU KEY.SLEFT TO terminfo$<524>
EQU KEY.SMESSAGE TO terminfo$<525>
EQU KEY.SMOVE TO terminfo$<526>
EQU KEY.SNEXT TO terminfo$<527>
EQU KEY.SOPTIONS TO terminfo$<528>
EQU KEY.SPREVIOUS TO terminfo$<529>
EQU KEY.SPRINT TO terminfo$<530>
EQU KEY.SREDO TO terminfo$<531>
EQU KEY.SREPLACE TO terminfo$<532>
EQU KEY.SRIGHT TO terminfo$<533>
EQU KEY.SRESUM TO terminfo$<534>
EQU KEY.SSAVE TO terminfo$<535>
EQU KEY.SSUSPEND TO terminfo$<536>
EQU KEY.SUNDO TO terminfo$<537>
EQU REQ.FOR.INPUT TO terminfo$<538>
EQU KEY.F17 TO terminfo$<539>
EQU KEY.F18 TO terminfo$<540>
EQU KEY.F19 TO terminfo$<541>
EQU KEY.F20 TO terminfo$<542>
EQU KEY.F21 TO terminfo$<543>
EQU KEY.F22 TO terminfo$<544>
EQU KEY.F23 TO terminfo$<545>
EQU KEY.F24 TO terminfo$<546>
EQU KEY.F25 TO terminfo$<547>
EQU KEY.F26 TO terminfo$<548>
EQU KEY.F27 TO terminfo$<549>

TERMINFO function

421

terminfo contents

EQU KEY.F28 TO terminfo$<550>
EQU KEY.F29 TO terminfo$<551>
EQU KEY.F30 TO terminfo$<552>
EQU KEY.F31 TO terminfo$<553>
EQU KEY.F32 TO terminfo$<554>
EQU KEY.F33 TO terminfo$<555>
EQU KEY.F34 TO terminfo$<556>
EQU KEY.F35 TO terminfo$<557>
EQU KEY.F36 TO terminfo$<558>
EQU KEY.F37 TO terminfo$<559>
EQU KEY.F38 TO terminfo$<560>
EQU KEY.F39 TO terminfo$<561>
EQU KEY.F40 TO terminfo$<562>
EQU KEY.F41 TO terminfo$<563>
EQU KEY.F42 TO terminfo$<564>
EQU KEY.F43 TO terminfo$<565>
EQU KEY.F44 TO terminfo$<566>
EQU KEY.F45 TO terminfo$<567>
EQU KEY.F46 TO terminfo$<568>
EQU KEY.F47 TO terminfo$<569>
EQU KEY.F48 TO terminfo$<570>
EQU KEY.F49 TO terminfo$<571>
EQU KEY.F50 TO terminfo$<572>
EQU KEY.F51 TO terminfo$<573>
EQU KEY.F52 TO terminfo$<574>
EQU KEY.F53 TO terminfo$<575>
EQU KEY.F54 TO terminfo$<576>
EQU KEY.F55 TO terminfo$<577>
EQU KEY.F56 TO terminfo$<578>
EQU KEY.F57 TO terminfo$<579>
EQU KEY.F58 TO terminfo$<580>
EQU KEY.F59 TO terminfo$<581>
EQU KEY.F60 TO terminfo$<582>
EQU KEY.F61 TO terminfo$<583>
EQU KEY.F62 TO terminfo$<584>
EQU KEY.F63 TO terminfo$<585>
EQU CLEAR.MARGINS TO terminfo$<586>
EQU SET.LEFT.MARGIN TO terminfo$<587>
EQU SET.RIGHT.MARGIN TO terminfo$<588>
EQU LABEL.KEY.FUNCTION.17 TO terminfo$<589>
EQU LABEL.KEY.FUNCTION.18 TO terminfo$<590>
EQU LABEL.KEY.FUNCTION.19 TO terminfo$<591>
EQU LABEL.KEY.FUNCTION.20 TO terminfo$<592>

Chapter 1: Statements and functions

422

terminfo contents

EQU LABEL.KEY.FUNCTION.2 TO terminfo$<593>
EQU LABEL.KEY.FUNCTION.22 TO terminfo$<594>
EQU LABEL.KEY.FUNCTION.2 TO terminfo$<595>
EQU LABEL.KEY.FUNCTION.24 TO terminfo$<596>
EQU LABEL.KEY.FUNCTION.25 TO terminfo$<597>
EQU LABEL.KEY.FUNCTION.26 TO terminfo$<598>
EQU LABEL.KEY.FUNCTION.27 TO terminfo$<599>
EQU LABEL.KEY.FUNCTION.28 TO terminfo$<600>
EQU LABEL.KEY.FUNCTION.2 TO terminfo$<601>
EQU LABEL.KEY.FUNCTION.30 TO terminfo$<602>
EQU LABEL.KEY.FUNCTION.31 TO terminfo$<603>
EQU LABEL.KEY.FUNCTION.32 TO terminfo$<604>
EQU LABEL.KEY.FUNCTION.33 TO terminfo$<605>
EQU LABEL.KEY.FUNCTION.34 TO terminfo$<606>
EQU LABEL.KEY.FUNCTION.35 TO terminfo$<607>
EQU LABEL.KEY.FUNCTION.36 TO terminfo$<608>
EQU LABEL.KEY.FUNCTION.37 TO terminfo$<609>
EQU LABEL.KEY.FUNCTION.38 TO terminfo$<610>
EQU LABEL.KEY.FUNCTION.39 TO terminfo$<611>
EQU LABEL.KEY.FUNCTION.40 TO terminfo$<612>
EQU LABEL.KEY.FUNCTION.41 TO terminfo$<613>
EQU LABEL.KEY.FUNCTION.42 TO terminfo$<614>
EQU LABEL.KEY.FUNCTION.43 TO terminfo$<615>
EQU LABEL.KEY.FUNCTION.44 TO terminfo$<616>
EQU LABEL.KEY.FUNCTION.45 TO terminfo$<617>
EQU LABEL.KEY.FUNCTION.46 TO terminfo$<618>
EQU LABEL.KEY.FUNCTION.4 TO terminfo$<619>
EQU LABEL.KEY.FUNCTION.48 TO terminfo$<620>
EQU LABEL.KEY.FUNCTION.49 TO terminfo$<621>
EQU LABEL.KEY.FUNCTION.50S TO terminfo$<622>
EQU LABEL.KEY.FUNCTION.51 TO terminfo$<623>
EQU LABEL.KEY.FUNCTION.52 TO terminfo$<624>
EQU LABEL.KEY.FUNCTION.53 TO terminfo$<625>
EQU LABEL.KEY.FUNCTION.54 TO terminfo$<626>
EQU LABEL.KEY.FUNCTION.55 TO terminfo$<627>
EQU LABEL.KEY.FUNCTION.56 TO terminfo$<628>
EQU LABEL.KEY.FUNCTION.57 TO terminfo$<629>
EQU LABEL.KEY.FUNCTION.58 TO terminfo$<630>
EQU LABEL.KEY.FUNCTION.59 TO terminfo$<631>
EQU LABEL.KEY.FUNCTION.60 TO terminfo$<632>
EQU LABEL.KEY.FUNCTION.61 TO terminfo$<633>
EQU LABEL.KEY.FUNCTION.62 TO terminfo$<634>

TIME function

423

terminfo contents

EQU LABEL.KEY.FUNCTION.63 TO terminfo$<635>

Example

$INCLUDE UNIVERSE.INCLUDE TERMINFO
 PRINT AT.NEGATIVE.1
 PRINT "Your terminal type is":TAB:TERMINAL.NAME

The program output on the cleared screen is:

Your terminal type is icl6404|ICL 6404CG Color Video Display

TIME function
Use the TIME function to return a string value expressing the internal time of day. The internal time is
the number of seconds that have passed since midnight to the nearest thousandth of a second (local
time).

The parentheses must be used with the TIME function to distinguish it from a user-named variable
called TIME. However, no arguments are required with the TIME function.

Syntax

TIME ()

UNIX System V

The time is returned only to the nearest whole second.

If the TIME.MILLISECOND option of the $OPTIONS statement is set, the TIME function returns the
system time in whole seconds.

Example

PRINT TIME()

This is the program output:

40663.842

TIMEDATE function
Syntax

TIMEDATE ()

Use the TIMEDATE function to return the current system time and date in the following format:

hh:mm:ssddmmmyyyy

Parameter Description

hh Hours (based on a 24-hour clock)
mm Minutes
ss Seconds

Chapter 1: Statements and functions

424

Parameter Description

dd Day
mmm Month
yyyy Year

No arguments are required with the TIMEDATE function.

If you want to increase the number of spaces between the time and the date, edit the line beginning
with TMD0001 in the msg.txt file in the UV account directory. This line can contain up to four hash signs
(#). Each # prints a space between the time and the date.

If NLS mode is enabled, the TIMEDATE function uses the convention defined in the TIMEDATE field in
the NLS.LC.TIME file for combined time and date format. Otherwise, it returns the time and date. For
more information about convention records in the Time category, see the UniVerse NLS Guide.

Examples

PRINT TIMEDATE()

This is the program output:

11:19:07 18 JUN 1996

If the TMD0001 message contains four #s, the program output is:

11:19:07 18 JUN 1996

TIMEOUT statement
Use the TIMEOUT statement to terminate a READSEQ statement or READBLK statement if no data
is read in the specified time. You can also use the TIMEOUT statement to set a time limit for a
UVNet link. Use the TTYGET and TTYSET statements to set a timeout value for a file open on a serial
communications port.

The TIMEOUT statement is not supported on Windows NT.

Syntax

TIMEOUT {file.variable | link.number}, time

file.variable specifies a file opened for sequential access.

time is an expression that evaluates to the number of seconds the program should wait before
terminating the READSEQ or READBLK statement or the UVNet connections. If you specify the time
value followed by “UM” or “um” UniVerse uses microseconds for the timeout value. For example,
“50UM” specifies 50 microseconds.

link.number is the UVNet link. It is a positive number from 1 through 255 (or the number set in the
NET_MAXCONNECT VALUE for UVNet connections).

TIMEOUT causes subsequent READSEQ and READBLK statement to terminate and execute their ELSE
statements if the number of seconds specified by time elapses while waiting for data. Use the STATUS
function, on page 388 to determine if time has elapsed. In the event of a timeout, neither READBLK
nor READSEQ returns any bytes from the buffer, and the entire I/O operation must be retried.

If either file.variable or time evaluates to the null value, the TIMEOUT statement fails and the program
terminates with a run-time error message.

TODATE function

425

Examples

TIMEOUT SUN.MEMBER, 10
 READBLK VAR1 FROM SUN.MEMBER, 15 THEN PRINT VAR1 ELSE
 IF STATUS() = 2 THEN
 PRINT "TIMEOUT OCCURRED"
 END ELSE
 PRINT "CANNOT OPEN FILE"
 END
 GOTO EXIT.PROG
 END

This is the program output:

TIMEOUT OCCURRED

The following example sets a 30-second timeout for the UVNet connection to the system ORION:

TIMEOUT SYSTEM (1200, "ORION"), 30
 OPEN "ORION!/u1/user/file" TO FU.ORIONFILE
 READ X,Y FROM FU.ORIONFILE
 ELSE
 IF SYSTEM (1203)= 81015
 THEN PRINT "TIMEOUT ON READ"
 END
 ELSE
 PRINT "READ ERROR"
 END
 END

TODATE function
Use the DATE function to convert the internal datetime value to the internal local date value.

Note: This function is supported on Linux and Solaris platforms only.

If the specified value of datetime is invalid, the function will return empty and STATUS will be set to 1.
Note that @TZ will be used to derive the local date from the UTC datetime value.

See the NOW function for the datetime.

See the DATE function for the local date.

Syntax

TODATE (datetime)

Example

PRINT TODATE(NOW())

This is the program output:

18952

Chapter 1: Statements and functions

426

TODATETIME function
Use the TODATETIME function to convert the internal values of the local date and time (as returned
by the DATE() and TIME() functions) to the internal datetime value. Note that @TZ will be used to
convert the specified date and time values to UTC.

Note: This function is supported on Linux and Solaris platforms only.

If the specified values of date and/or time are invalid, STATUS will be set to 1.

See the NOW function for the datetime.

See the DATE and TIME functions for the local date and time.

Syntax

TODATETIME (date, time)

Example

PRINT TODATETIME(DATE(), TIME())

This is the program output:

1574240110666

TOTIME function
Use the TOTIME function to convert the internal datetime value to the internal local time value.

Note: This function is supported on Linux and Solaris platforms only.

If the specified value of datetime is invalid, the function will return empty and STATUS will be set to 1.
Note that @TZ will be used to derive the local time value from the UTC datetime value

See the NOW function for the datetime.

See the TIME function for the local time.

Syntax

TOTIME (datetime)

Example

PRINT TOTIME(NOW())

This is the program output:

6910.666

TPARM function

427

TPARM function
Use the TPARM function to evaluate a parameterized terminfo string.

Syntax

TPARM (terminfo.string, [arg1], [arg2], [arg3], [arg4], [arg5], [arg6],
[arg7], [arg8])

terminfo.string represents a string of characters to be compiled by the terminfo compiler, tic. These
terminal descriptions define the sequences of characters to send to the terminal to perform special
functions. terminfo.string evaluates to one of four types of capability: numeric, Boolean, string, or
parameterized string. If terminfo.string or any of the eight arguments evaluates to the null value, the
TPARM function fails and the program terminates with a run-time error message.

Numeric capabilities are limited to a length of five characters that must form a valid number. Only
nonnegative numbers 0 through 32,767 are allowed. If a value for a particular capability does not
apply, the field should be left blank.

Boolean capabilities are limited to a length of one character. The letter Y (in either uppercase or
lowercase) indicates that the specified capability is present. Any value other than Y indicates that the
specified capability is not present.

String capabilities are limited to a length of 44 characters. You can enter special characters as follows:

Character Description

\E or \e The ESC character (ASCII 27).
\n or \l The LINEFEED character (ASCII 10).
\r The RETURN character (ASCII 13).
\t The TAB character (ASCII 9).
\b The BACKSPACE character (ASCII 8).
\f The formfeed character (ASCII 12).
\s A space (ASCII 32).
^x The representation for a control character (ASCII 0 through 31). The character can

be either uppercase or lowercase. A list of some control character representations
follows:

Representation Control character

^A ^a
ASCII 1 (Ctrl-
A)

ASCII 1 (Ctrl-A)

^@ ASCII 0
^[ASCII 27 (Esc)
^\ ASCII 28
^] ASCII 29
^^ ASCII 30
^_ ASCII 31
^? ASCII 127 (Del)

Chapter 1: Statements and functions

428

Character Description

\nnn Represents the ASCII character with a value of nnn in octal—for example \033 is the
Esc character (ASCII 27).

\\ Represents the "\" character.
\, Represents the "," character.
\^ Represents the "^" character.

Parameterized string capabilities, such as cursor addressing, use special encoding to include values in
the appropriate format. The parameter mechanism is a stack with several commands to manipulate it:

Value Description

%pn Push parameter number n onto the stack. Parameters number 1
through 8 are allowed and are represented by arg1 through arg8 of the
TPARM function.

%'c' The ASCII value of character c is pushed onto the stack.
%[nnn] Decimal number nnn is pushed onto the top of the stack.
%d Pop the top parameter off the stack, and output it as a decimal number.
%nd Pop the top parameter off the stack, and output it as a decimal number

in a field n characters wide.
%0nd Like %nd, except that 0s are used to fill out the field.
%c The top of the stack is taken as a single ASCII character and output.
%s The top of the stack is taken as a string and output.
%+ %- %* %/ The top two elements are popped off the stack and added, subtracted,

multiplied, or divided. The result is pushed back on the stack. The
fractional portion of a quotient is discarded.

%m The second element on the stack is taken modulo of the first element,
and the result is pushed onto the stack.

%& % | %^ The top two elements are popped off the stack and a bitwise AND, OR,
or XOR operation is performed. The result is pushed onto the stack.

%= %< %> The second element on the stack is tested for being equal to, less then,
or greater than the first element. If the comparison is true, a 1 is pushed
onto the stack, otherwise a 0 is pushed.

%! %~ The stack is popped, and either the logical or the bitwise NOT of the first
element is pushed onto the stack.

%i One (1) is added to the first two parameters. This is useful for terminals
that use a one-based cursor address, rather than a zero-based.

%Px Pop the stack, and put the result into variable x, where x is a lowercase
letter (a - z).

%gx Push the value of variable x on the top of the stack.
%? exp %t exp [%e exp] %; Form an if-then-else expression, with "%?" representing "IF", "%t"

representing "THEN", "%e" representing "ELSE", and "%;" terminating
the expression. The else expression is optional. Else-If expressions are
possible. For example:

%? C1 %t B1 %e C2 %t B2 %e C3 %t B3 %e C4 %t B4 %e %

Cn are conditions, and Bn are bodies.
%% Output a percent sign (%).

A delay in milliseconds can appear anywhere in a string capability. A delay is specified by $<nnn>,
where nnn is a decimal number indicating the number of milliseconds (one thousandth of a second)

TPRINT statement

429

of delay desired. A proper number of delay characters will be output, depending on the current baud
rate.

TPRINT statement
Use the TPRINT statement to send data to the screen, a line printer, or another print file. TPRINT is
similar to the PRINT statement, except that TPRINT lets you specify time delay expressions in the print
list.

Syntax

TPRINT [ON print.channel] [print.list]

The ON clause specifies the logical print channel to use for output. print.channel is an expression that
evaluates to a number from –1 through 255. If you do not use the ON clause, logical print channel
0 is used, which prints to the user’s terminal if PRINTER OFF is set (see the PRINTER statement). If
print.channel evaluates to the null value, the TPRINT statement fails and the program terminates with
a run-time error message. Logical print channel –1 prints the data on the screen, regardless of whether
a PRINTER ON statement has been executed.

You can specify HEADING statement, FOOTING statement, $PAGE statement, and PRINTER CLOSE
statements for each logical print channel. The contents of the print files are printed in order by logical
print channel number.

print.list can contain any BASIC expression. The elements of the list can be numeric or character
strings, variables, constants, or literal strings. The list can consist of a single expression or a series of
expressions separated by commas (,) or colons (:) for output formatting. If no print.list is designated, a
blank line is printed. The null value cannot be printed.

print.list can also contain time delays of the form $<time>. time is specified in milliseconds to the tenth
of a millisecond. As the print list is processed, each time delay is executed as it is encountered.

Expressions separated by commas are printed at preset tab positions. The default tabstop setting is
10 characters. See the TABSTOP statement, on page 407 for information about changing the default
setting. Use multiple commas together for multiple tabulations between expressions.

Expressions separated by colons are concatenated. That is, the expression following the colon is
printed immediately after the expression preceding the colon. To print a list without a LINEFEED and
RETURN, end print.list with a colon (:).

If NLS is enabled, the TPRINT statement maps data in the same way as the PRINT statement. For more
information about maps, see the UniVerse NLS Guide.

Example

The following example prints the string ALPHA followed by a delay of 1 second, then the letters in the
variable X. The printing of each letter is followed by a delay of one tenth of a second.

 X="A$<100>B$<100>C$<100>D$<100>E"
 TPRINT "ALPHA$<1000.1> ":X

This is the program output:

ALPHA ABCDE

Chapter 1: Statements and functions

430

TRANS function
Use the TRANS function to return the contents of a field or a record in a UniVerse file. TRANS opens
the file, reads the record, and extracts the specified data.

Syntax

TRANS ([DICT] filename, record.ID, field#, control.code)

filename is an expression that evaluates to the name of the remote file. If TRANS cannot open the file,
a run-time error occurs, and TRANS returns an empty string.

record.ID is an expression that evaluates to the ID of the record to be accessed. If record.ID is
multivalued, the translation occurs for each record ID and the result is multivalued (system delimiters
separate data translated from each record).

field# is an expression that evaluates to the number of the field from which the data is to be extracted.
If field# is -1, the entire record is returned, except for the record ID.

control.code is an expression that evaluates to a code specifying what action to take if data is not
found or is the null value. The possible control codes are:

Code Description

X (Default) Returns an empty string if the record does not exist or data cannot be
found.

V Returns an empty string and produces an error message if the record does not
exist or data cannot be found.

C Returns the value of record.ID if the record does not exist or data cannot be
found.

N Returns the value of record.ID if the null value is found.

The returned value is lowered. For example, value marks in the original field become subvalue marks
in the returned value. For more information, see the LOWER function, on page 255.

If filename, record.ID, or field# evaluates to the null value, the TRANS function fails and the program
terminates with a run-time error message. If control.code evaluates to the null value, null is ignored
and X is used.

The TRANS function is the same as the XLATE function.

PI_TRANSMARKS uvconfig parameter

When the PI_TRANSMARKS uvconfig parameter is applied, the TRANS function will respect the PIOPEN
flavor rules and not change characters 251 and below.

▪ If PI_TRANSMARKS is set to 0 (Default), there is no change in the TRANS function behavior.

▪ If PI_TRANSMARKS is set to 1, the TRANS function will not lower characters 251 thru 248.

Example

X=TRANS("VOC","EX.BASIC",1,"X")
 PRINT "X= ":X
 *
 FIRST=TRANS("SUN.MEMBER","6100",2,"X")

LAST=TRANS("SUN.MEMBER","6100",1,"X")

transaction statements

431

 PRINT "NAME IS ":FIRST:" ":LAST

This is the program output:

X= F BASIC examples file
 NAME IS BOB MASTERS

transaction statements
Syntax

BEGIN TRANSACTION
 [statements] { COMMIT [WORK] | ROLLBACK [WORK] }
 [statements] [{ COMMIT [WORK] | ROLLBACK [WORK] }
 [statements] . . .]
 END TRANSACTION

Syntax (PIOPEN)

TRANSACTION START
 {THEN statements [ELSE statements] | ELSE statements}
 TRANSACTION COMMIT
 {THEN statements [ELSE statements] | ELSE statements}
 TRANSACTION ABORT

Use transaction statements to treat a sequence of file I/O operations as one logical operation with
respect to recovery and visibility to other users. These operations can include file I/O operations or
subtransactions.

Note: BASIC accepts PI/open syntax in addition to UniVerse syntax. You cannot mix both types of
syntax within a program.

For more information about transaction statements, refer to UniVerse BASIC.

TRANSACTION ABORT statement
Use the TRANSACTION ABORT statement to cancel all file I/O changes made during a transaction.

You can use the TRANSACTION ABORT statement in a transaction without a TRANSACTION COMMIT
statement to review the results of a possible change. Doing so does not affect the parent transaction
or the database.

After the transaction ends, execution continues with the statement following the TRANSACTION
ABORT statement.

Syntax

TRANSACTION ABORT

Chapter 1: Statements and functions

432

Example

The following example shows the use of the TRANSACTION ABORT statement to terminate a
transaction if both the ACCOUNTS RECEIVABLE file and the INVENTORY file cannot be successfully
updated:

PROMPT ''
 OPEN 'ACC.RECV' TO ACC.RECV ELSE STOP 'NO OPEN ACC.RECV'
 OPEN 'INVENTORY' TO INVENTORY ELSE STOP 'NO OPEN INVENTORY'

 PRINT 'Customer Id : ':
 INPUT CUST.ID
 PRINT 'Item No. : ':
 INPUT ITEM
 PRINT 'Amount : ':
 INPUT AMOUNT

 * Start a transaction to ensure both or neither records
 * updated
 TRANSACTION START ELSE STOP 'Transaction start failed.'
 * Read customer record from accounts receivable
 READU ACT.REC FROM ACC.RECV, CUST.ID
 ON ERROR
 STOP 'Error reading ':CUST.ID:' from ACC.RECV file.'
 END LOCKED
 * Could not lock record so ABORT transaction
 TRANSACTION ABORT
 STOP 'Record ':CUST.ID:' on file ACC.RECV locked by user ':STATUS()
 END THEN
 * Build new record
 ACT.REC<1,-1> = ITEM:@SM:AMOUNT
 ACT.REC<2> = ACT.REC<2> + AMOUNT
 END ELSE
 * Create new record
 ACT.REC = ITEM:@SM:AMOUNT:@FM:AMOUNT
 END
 * Read item record from inventory
 READU INV.REC FROM INVENTORY, ITEM
 ON ERROR
 STOP 'Error reading ':ITEM:' from INVENTORY file.'
 END LOCKED
 * Could not lock record so ABORT transaction
 TRANSACTION ABORT
 STOP 'Record ':ITEM:' on file INVENTORY locked by user ':STATUS()
 END THEN
 * Build new record
 INV.REC<1> = INV.REC<1> - 1
 INV.REC<2> = INV.REC<2> - AMOUNT
 END ELSE
 STOP 'Record ':ITEM:' is not on file INVENTORY.'
 END
 * Write updated records to accounts receivable and inventory
 WRITEU ACT.REC TO ACC.RECV, CUST.ID
 WRITEU INV.REC TO INVENTORY, ITEM

 TRANSACTION COMMIT ELSE STOP 'Transaction commit failed.'

 END

TRANSACTION COMMIT statement

433

TRANSACTION COMMIT statement
Use the TRANSACTION COMMIT statement to commit all file I/O changes made during a transaction.

The TRANSACTION COMMIT statement can either succeed or fail. If the TRANSACTION COMMIT
statement succeeds, the THEN statements are executed; any ELSE statements are ignored. If the
TRANSACTION COMMIT statement fails, the ELSE statements, if present, are executed, and control is
transferred to the statement following the TRANSACTION COMMIT statement.

Syntax

TRANSACTION COMMIT
 {THEN statements [ELSE statements] | ELSE statements}

TRANSACTION START statement
Use the TRANSACTION START statement to begin a new transaction.

Syntax

TRANSACTION START
 {THEN statements [ELSE statements] | ELSE statements}

THEN and ELSE clauses

You must have a THEN clause or an ELSE clause, or both, in a TRANSACTION START statement.

If the TRANSACTION START statement successfully begins a transaction, the statements in the THEN
clause are executed. If for some reason UniVerse is unable to start the transaction, a fatal error occurs,
and you are returned to the UniVerse prompt.

TRIM function
Use the TRIM function to remove unwanted characters in expression.

Syntax

TRIM (expression [,character [,option]])

If only expression is specified, multiple occurrences of spaces and tabs are reduced to a single tab or
space, and all leading and trailing spaces and tabs are removed. If expression evaluates to one or more
space characters, TRIM returns an empty string.

character specifies a character other than a space or a tab. If only expression and character are
specified, multiple occurrences of character are replaced with a single occurrence, and leading and
trailing occurrences of character are removed.

option specifies the type of trim operation to be performed:

Option Description

A Remove all occurrences of character
B Remove both leading and trailing occurrences of character

Chapter 1: Statements and functions

434

Option Description

D Remove leading, trailing, and redundant white space characters
E Remove trailing white space characters
F Remove leading white space characters
L Remove all leading occurrences of character
R Remove leading, trailing, and redundant occurrences of character
T Remove all trailing occurrences of character

If expression evaluates to the null value, null is returned. If option evaluates to the null value, null is
ignored and option R is assumed. If character evaluates to the null value, the TRIM function fails and
the program terminates with a run-time error message.

If NLS is enabled, you can use TRIM to remove other white space characters such as Unicode values
0x2000 through 0x200B, 0x00A0, and 0x3000, marked as TRIMMABLE in the NLS.LC.CTYPE file entry for
the specified locale. For more information about Unicode values, see the UniVerse NLS Guide.

Example

A=" Now is the time for all good men to"
 PRINT A
 PRINT TRIM(A)

This is the program output:

 Now is the time for all good men to
 Now is the time for all good men to

TRIMB function
Use the TRIMB function to remove all trailing spaces and tabs from expression. All other spaces or tabs
in expression are left intact. If expression evaluates to the null value, null is returned.

If NLS is enabled, you can use TRIMB to remove white space characters such as Unicode values
0x2000 through 0x200B, 0x00A0, and 0x3000, marked as TRIMMABLE in the NLS.LC.CTYPE file entry for
the specified locale. For more information about Unicode values, see the UniVerse NLS Guide.

Syntax

TRIMB (expression)

Example

A=" THIS IS A SAMPLE STRING "
 PRINT "'":A:"'": " IS THE STRING"
 PRINT "'":TRIMB(A):"'":" IS WHAT TRIMB DOES"
 END

This is the program output:

' THIS IS A SAMPLE STRING ' IS THE STRING
 ' THIS IS A SAMPLE STRING' IS WHAT TRIMB DOES

TRIMBS function

435

TRIMBS function
Use the TRIMBS function to remove all trailing spaces and tabs from each element of dynamic.array.

TRIMBS removes all trailing spaces and tabs from each element and reduces multiple occurrences of
spaces and tabs to a single space or tab.

If dynamic.array evaluates to the null value, null is returned. If any element of dynamic.array is null,
null is returned for that value.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

If NLS is enabled, you can use TRIMBS to remove white space characters such as Unicode values
0x2000 through 0x200B, 0x00A0, and 0x3000, marked as TRIMMABLE in the NLS.LC.CTYPE file entry for
the specified locale. For more information about Unicode values, see the UniVerse NLS Guide.

Syntax

TRIMBS (dynamic.array)

CALL -TRIMBS (return.array, dynamic.array)

TRIMF function
Use the TRIMF function to remove all leading spaces and tabs from expression. All other spaces or
tabs in expression are left intact. If expression evaluates to the null value, null is returned.

If NLS is enabled, you can use TRIMF to remove white space characters such as Unicode values
0x2000 through 0x200B, 0x00A0, and 0x3000, marked as TRIMMABLE in the NLS.LC.CTYPE file entry for
the specified locale. For more information about Unicode values, see the UniVerse NLS Guide.

Syntax

TRIMF (expression)

Example

A=" THIS IS A SAMPLE STRING "
 PRINT "'":A:"'":" IS THE STRING"
 PRINT "'":TRIMF(A):"'":" IS WHAT TRIMF DOES"
 END

This is the program output:

' THIS IS A SAMPLE STRING ' IS THE STRING
 'THIS IS A SAMPLE STRING ' IS WHAT TRIMF DOES

TRIMFS function
Use the TRIMFS function to remove all leading spaces and tabs from each element of dynamic.array.

TRIMFS removes all leading spaces and tabs from each element and reduces multiple occurrences of
spaces and tabs to a single space or tab.

If dynamic.array evaluates to the null value, null is returned. If any element of dynamic.array is null,
null is returned for that value.

Chapter 1: Statements and functions

436

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

If NLS is enabled, you can use TRIMFS to remove white space characters such as Unicode values
0x2000 through 0x200B, 0x00A0, and 0x3000, marked as TRIMMABLE in the NLS.LC.CTYPE file entry for
the specified locale. For more information about Unicode values, see the UniVerse NLS Guide.

Syntax

TRIMFS (dynamic.array)

CALL -TRIMFS (return.array, dynamic.array)

TRIMS function
Use the TRIMS function to remove unwanted spaces and tabs from each element of dynamic.array.

TRIMS removes all leading and trailing spaces and tabs from each element and reduces multiple
occurrences of spaces and tabs to a single space or tab.

If dynamic.array evaluates to the null value, null is returned. If any element of dynamic.array is null,
null is returned for that value.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

If NLS is enabled, you can use TRIMS to remove white space characters such as Unicode values 0x2000
through 0x200B, 0x00A0, and 0x3000, marked as TRIMMABLE in the NLS.LC.CTYPE file entry for the
specified locale. For more information about Unicode values, see the UniVerse NLS Guide.

Syntax

TRIMS (dynamic.array)

CALL -TRIMS (return.array, dynamic.array)

TTYCTL statement
Use the TTYCTL statement to set terminal device characteristics on Berkeley terminal drivers. code#
specifies the action to take.

This statement is not supported on UNIX System V or Windows NT.

Syntax

TTYCTL file.variable, code#
 {THEN statements [ELSE statements] | ELSE statements}

The following table lists the available actions:

Argument Action

0 No operation, determines if a device is a TTY.
1 Sets HUP (hang up data line) on close of file.
2 Clears HUP on close of file.
3 Sets exclusive use flag for TTY.
4 Resets exclusive use flag.
5 Sets the BREAK.

TTYGET statement

437

Argument Action

6 Clears the BREAK.
7 Turns on DTR (Data Terminal Ready).
8 Turns off DTR.
9 Flushes input and output buffers.
10 Waits for the output buffer to drain.

file.variable specifies a file previously opened for sequential access to a terminal device. If file.variable
evaluates to the null value, the TTYCTL statement fails and the program terminates with a run-time
error message.

If the action is taken, the THEN statements are executed. If no THEN statements are present, program
execution continues with the next statement.

If an error is encountered during the execution of the TTYCTL operation, or if the file variable is not
open to a terminal device, the ELSE statements are executed; any THEN statements are ignored.

Example

OPENSEQ 'FILE.E', 'RECORD4' TO FILE ELSE ABORT
 *
 TTYCTL FILE, 0
 THEN PRINT 'THE FILE IS A TTY'
 ELSE PRINT 'THE FILE IS NOT A TTY'

This is the program output:

THE FILE IS NOT A TTY

TTYGET statement
Use the TTYGET statement to assign the characteristics of a terminal, line printer channel, or tape
unit as a dynamic array to variable. If the FROM clause is omitted, a dynamic array of the terminal
characteristics for your terminal is assigned to variable.

Syntax

TTYGET variable [FROM {file.variable | LPTR [n] | MTU [n] }]
{THEN statements [ELSE statements] | ELSE statements}

file.variable is a terminal opened for sequential processing with the OPENDEV statement or OPENSEQ
statement. If file.variable is specified, the terminal characteristics for the specified terminal are
retrieved.

n specifies a logical print channel with LPTR or a tape unit with MTU. (You cannot specify a tape unit
on Windows NT.) If n is specified, the characteristics for the print channel or tape unit are retrieved. For
logical print channels n is in the range of 0 through 225; the default is 0. For tape units n is in the range
of 0 through 7; the default is 0.

If the terminal characteristics are retrieved, the THEN statements are executed.

If the device does not exist or cannot be opened, or if no dynamic array is returned, the ELSE
statements are executed; any THEN statements are ignored.

If either file.variable or nevaluates to the null value, the TTYGET statement fails and the program
terminates with a run-time error message.

Chapter 1: Statements and functions

438

The best way to access the information in the dynamic array is to include the BASIC code
UNIVERSE.INCLUDE TTY. The syntax for including this file is:

$INCLUDE UNIVERSE.INCLUDE TTY

This file equates each value of the dynamic array to a name, so that each value can be easily accessed
in your program. To take advantage of this code you must call variable tty$. Once this code has been
included in your program, you can use the names to access the values of the dynamic array. To set
values for a terminal line, use the TTYSET statement.

The following table lists the equate names to the values of the dynamic array, and describes each
value. The final columns indicate which values are available on different operating systems: SV
indicates System V, B indicates Berkeley UNIX, and NT indicates Windows NT.

Value Name Description Availability

SV B NT
Field 1
1 mode.type One of these modes:

MODE$LINE or 0 = line

MODE$RAW or 1 = raw

MODE$CHAR or 2 = character

MODE$EMULATE or 3 = emulated

3

3

3

3

3

3

3

3

3

3

2 mode.min Minimum number of characters before
input.

3 3 3

3 mode.time Minimum time in milliseconds before
input.

3 3 3

Field 2
1 cc.intr Interrupt character. -1 undefined. 3 3 3
2 cc.quit Quit character. -1 undefined. 3 3
3 cc.susp Suspend character. -1 undefined. 3 3
4 cc.dsusp dsusp character. -1 undefined. 3
5 cc.switch Switch character. -1 undefined. 3
6 cc.erase erase character. -1 undefined. 3 3 3
7 cc.werase werase character. -1 undefined. 3
8 cc.kill Kill character. -1 undefined. 3 3 3
9 cc.lnext lnext character. -1 undefined. 3
10 cc.rprint rprint character. -1 undefined. 3 3
11 cc.eof eof character. -1 undefined. 3 3
12 cc.eol eol character. -1 undefined. 3 3
13 cc.eol2 eol2 character. -1 undefined. 3
14 cc.flush Flush character. -1 undefined. 3
15 cc.start Start character. -1 undefined.

On System V, ^Q only.

3 3 3

16 cc.stop Stop character. -1 undefined.

On System V, ^S only.

3 3 3

17 cc.lcont lcont character. -1 undefined.
Emulated only.

3 3 3

TTYGET statement

439

Value Name Description Availability

18 cc.fmc fmc character. -1 undefined. Emulated
only.

3 3 3

19 cc.vmc vmc character. -1 undefined. Emulated
only.

3 3 3

20 cc.smc smc character. -1 undefined. Emulated
only.

3 3 3

21 ccdel Delete character. 3 3
Field 3
1 carrier.receive Terminal can receive data. 3 3 3
2 carrier.hangup Hang up upon close of terminal. 3 3
3 carrier.local Terminal is a local line. 3 3 3
Field 4
1 case.ucin Convert lowercase to uppercase on

input.
3 3

2 case.ucout Convert lowercase to uppercase on
output.

3 3

3 case.xcase Uppercase is preceded by a backslash
(\) to

distinguish it from lowercase.

3 3

4 case.invert Invert case on input. Emulated only. 3 3 3
Field 5
1 crmode.inlcr Convert LINEFEED to RETURN on

input.
3 3

2 crmode.igncr Ignore RETURN on input. 3 3
3 crmode.icrnl Convert RETURN to LINEFEED on

input.
3 3

4 crmode.onlcr Convert LINEFEED to LINEFEED,
RETURN on output.

3 3

5 crmode.ocrnl Convert RETURN to LINEFEED on
output.

3 3

6 crmode.onocr Prohibit output of RETURN when
cursor

is in column 0.

3 3

7 crmode.onlret LINEFEED performs RETURN function. 3 3
Field 6
1 delay.bs Set backspace delay. 3 3
2 delay.cr Set RETURN delay. 3 3
3 delay.ff Set formfeed delay. 3 3
4 delay.lf Set LINEFEED delay. 3 3
5 delay.vt Set vertical tab delay. 3 3
6 delay.tab Set tab delay. 3 3
7 delay.fill 0 = time delay

1 = fill with empty strings

2 = fill with DELETEs

3 3

Field 7

Chapter 1: Statements and functions

440

Value Name Description Availability

1 echo.on Set terminal echo on. 3 3 3
2 echo.erase ECHOE$ERASE or 0 = print echo

character

ECHOE$BS or 1 = echo as backspace

ECHOE$BSB or 2 = echo as backspace,
space, backspace

ECHOE$PRINTER or 3 = echo as a
printer

3 3

3 echo.kill ECHOK$KILL or 0 = kill as kill character

ECHOK$LF or 1 = kill as RETURN,
LINEFEED

ECHOK$ERASE or 2 = kill as series of
erases

3 3

4 echo.ctrl Set control to echo as ^ character 3 3
5 echo.lf When echo is off, echo RETURN as

RETURN, LINEFEED

3 3 3

Field 8
1 handshake.xon 1 = turns on X-ON/X-OFF protocol

0 = turns off X-ON/X-OFF protocol

3 3 3

2 handshake. startany 1 = any characters acts as X-ON

0 = only X-ON character acts as X-ON

3 3

3 handshake. tandem 1 = when input buffer is nearly full, X-
OFF is sent

0 = turns off automatic X-OFF, X-ON
mode

3 3 3

4 handshake.dtr 1 = turns on DTR

0 = turns off DTR

3 3

Field 9
1 output.post Output postprocessing occurs. 3 3
2 output.tilde Special output processing for tilde. 3 3
3 output.bg Stop background processes at output. 3 3
4 output.cs Output clearscreen before reports.

Emulated

only.

3 3

5 output.tab Set output tab expansion. 3 3
Field 10
1 protocol.line Line protocol 3 3

TTYSET statement

441

Value Name Description Availability

2 protocol.baud 1 = 50 9 = 1200

2 = 75 10 = 1800

3 = 110 11 = 2400

4 = 134 12 = 4800

5 = 150 13 = 9600

6 = 200 14 or EXTA = 19200

7 = 300 15 = EXTB

8 = 600

3 3 3

3 protocol.data Character size:

5 = 5 bits 7 = 7 bits

6 = 6 bits 8 = 8 bits

3 3 3

4 protocol.stop 2 = 2 stopbits 1 = 1 stopbit 3 3 3
5 protocol.output Output parity:

0 = no parity 1 = even parity

2 = odd parity

3

3

3

3

3

3

3
6 protocol.input Input parity:

0 = disable input parity checking

1 = enable input parity checking

2 = mark parity errors 3 = mark parity
errors with a null 4 = ignore parity
errors

3

3

3

3

3

3

3

3

3

3

3

3

3

3

7 protocol.strip 1 = strip to 7 bits 0 = 8 bits 3 3
Field 11
1 signals.enable Enable signal keys: Interrupt,

Suspend, Quit.
3 3

2 signals.flush Flush type-ahead buffer. 3 3
3 signals.brkkey 0 = break ignored

1 = break as interrupt

2 = break as null

3 3

TTYSET statement
Use the TTYSET statement to set the characteristics of a terminal, line printer channel, or tape unit.
If only dynamic.array is specified, the terminal characteristics for your terminal are set based on
the contents of dynamic.array. dynamic.array is a dynamic array of eleven fields, each of which has
multiple values.

A description of the expected contents of each value of dynamic.array is given in the TTYGET
statement, on page 437.

Syntax

TTYSET dynamic.array [ON {file.variable | LPTR [n] | MTU [n] }]

Chapter 1: Statements and functions

442

 {THEN statements [ELSE statements] | ELSE statements}

file.variable is a terminal opened for sequential processing with the OPENDEV statement or OPENSEQ
statement. If file.variable is specified, the terminal characteristics for the specified terminal are set.

n specifies a logical print channel with LPTR or a tape unit with MTU. If n is specified, the
characteristics for the print channel or tape unit are set. n is in the range of 0 through 225 for logical
print channels; the default is 0. n is in the range of 0 through 7 for tape units; the default is 0. On
Windows NT you cannot specify a tape unit.

If the terminal characteristics are set, the THEN statements are executed.

If the device does not exist or cannot be opened, or if no dynamic array is returned, the ELSE
statements are executed; any THEN statements are ignored.

If dynamic.array, file.variable, or n evaluates to the null value, the TTYSET statement fails and the
program terminates with a run-time error message.

To build dynamic.array, get the current values of the terminal line using the TTYGET statement,
manipulate the values, and reset them with the TTYSET statement. The best way to access the
information in the dynamic array is to include the BASIC code UNIVERSE.INCLUDE TTY. The syntax for
including this file is:

$INCLUDE UNIVERSE.INCLUDE TTY

This file equates each value of variable from the TTYGET statement with a name, so that each value
can be easily accessed in your program. To take advantage of this code you must call variable tty$.
Once this code is included in your program, you can use the names to access the values of the dynamic
array. The TTYGET Statement Values table lists the names equated to the values of the dynamic array
and describes the values.

Timeout handling

You can set the MODE.MIN and MODE.TIME values to define timeouts for read operations over a
communications line. MODE.MIN specifies the minimum number of characters to be received.
MODE.TIME specifies time in tenths of a second. The two values interact to provide four cases that can
be used as follows.

Intercharacter timer

When you set the values of both MODE.MIN and MODE.TIME to greater than 0, MODE.TIME specifies the
maximum time interval allowed between successive characters received by the communication line in
tenths of a second. Timing begins only after the first character is received.

Blocking read

When you set the value of MODE.MIN to greater than 0 and MODE.TIME to 0, no time limit is set, so the
read operation waits until the specified number of characters have been received (or a newline in the
case of READSEQ statement).

Read timer

When you set the value of MODE.MIN to 0 and MODE.TIME to greater than 0, MODE.TIME specifies how
long the read operation waits for a character to arrive before timing out. If no characters are received
in the time specified, the READSEQ and READBLK statement use the ELSE clause if there is one. If you
use the NOBUF statement to turn off buffering, the timer is reset after each character is received.

Nonblocking read

When you set the values of both MODE.MIN and MODE.TIME to 0, data is read as it becomes available.
The read operation returns immediately.

UDOArrayAppendItem

443

▪ If any characters are received:
▫ READBLK returns as many characters as specified in the blocksize argument, or all the

characters received, whichever is fewer.

▫ READSEQ returns characters up to the first newline, or all the characters received if no newline
is received.

▪ If no characters are received, READSEQ and READBLK use the ELSE clause if there is one.

UDOArrayAppendItem
The UDOArrayAppendItem() function appends the item you specify to the UDO array.

Syntax

UDOArrayAppendItem(udoHandle, value)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO array.
value The value of the array item you are appending.

If the new array item is of UDO_OBJECT or UDO_ARRAY type, it must be a stand-alone object or array,
and it must not be the ancestor of the current UDO object.

UDOArrayDeleteItem
The UDOArrayDeleteItem() function deletes the array item you specify by its index.

Syntax

UDOArrayDeleteItem(udoHandle,index)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO array.
index The index of the item to be deleted. Must be a positive integer.

If the array item is of UDO_ARRAY or UDO_OBJECT type, UDO will make either the UDO object or a
UDO array as stand-alone and will remove it from memory if it is not referenced by any UniVerse BASIC
variable.

UDOArrayGetItem
The UDOArrayGetItem() function returns a UDO array item by its index.

Chapter 1: Statements and functions

444

Syntax

UDOArrayGetItem(udoHandle, index, value[out], value_type[out])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO array.
index The position of the UDO array index returned. Must be a positive integer.
value[out] The UDO value type of the array item. If the array item is of UDO_OBJECT or

UDO_ARRAY type, the output variable “item” holds only a reference to the
object or array. Further changes to the object or array through this reference,
such as updating a property value or removing an array item, affect the original
item as well.

If the array item is of UDO_STRING, UDO_NUMBER, UDO_TRUE, UDO_FALSE or
UDO_NULL type, the output variable “item” holds the actual value instead of a
reference. Further changes to this variable do not affect the original property
value.

value_type[out] The type of the value returned by value.

UDOArrayGetNextItem
The UDOArrayGetNextItem() function returns the next UDO array item relative to the current
position, which is the position of the array the last time it was accessed by this function. The initial
position is 1.

Syntax

UDOArrayGetNextItem(udoHandle, value[out], type[out])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO array.
value[out] The value of the item.
type[out] The type of the value returned by value.

After exhausting the entire array, the UDOArrayGetNextItem() function returns UDO_ERROR and
the current position is reset to 1.

We recommend that you not modify the array when calling the UDOArrayGetNextItem() function.
If you must modify the array, remember that UDOArrayGetNextItem() always returns the item at
the current position +1.

UDOArrayGetSize
The UDOArrayGetSize() function gets the size of a UDO array.

UDOArrayInsertItem

445

Syntax

UDOArrayGetSize(udoHandle, size[out])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO array.
size The size of the UDO array.

UDOArrayInsertItem
The UDOArrayInsertItem() function inserts a UDO array element at the position you specify by
index.

Syntax

UDOArrayInsertItem(udoHandle, index, value)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO array.
index The position what you want to insert the item. Must be a positive integer.
value The value of the array item you are inserting.

If the index is larger than the size of the array, UDO will pad the array with UDO_NULL values before it
inserts the array item into the array.

UDOArraySetItem
The UDOArraySetItem() function sets or inserts a UDO array element at the position you specify.

Syntax

UDOArraySetItem(udoHandle, index, value)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO array.
index The position what you want to set or insert the element. Must be a positive

integer.
value The value of the array item you are setting.

Chapter 1: Statements and functions

446

If the index is larger than the size of the array, UDO will pad the array with UDO_NULL values before it
inserts the array item into the array.

Otherwise, if the old array item is of UDO_OBJECT or UDO_ARRAY type, either an object or an array
will be marked as stand-alone and removed from memory if it is not referenced by any UniVerse BASIC
variable.

If the new array item is of UDO_OBJECT or UDO_ARRAY type, it must be a stand-alone object or array
and it must not be the ancestor of the current UDO object.

UDOClone
The UDOClone function clones a UDO object or array so that changes to the new object or array will
not affect the original object.

Syntax

UDOClone(udoHandle, newUdoHandle[out])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO array.
newUdoHandle When the UDOClone function returns successfully, newUDOHandle points to a

stand-alone object or array that is the exact replication of the original object.

UDOCreate
The UDOCreate function creates a UDO item of the type you specify.

Syntax

UDOCreate(udoType, udoHandle[out])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoType Must be one of UDO_OBJECT, UDO_ARRAY, UDO_TRUE, UDO_FALSE, or
UDO_NULL.

udoHandle If udoType is UDO_OBJECT, udoHandle holds an empty object.

If udoType is UDO_ARRAY, udoHandle holds an empty array.

If udoType is UDO_TRUE, UDO_FALSE, or UDO_NULL, udoHandle.

UDODeleteProperty
The UDODeleteProperty function deletes a property from the UDO object.

UDOFree

447

Syntax

UDODeleteProperty(udoHandle, name)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO object.
name The name of the property. If the property is of UDO_OBJECT or UDO_ARRAY

type, its value (either a UDO object or a UDO array) is marked as stand-alone
and will be removed from memory if it is not referenced by any UniVerse BASIC
variable.

UDOFree
The UDOFree function forcefully removes a UDO object or array from memory.

Syntax

UDOFree(udoHandle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a stand-alone UDO object or array.

UDO will clear all UniVerse BASIC variables that reference the object or array and its descendants. Any
attempt to access these variables, other than assigning a new value, fails.

You should always call this function when a UDO object or array is no longer needed. This avoids a
potential memory leak.

UDOGetLastError
If the previous UDO call returned UDO_ERROR, use the UDOGetLastError() function to return the
error code and error message.

Syntax

UDOGetLastError(errorCode[out], errorMessage[out])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

errorCode The UDO error code.
errorMessage The UDO error message.

Chapter 1: Statements and functions

448

UDOGetNextProperty
The UDOGetNextProperty function provides a convenient way to walk through all the properties
in a UDO object, without needing to know the property names in advance.

When all properties on the UDO object are exhausted, the UDOGetNextProperty() function returns
UDO_ERROR, then goes back to the first property.

We recommend that you avoid modifying the properties on a UDO object when calling the
UDOGetNextProperty() to retrieve the properties.

Syntax

UDOGetNextProperty(udoHandle, name[out], value[out], value_type[out])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udohandle Must be a UDO type object.
name[out] The name of the array that holds the names of all the properties in the UDO

object.
value[out] If the property is a UDO_OBJECT or UDO_ARRAY type (it is either a UDO object

or an array), the output value holds only a reference to the object or array.
Further changes to the object or array through this reference, such as updating
a property value on the object or removing an array item, affects the original
object as well.

If the property is a UDO_STRING, UDO_NUMBER, UDO_TRUE, UDO_FALSE, or
UDO_NULL type, the output variable value holds the actual value instead of a
reference. Further changes to this variable do not affect the original property
value.

value_type[out] The type of the value returned by value.

UDOGetOption
The UDOGetOption function gets the value of a UDO option.

Syntax

UDOGetOption(option, value[out])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

option The UDOOPTION you want to use.
value[out] A string type option value.

UDOGetProperty

449

UDOGetProperty
The UDOGetProperty function returns the value and type of property on the UDO object.

Syntax

UDOGetProperty(udoHandle, name, value[out], value_type[out])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO object.
name The name of the property.
value[out] If the property is a UDO_OBJECT or UDO_ARRAY type (it is either a UDO object

or an array), the output value holds only a reference to the object or array.
Further changes to the object or array through this reference, such as updating
a property value on the object or removing an array item, affects the original
object as well.

If the property is a UDO_STRING, UDO_NUMBER, UDO_TRUE, UDO_FALSE, or
UDO_NULL type, the output variable value holds the actual value instead of a
reference. Further changes to this variable do not affect the original property
value.

value_type[out] The type of the value returned by value.

UDOGetPropertyNames
The UDOGetPropertyNames function returns a UDO array that holds the names of all the
properties in the UDO object.

Syntax

UDOGetPropertyNames(udoHandle, udoArray[out])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO object.
udoArray[out] The UDO array to hold the names of all the properties in the UDO object.

UDOGetType
The UDOGetType() function gets the UDO value type of a UniVerse BASIC variable.

Chapter 1: Statements and functions

450

Syntax

UDOGetType(udoHandle, type[out)

Parameters

The following table describes each parameter of the syntax.

Parameters Description

udoHandle Can be a UDO handle, or a UniVerse BASIC string or number.
type[out] The UDO value type.

UDOIsTypeOf
The UDOIsTypeOf() function tests the UDO value type of a UniVerse BASIC variable.

Syntax

UDOIsTypeOf(udoHandle, type)

Parameters

The following table describes each parameter of the syntax.

Parameters Description

udoHandle Can be a UDO handle, or a UniVerse BASIC string or number.
type[in] The UDO value type.

UDORead
The UDORead function creates a UDO object from a JSON string or XMLstring.

Syntax

UDORead(inputString, inputType, udoHandle[out])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

inputString A JSON or XML string.
inputype UDOFORMAT_JSON or UDOFORMAT_XML.
udoHandle [out] The UniVerse BASIC variable that holds a reference to the UDO object upon

successful return of the function.

UDOSetOption
Sets the options for the UDO API.

UDOSetProperty

451

Syntax

UDOSetOption(option, value)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

option The UDOOPTION you want to use.
value A string type option value.

UDOSetProperty
The UDOSetProperty function creates or updates a property on a UDO object.

Syntax

UDOSetProperty(udoHandle, name, value)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO object.
name The name of the property. If the property does not exist, UDO creates a new

property for the object.

If the property exists, the new value replaces the old value.

If the old property is of UDO_OBJECT or UDO_ARRAY type, the old value, either
a UDO object or an array, is marked as stand-alone and will be removed from
memory if it is not referenced by any UniVerse BASIC variable.

If the new value is of UDO_OBJECT or UDO_ARRAY type, it must be a stand-
alone object or array, and it must not be the ancestor of the current UDO object.

value The value of the property.

UDOWrite
Writes a UDO object in JSON or XML format.

Syntax

UDOWrite(udoHandle, outputType, outputString[out])

Parameters

The following table describes each parameter of the syntax.

Parameter Description

udoHandle Must be a UDO type variable.

Chapter 1: Statements and functions

452

Parameter Description

outputType UDOFORMAT_JSON or UDOFORMAT_XML.
outputString [out] The string that holds the serialized output.

UNASSIGNED function
Use the UNASSIGNED function to determine if variable is unassigned. UNASSIGNED returns 1 (true) if
variable is unassigned. It returns 0 (false) if variable is assigned a value, including the null value.

Syntax

UNASSIGNED (variable)

Example

A = "15 STATE STREET"
 C = 23
 X = UNASSIGNED(A)
 Y = UNASSIGNED(B)
 Z = UNASSIGNED(C)
 PRINT X,Y,Z

This is the program output:

0 1 0

UNICHAR function
Use the UNICHAR function to generate a single character from a Unicode value.

Syntax

UNICHAR (unicode)

unicode is a decimal number from 0 through 65535 that is the value of the character you want to
generate. If unicode is invalid, an empty string is returned. If unicode evaluates to the null value, null is
returned.

The UNICHAR function operates the same way whether NLS mode is enabled or not.

Note: Use BASIC @variables to generate UniVerse system delimiters. Do not use the UNICHAR
function.

UNICHARS function
Use the UNICHARS function to generate a dynamic array of characters from a dynamic array of
Unicode values.

Syntax

UNICHARS (dynamic.array)

UNISEQ function

453

dynamic.array is an array of decimal Unicode values separated by system delimiters. If any element of
dynamic.array is invalid, an empty string is returned for that element. If dynamic.array evaluates to the
null value, null is returned. If any element of dynamic.array is null, null is returned for that element.

The UNICHARS function operates the same way whether NLS mode is enabled or not.

Note: Use BASIC @variables to generate UniVerse system delimiters. Do not use the UNICHARS
function.

UNISEQ function
Use the UNISEQ function to generate a Unicode value from expression.

Syntax

UNISEQ (expression)

The first character of expression is converted to its Unicode value, that is, a hexadecimal value in the
range 0x0000 through 0x1FFFF. If expression is invalid, for example, an incomplete internal string, an
empty string is returned. If expression evaluates to the null value, null is returned.

The UNISEQ function operates the same way whether NLS mode is enabled or not.

Warning: UNISEQ does not map system delimiters. For example, UNISEQ("û") returns 251
(0x00FB), and UNISEQ(@TM) returns 63739 (0xF8FB). The Unicode value returned is the internal
representation of the text mark character that is mapped to a unique area so that it is not confused
with any other character. Note that this behaves differently from SEQ(@TM), which returns 251.

For more information about Unicode values and tokens defined for system delimiters, see the UniVerse
NLS Guide.

UNISEQS function
Use the UNISEQS function to generate an array of Unicode values from a dynamic array of characters.

Syntax

UNISEQS (dynamic.array)

dynamic.array specifies an array of characters with the elements separated by system delimiters. The
first character of each element of dynamic.array is converted to its Unicode value, a hexadecimal value
in the range 0x0000 through 0x1FFFF. If any element of dynamic.array is invalid, an empty string is
returned for that element. If dynamic.array evaluates to the null value, null is returned. If any element
of dynamic.array is the null value, null is returned for that element.

The UNISEQS function operates the same way whether NLS mode is enabled or not.

Warning: UNISEQS does not map system delimiters. For example, UNISEQS("û") returns 251
(0x00FB), and UNISEQS(@TM) returns 63739 (0xF8FB). The Unicode value returned is the internal
representation of the text mark character that is mapped to a unique area so that it is not confused
with any other character. Note that this behaves differently from SEQ(@TM), which returns 251.

Chapter 1: Statements and functions

454

For more information about Unicode values and tokens defined for system delimiters, see the UniVerse
NLS Guide.

UNLOCK statement
Use the UNLOCK statement to release a process lock set by the LOCK statement.

Syntax

UNLOCK [expression]

expression specifies an integer from 0 through 63. If expression is not specified, all locks are released
(see the LOCK statement).

If expression evaluates to an integer outside the range of 0 through 63, an error message appears and
no action is taken.

If expression evaluates to the null value, the UNLOCK statement fails and the program terminates with
a run-time error message.

Examples

The following example unlocks execution lock 60:

UNLOCK 60

The next example unlocks all locks set during the current login session:

UNLOCK

The next example unlocks lock 50:

X=10
 UNLOCK 60-X

UPCASE function
Use the UPCASE function to change all lowercase letters in expression to uppercase. If expression
evaluates to the null value, null is returned.

UPCASE is equivalent to OCONV ("MCU").

If NLS is enabled, the UPCASE function uses the conventions specified by the Ctype category for the
NLS.LC.CTYPE file to determine what constitutes uppercase and lowercase. For more information
about the NLS.LC.CTYPE file, see the UniVerse NLS Guide.

Syntax

UPCASE (expression)

Example

A="This is an example of the UPCASE function: "
 PRINT A
 PRINT UPCASE(A)

UPRINT statement

455

This is the program output:

This is an example of the UPCASE function:
 THIS IS AN EXAMPLE OF THE UPCASE FUNCTION:

UPRINT statement
In NLS mode, use the UPRINT statement to print data that was mapped to an external format using
OCONV mapname. The UPRINT statement subsequently sends the mapped data to the screen, a line
printer, or another print file with no further mapping.

Syntax

UPRINT [ON print.channel] [print.list]

The ON clause specifies the logical print channel to use for output. print.channel is an expression that
evaluates to a number from –1 through 255. If you do not use the ON clause, logical print channel
0 is used, which prints to the user’s terminal if PRINTER OFF is set (see the PRINTER statement). If
print.channel evaluates to the null value, the PRINT statement fails and the program terminates with a
run-time error message. Logical print channel –1 prints the data on the screen, regardless of whether a
PRINTER ON statement has been executed.

You can specify HEADING statement, FOOTING statement, $PAGE statement, and PRINTER CLOSE
statements for each logical print channel. The contents of the print files are printed in order by logical
print channel number.

print.list can contain any BASIC expression. The elements of the list can be numeric or character
strings, variables, constants, or literal strings; the null value, however, cannot be printed. The list
can consist of a single expression or a series of expressions separated by commas (,) or colons (:) for
output formatting. If no print.list is designated, a blank line is printed.

Expressions separated by commas are printed at preset tab positions. The default tabstop setting is 10
characters. For information about changing the default setting, see the TABSTOP statement, on page
407. Use multiple commas together for multiple tabulations between expressions.

Expressions separated by colons are concatenated. That is, the expression following the colon is
printed immediately after the expression preceding the colon. To print a list without a LINEFEED and
RETURN, end print.list with a colon (:).

If NLS is disabled, the UPRINT statement behaves like the PRINT statement.

For more information about maps, see the UniVerse NLS Guide.

USERINFO function
Use the USERINFO function to get the pid, user number, and more for the pid or user number
specified.

Utilize the USERINFO.H include file to reference the return values, described in USERINFO.H, on page
456.

Syntax

USERINFO (code, value, userinfo)

Chapter 1: Statements and functions

456

Parameters

The following table describes each parameter of the syntax.

Parameter Description

code 1 is used when the value is a pid. 2 is used when the value is a @USERNO. [IN]
value If code is 1, value is a pid. If code is 2, the value is a @USERNO. [IN]

A dynamic array with the UniVerse session's user information stored in
attribute 1. The subvalue fields returned are:
1 @USERNO for user
2 Login ID
3 Pid
4 userType (phantom or terminal)
5 User ID (not the same as @USERNO)
6 TTY/Telnet
7 The IP address to be returned. If the process is started from a device-

licensing-aware client even though device licensing is not enabled
in the license configuration, the IP address can be returned. With
telnet sessions on UNIX and Linux platforms, the uvdls process
needs to be called. If the IP address cannot be determined then "N/
A" is returned.

8 Working directory
9 Logon time
10 Internal Pick date in local time
11 Number of seconds since midnight (local time)
12 Internal Pick date in UTC time

userinfo

13 Number of seconds since midnight (UTC time)

Return codes

The following table describes the status of each return code.

Return code Status

0 No results or invalid user number or pid
1 Success
-1 Invalid code value

USERINFO.H

You can use the USERINFO function to extract information from the USERINFO.H include file about
a particular session's details.

The following tokens can be used when calling the USERINFO function.

Value Token Description

1 UI$USER_NO @USERNO for user
2 UI$USER_NAME Login ID
3 UI$PID Pid
4 UI$USER_TYPE userType (phantom or terminal)
5 UI$USER_ID User ID (not the same as @USERNO)

WEOF statement

457

Value Token Description

6 UI$TTY TTY/Telnet
7 UI$IP_ADDR The IP address to be returned. If the process is started from a device-

licensing-aware client even though device licensing is not enabled in
the license configuration, the IP address can be returned. With telnet
sessions on UNIX and Linux platforms, the uvdls process needs
to be called. If the IP address cannot be determined then "N/A" is
returned.

8 UI$WORK_DIR Working directory
9 UI$LOGON_TIME Logon time
10 UI$LOCAL_DATE Internal Pick date in local time
11 UI$LOCAL_TIME Number of seconds since midnight (local time)
12 UI$UTC_DATE Internal Pick date in UTC time
13 UI$UTC_TIME Number of seconds since midnight (UTC time)

The following example examines the current USERINFO settings:

$INCLUDE UNIVERSE.INCLUDE USERINFO.H
CRT "SYS(51): ":SYSTEM(51)
RETCODE = USERINFO(2,@USERNO,RETDATA)
CRT "USER_NO: ":RETDATA<1,UI$USER_NO>
CRT "USER_NAME: ":RETDATA<1,UI$USER_NAME>
CRT "PID: ":RETDATA<1,UI$PID>
CRT "USER_TYPE: ":RETDATA<1,UI$USER_TYPE>
CRT "USER_ID: ":RETDATA<1,UI$USER_ID>
CRT "TTY: ":RETDATA<1,UI$TTY>
CRT "IP_ADDR: ":RETDATA<1,UI$IP_ADDR>
CRT "WORK_DIR: ":RETDATA<1,UI$WORK_DIR>
CRT "LOGON_TIME: ":RETDATA<1,UI$LOGON_TIME>
CRT "LOCAL_DATE: ":RETDATA<1,UI$LOCAL_DATE>

WEOF statement
Use the WEOF statement to write an end-of-file (EOF) mark to tape.

Syntax

WEOF [UNIT (mtu)] {THEN statements [ELSE statements] | ELSE statements}

The UNIT clause specifies the number of the tape drive unit. Tape unit 0 is used if no unit is specified.

mtu is an expression that evaluates to a three-digit code (decimal). Although the mtu expression is a
function of the UNIT clause, the WEOF statement uses only the third digit (the u). Its value must be in
the range of 0 through 7 (see the READT statement, on page 319 for details on the mtu expression). If
mtu evaluates to the null value, the WEOF statement fails and the program terminates with a run-time
error message.

Before a WEOF statement is executed, a tape drive unit must be attached (assigned) to the user.
Use the ASSIGN command to assign a tape unit to a user. If no tape unit is attached or if the unit
specification is incorrect, the ELSE statements are executed.

The STATUS function returns 1 if WEOF takes the ELSE clause, otherwise it returns 0.

Chapter 1: Statements and functions

458

Example

WEOF UNIT(007) ELSE PRINT "OPERATION NOT COMPLETED."

WEOFSEQ statement
Use the WEOFSEQ statement to write an end-of-file (EOF) mark in a file opened for sequential access.
The end-of-file mark is written at the current position and has the effect of truncating the file at this
point. Any subsequent READSEQ statement has its ELSE statements executed.

Syntax

WEOFSEQfile.variable [ON ERROR statements]

file.variable specifies a file opened for sequential access. If file.variable evaluates to the null value, the
WEOFSEQ statement fails and the program terminates with a run-time error message.

Note: On Windows NT systems, you cannot use the WEOFSEQ statement with a diskette drive that
you opened with the OPENDEV statement. For 1/4- inch cartridge tape drives (60 MB or 150 MB) you
can use WEOFSEQ to write an end-of-file (EOF) mark at the beginning of the data or after a write.

The ON ERROR clause

The ON ERROR clause is optional in the WEOFSEQ statement. The ON ERROR clause lets you specify
an alternative for program termination when a fatal error is encountered during processing of the
WEOFSEQ statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

▪ Any uncommitted transactions begun within the current execution environment roll back.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

See the OPENSEQ statement, on page 289, READSEQ statement, on page 317, and WRITESEQ
statement, on page 464 for more information about sequential file processing.

Note: Some systems do not support the truncation of disk files. WEOFSEQ is ignored on these
systems, except that WEOFSEQ always works at the beginning of a file.

Example

The following example writes an end-of-file mark on the record RECORD in the file TYPE1:

OPENSEQ 'TYPE1','RECORD' TO FILE ELSE STOP

WRITE statements

459

 WEOFSEQ FILE

WRITE statements
Use WRITE statements to write new data to a record in a UniVerse file. The value of expression replaces
any data previously stored in the record.

Syntax

WRITE[U] expression {ON | TO} [file.variable,] record.ID
 [ON ERROR statements] [LOCKED statements]
 [THEN statements] [ELSE statements]

WRITEV[U] expression {ON | TO} [file.variable,] record.ID, field#
 [ON ERROR statements] [LOCKED statements]
 [THEN statements] [ELSE statements]

Use this
statement...

To do this...

WRITE Write to a record.
WRITEU Write to a record, retaining an update record lock.
WRITEV Write to a field.
WRITEVU Write to a field, retaining an update record lock.

If expression evaluates to the null value, the WRITE statement fails and the program terminates with a
run-time error message.

file.variable specifies an open file. If file.variable is not specified, the default file is assumed (for more
information on default files, see the OPEN statement, on page 283. If the file is neither accessible nor
open, the program terminates with a run-time error message, unless ELSE statements are specified.

The system searches the file for the record specified by record.ID. If the record is not found, WRITE
creates a new record.

If file.variable, record.ID, or field# evaluates to the null value, all WRITE statements (WRITE, WRITEU,
WRITEV, WRITEVU) fail and the program terminates with a run-time error message.

The new value is written to the record, and the THEN statements are executed. If no THEN statements
are specified, execution continues with the statement following the WRITE statement. If WRITE fails,
the ELSE statements are executed; any THEN statements are ignored.

When updating a record, the WRITE statement releases the update record lock set with a READU
statement. To maintain the update record lock set by the READU statement, use a WRITEU statement
instead of a WRITE statement.

The WRITE statement does not strip trailing field marks enclosing empty strings from expression. Use
the MATWRITE statements if that operation is required.

Tables

If the file is a table, the effective user of the program must have SQL INSERT and UPDATE privileges to
read records in the file. For information about the effective user of a program, see the AUTHORIZATION
statement, on page 74.

Chapter 1: Statements and functions

460

If the OPENCHK configurable parameter is set to TRUE, or if the file is opened with the OPENCHECK
statement, all SQL integrity constraints are checked for every write to an SQL table. If an integrity
check fails, the WRITE statement uses the ELSE clause. Use the ICHECK function to determine what
specific integrity constraint caused the failure.

NLS mode

WRITE and other BASIC statements that perform I/O operations map internal data to the external
character set using the appropriate map for the output file.

UniVerse substitutes the file map’s unknown character for any unmappable character. The results of
the WRITE statements depend on the following:

▪ The inclusion of the ON ERROR clause

▪ The setting of the NLSWRITEELSE parameter in the uvconfig file

▪ The location of the unmappable character

The values returned by the STATUS function and the results are as follows:

STATUS value and results ON ERROR and parameter
setting

Unmappable character location

3 The WRITE fails, no records
written.

4 The WRITE fails, no records
written.

ON ERROR Record ID

Data

Program terminates with a run-
time error message.

No ON ERROR, and

NLSWRITEELSE = 1

Record ID or data

Program terminates with a run-
time error message.

Record is written with unknown
characters; lost data.

No ON ERROR,
NLSWRITEELSE = 0

Record ID

Data

For more information about unmappable characters, see the UniVerse NLS Guide.

Use the STATUS function after a WRITE statement is executed, to determine the result of the
operation, as follows:

Value Description

0 The record was locked before the WRITE operation.
-2 The record was unlocked before the WRITE operation.
-3 The record failed an SQL integrity check.
-4 The record failed a trigger program.
–6 Failed to write to a published file while the subsystem was shut down.

The ON ERROR clause

The ON ERROR clause is optional in WRITE statements. Its syntax is the same as that of the ELSE
clause. The ON ERROR clause lets you specify an alternative for program termination when a fatal
error is encountered during processing of the WRITE statement.

If a fatal error occurs, and the ON ERROR clause was not specified or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

WRITE statements

461

▪ Any uncommitted transactions begun within the current execution environment roll back.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

The LOCKED clause

The LOCKED clause is optional, but recommended. Its format is the same as that of the ELSE clause.

The LOCKED clause handles a condition caused by a conflicting lock (set by another user) that
prevents the WRITE statement from processing. The LOCKED clause is executed if one of the following
conflicting locks exists:

▪ Exclusive file lock

▪ Intent file lock

▪ Shared file lock

▪ Update record lock

▪ Shared record lock

If the WRITE statement does not include a LOCKED clause, and a conflicting lock exists, the program
pauses until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the terminal number of the
user who owns the conflicting lock.

The WRITEU statement

Use the WRITEU statement to update a record without releasing the update record lock set by a
previous READU statement (see the READ statements, on page 309). To release the update record
lock set by a READU statement and maintained by a WRITEU statement, you must use a RELEASE
statement, WRITE statements, MATWRITE statements, or WRITEV statement. If you do not explicitly
release the lock, the record remains locked until the program executes the STOP statement. When
more than one program or user could modify the same record, use a READU statement to lock the
record before doing the WRITE or WRITEU.

If expression evaluates to the null value, the WRITEU statement fails and the program terminates with
a run-time error message.

The WRITEV statement

Use the WRITEV statement to write a new value to a specified field in a record. The WRITEV statement
requires that field# be specified. field# is the number of the field to which expression is written. It must
be greater than 0. If either the record or the field does not exist, WRITEV creates them.

If expression evaluates to the null value, null is written to field#, provided that the field allows nulls. If
the file is an SQL table, existing SQL security and integrity constraints must allow the write.

Chapter 1: Statements and functions

462

The WRITEVU statement

Use the WRITEVU statement to update a specified field in a record without releasing the update record
lock set by a previous READU statement (see the READ statement). The WRITEVU syntax is like that of
the WRITEV and WRITEU statements.

If expression evaluates to the null value, null is written to field#, provided that the field allows nulls. If
the file is an SQL table, existing SQL security and integrity constraints must allow the write.

Remote files

If in a transaction you try to write to a remote file over UVNet, the write statement fails, the transaction
is rolled back, and the program terminates with a run-time error message.

Example

CLEAR
 DATA "ELLEN","KRANZER","3 AMES STREET","CAMBRIDGE"
 DATA "MA","02139","SAILING"
 OPEN '','SUN.MEMBER' TO FILE ELSE
 PRINT "COULD NOT OPEN FILE"
 STOP
 END
 PRINT "ENTER YOUR FIRST NAME"
 INPUT FNAME
 PRINT "ENTER YOUR LAST NAME"
 INPUT LNAME
 PRINT "ENTER YOUR ADDRESS (PLEASE WAIT FOR PROMPTS)"
 PRINT "STREET ADDRESS"
 INPUT STREET
 PRINT "ENTER CITY"
 INPUT CITY
 PRINT "ENTER STATE"
 INPUT STATE
 PRINT "ENTER ZIP CODE"
 INPUT ZIP
 PRINT "ENTER YOUR INTERESTS"
 INPUT INTERESTS
 RECORD<1>=LNAME
 RECORD<2>=FNAME
 RECORD<3>=STREET
 RECORD<4>=CITY
 RECORD<5>=STATE
RECORD<6>=ZIP
 RECORD<7>=1989
 RECORD<8>=INTERESTS
 WRITE RECORD TO FILE, 1111
 PRINT
 EXECUTE 'LIST SUN.MEMBER LNAME WITH FNAME EQ ELLEN'

This is the program output:

ENTER YOUR FIRST NAME
 ?ELLENENTER YOUR LAST NAME
 ?KRANZERENTER YOUR ADDRESS (PLEASE WAIT FOR PROMPTS)
 STREET ADDRESS
 ?3 AMES STREETENTER CITY
 ?CAMBRIDGEENTER STATE
 ?MAENTER ZIP CODE
 ?02139ENTER YOUR INTEREST
 ?SAILING

WRITEBLK statement

463

SUN.MEMBER LAST NAME.
 1111 KRANZER

 1 records listed.

WRITEBLK statement
Use the WRITEBLK statement to write a block of data to a file opened for sequential processing. Each
WRITEBLK statement writes the value of expression starting at the current position in the file. The
current position is incremented to beyond the last byte written. WRITEBLK does not add a newline at
the end of the data.

Syntax

WRITEBLK expression ON file.variable
 {THEN statements [ELSE statements] | ELSE statements}

file.variable specifies a file opened for sequential processing.

Note: On Windows NT systems, if you use the WRITEBLK statement to write to a 1/4-inch cartridge
tape (60 MB or 150 MB) that you opened with the OPENDEV statement, on page 286, you must
specify the block size as 512 bytes or a multiple of 512 bytes.

The value of expression is written to the file, and the THEN statements are executed. If no THEN
statements are specified, program execution continues with the next statement.

If the file cannot be accessed or does not exist, the ELSE statements are executed; any THEN
statements are ignored. If the device runs out of disk space, WRITEBLK takes the ELSE clause and
returns –4 to the STATUS function.

If either expression or file.variable evaluates to the null value, the WRITEBLK statement fails and the
program terminates with a run-time error message.

If NLS is enabled, the data written is mapped using the appropriate output file map. For more
information about maps, see the UniVerse NLS Guide.

Example

OPENSEQ 'FILE.E','RECORD4' TO FILE ELSE ABORT
 WEOFSEQ FILE
 DATA1='ONE'
 DATA2='TWO'
 *
 WRITEBLK DATA1 ON FILE ELSE ABORT
 WRITEBLK DATA2 ON FILE ELSE ABORT
 * These two lines write two items to RECORD4 in FILE.E without
 * inserting a newline between them.
 WEOFSEQ FILE
 SEEK FILE,0,0 ELSE STOP
 READSEQ A FROM FILE THEN PRINT A
 * This reads and prints the line just written to the file.

This is the program output:

ONETWO

Chapter 1: Statements and functions

464

WRITELIST statement
Use the WRITELIST statement to save a list as a record in the &SAVEDLISTS& file.

Syntax

WRITELIST dynamic.array ON listname

dynamic.array is an expression that evaluates to a string made up of elements separated by field
marks. It is the list to be saved.

listname is an expression that evaluates to record.ID or record.ID account.name

record.ID is the record ID of the select list created in the &SAVEDLISTS& file. If listname includes
account.name, the &SAVEDLISTS& file of the specified account is used instead of the one in the local
account. If record.ID exists, WRITELIST overwrites the contents of the record.

If either dynamic.array or listname evaluates to the null value, the WRITELIST statement fails and the
program terminates with a run-time error message.

WRITESEQ statement
Use the WRITESEQ statement to write new lines to a file opened for sequential processing. UniVerse
keeps a pointer to the current position in the file while it is open for sequential processing. The
OPENSEQ statement sets this pointer to the first byte of the file, and it is advanced by the READSEQ
statement, READBLK statement, WRITESEQ, and WRITEBLK statement.

WRITESEQ writes the value of expression followed by a newline to the file. The data is written at the
current position in the file. The pointer is set to the position following the newline. If the pointer is
not at the end of the file, WRITESEQ overwrites any existing data byte by byte (including the newline),
starting from the current position.

file.variable specifies a file opened for sequential access.

The value of expression is written to the file as the next line, and the THEN statements are executed.
If THEN statements are not specified, program execution continues with the next statement. If the
specified file cannot be accessed or does not exist, the ELSE statements are executed; any THEN
statements are ignored.

If expression or file.variable evaluates to the null value, the WRITESEQ statement fails and the program
terminates with a run-time error message.

After executing a WRITESEQ statement, you can use the STATUS function to determine the result of
the operation:

Value Description

0 The record was locked before the WRITESEQ operation.
-2 The record was unlocked before the WRITESEQ operation.
–4 The write operation failed because the device ran out of disk space.

File buffering

Normally UniVerse uses buffering for sequential input and output operations. If you use the NOBUF
statement after an OPENSEQ statement, buffering is turned off and writes resulting from the
WRITESEQ statement are performed right away.

WRITESEQ statement

465

You can also use the FLUSH statement after a WRITESEQ statement to cause all buffers to be written
right away.

For more information about buffering, see the FLUSH statement, on page 172 and NOBUF statement,
on page 275.

Syntax

WRITESEQ expression {ON | TO} file.variable [ON ERROR statements]
 {THEN statements [ELSE statements] | ELSE statements}

The ON ERROR clause

The ON ERROR clause is optional in the WRITESEQ statement. The ON ERROR clause lets you specify
an alternative for program termination when a fatal error is encountered while the WRITESEQ
statement is being processed.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

▪ Any uncommitted transactions begun within the current execution environment roll back.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

If NLS is enabled, WRITESEQ and other BASIC statements that perform I/O operations always map
internal data to the external character set using the appropriate map for the output file. For more
information about maps, see the UniVerse NLS Guide.

Example

DATA 'NEW ITEM 1', 'NEW ITEM 2'
 OPENSEQ 'FILE.E', 'RECORD1' TO FILE ELSE ABORT
 READSEQ A FROM FILE ELSE STOP
 *
 FOR I=1 TO 2
 INPUT B
 WRITESEQ B TO FILE THEN PRINT B ELSE STOP
 NEXT
 *
CLOSESEQ FILE
 END

This is the program output:

?NEW ITEM 1
 NEW ITEM 1
 ?NEW ITEM 2

Chapter 1: Statements and functions

466

 NEW ITEM 2

WRITESEQF statement
Use the WRITESEQF statement to write new lines to a file opened for sequential processing, and to
ensure that data is physically written to disk (that is, not buffered) before the next statement in the
program is executed. The sequential file must be open, and the end-of-file marker must be reached
before you can write to the file. You can use the FILEINFO function to determine the number of the
line about to be written.

Syntax

WRITESEQF expression {ON | TO} file.variable [ON ERROR statements]
 {THEN statements [ELSE statements] | ELSE statements}

Normally, when you write a record using the WRITESEQ statement, the record is moved to a buffer that
is periodically written to disk. If a system failure occurs, you could lose all the updated records in the
buffer. The WRITESEQF statement forces the buffer contents to be written to disk; the program does
not execute the statement following the WRITESEQF statement until the buffer is successfully written
to disk. A WRITESEQF statement following several WRITESEQ statements ensures that all buffered
records are written to disk.

WRITESEQF is intended for logging applications and should not be used for general programming. It
increases the disk I/O of your program and therefore degrades performance.

file.variable specifies a file opened for sequential access.

The value of expression is written to the file as the next line, and the THEN statements are executed. If
THEN statements are not specified, program execution continues with the next statement.

If the specified file cannot be accessed or does not exist, the ELSE statements are executed; any THEN
statements are ignored. If the device runs out of disk space, WRITESEQF takes the ELSE clause and
returns –4 to the STATUS function.

If expression or file.variable evaluates to the null value, the WRITESEQF statement fails and the
program terminates with a run-time error message.

If NLS is enabled, WRITESEQF and other BASIC statements that perform I/O operations always map
internal data to the external character set using the appropriate map for the output file. For more
information about maps, see the UniVerse NLS Guide.

The ON ERROR clause

The ON ERROR clause is optional in the WRITESEQF statement. Its syntax is the same as that of the
ELSE clause. The ON ERROR clause lets you specify an alternative for program termination when a
fatal error is encountered while the WRITESEQF statement is being processed.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored (as in the case of an
active transaction), the following occurs:

▪ An error message appears.

▪ Any uncommitted transactions begun within the current execution environment roll back.

▪ The current program terminates.

▪ Processing continues with the next statement of the previous execution environment, or the
program returns to the UniVerse prompt.

A fatal error can occur if any of the following occur:

writeSocket function

467

▪ A file is not open.

▪ file.variable is the null value.

▪ A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

Values returned by the FILEINFO function

Key 14 (FINFO$CURRENTLINE) of the FILEINFO function can be used to determine the number of the
line about to be written to the file.

Example

In the following example, the print statement following the WRITESEQF statement is not executed
until the record is physically written to disk:

WRITESEQF ACCOUNT.REC TO ACCOUNTS.FILE
 THEN WRITTEN = TRUE
 ELSE STOP "ACCOUNTS.FILE FORCE WRITE ERROR"
 PRINT "Record written to disk."

writeSocket function
Use the writeSocket() function to write data to a socket connection.

Syntax

writeSocket(socket_handle, socket_data, time_out, mode,
actual_write_size)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

socket_handle A handle to the open socket.
socket_data The data to be written to the socket.
time_out The allowable time (in milliseconds) for blocking. This is ignored for a

non-blocking write.
mode 0: using current mode

1: blocking mode (default)

2: non-blocking mode
actual_write_size The number of characters actually written.

Return status

The following table describes the return status of each mode.

Mode Return status

Blocking The function will return only after all characters in socket_data are
written to the socket.

Chapter 1: Statements and functions

468

Mode Return status

Non-blocking The function may return with fewer character written than the actual
length (in the case that the socket is full).

Return codes

The following table describes the status of each return code.

Return code Description

0 Success.
1-41 See Socket function error return codes, on page 599.
107 Encryption error.
108 Decryption error.

WRITET statement
Use the WRITET statement to write a tape record to tape. The value of variable becomes the next tape
record. variable is an expression that evaluates to the text to be written to tape.

Syntax

WRITET [UNIT (mtu)] variable
 {THEN statements [ELSE statements] | ELSE statements}

The UNIT clause specifies the number of the tape drive unit. Tape unit 0 is used if no unit is specified. If
the UNIT clause is used, mtu is an expression that evaluates to a code made up of three decimal digits,
as shown in the following table:

Code Available Options

m (mode) 0 = No conversion

1 = EBCDIC conversion

2 = Invert high bit

3 = Invert high bit and EBCDIC conversion
t (tracks) 0 = 9 tracks. Only 9-track tapes are supported.
u (unit number) 0 through 7

The mtu expression is read from right to left. If mtu evaluates to a one-digit code, it represents the tape
unit number. If mtu evaluates to a two-digit code, the rightmost digit represents the unit number and
the digit to its left is the track number.

If either mtu or variable evaluates to the null value, the WRITET statement fails and the program
terminates with a run-time error message.

Each tape record is written completely before the next record is written. The program waits for the
completion of data transfer to the tape before continuing.

Before a WRITET statement is executed, a tape drive unit must be attached (assigned) to the user. Use
the ASSIGN command to assign a tape unit to a user. If no tape drive unit is attached or if the unit
specification is incorrect, the ELSE statements are executed.

The largest record that the WRITET statement can write is system-dependent. If the actual record is
larger, bytes beyond the system byte limit are not written.

WRITEU statement

469

Note: UniVerse BASIC does not generate tape labels for the tape file produced with the WRITET
statement.

The STATUS function returns 1 if READT takes the ELSE clause, otherwise it returns 0.

If NLS is enabled, WRITET and other BASIC statements that perform I/O operations always map
external data to the UniVerse internal character set using the appropriate map for the file. The map
defines the external character set for the file that is used to input data on a keyboard, display data on
a screen, and so on. For more information about maps, see the UniVerse NLS Guide.

PIOPEN flavor

If you have a program that specifies the syntax UNIT ndmtu, the nd elements are ignored by the
compiler and no errors are reported.

Examples

The following example writes a record to tape drive 0:

RECORD=1S2S3S4
 WRITET RECORD ELSE PRINT "COULD NOT WRITE TO TAPE"

The next example writes the numeric constant 50 to tape drive 2, a 9-track tape with no conversion:

WRITET UNIT(002) "50" ELSE PRINT "COULD NOT WRITE"

WRITEU statement
Use the WRITEU statement to maintain an update record lock while performing the WRITE statement.

For details, see the WRITE statements, on page 459.

WRITEV statement
Use the WRITEV statement to write on the contents of a specified field of a record of a UniVerse file.

For details, see the WRITE statements, on page 459.

WRITEVU statement
Use the WRITEVU statement to maintain an update record lock while writing on the contents of a
specified field of a record of a UniVerse file.

For details, see the WRITE statements, on page 459.

XDOMAddChild function
Finds the xpathString in the context xmlHandle in the DOM structure, and inserts a node as the last
child of the found node. If the inserted node type is XDOM.ATTR.NODE, this node is inserted as an
attribute.

Chapter 1: Statements and functions

470

Syntax

XDOMAddChild(xmlHandle, xpathString, nsMap, nodeHandle,
dupFlag,nodeType)

Note: This function is case-sensitive. If you want it to be case-insensitive, you must compile your
programs using the BASIC command with the -i option.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xmlHandle The handle to the context. [IN]
xpathString Relative or absolute XPath string. [IN]

The xpathString parameter uses the in-encoding parameter
set in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

nsMap The map of namespaces that resolves the prefixes in the
xpathString.

Format is xmlns=default_url
xmlns:prefix1=prefix1_url
xmlns:prefix2=prefix2_url

For example:

xmlns=http://myproject.mycompany.com
xmlns:a_prefix=a.mycompany.com

[IN]

The nsMap parameter uses the in-encoding parameter set
in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

nodeHandle Handle to a DOM subtree. If nodeHandle points to a DOM
document, all of its children are inserted, in the same order. [IN]

dupFlag XDOM.DUP: Clones nodeHandle, and replaces it with the duplicate
node.

XDOM.NODUP: Replaces with the original node. The subtree is also
removed from its original location. [IN]

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code Description

XML.SUCCESS Function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMAppend function

471

XDOMAppend function
Finds the xpathString in the context xmlHandle in the DOM structure, and inserts nodeHandle into the
DOM structure as the next sibling of the found node. If the inserted node type is XDOM.ATTR.NODE,
this node is inserted as an attribute.

Syntax

XDOMAppend(xmlHandle, xpathString, nsMap, nodeHandle, dupFlag)

Note: This function is case-sensitive. If you want it to be case-insensitive, you must compile your
programs using the BASIC command with the -i option.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xmlHandle The handle to the context. [IN]
xpathString Relative or absolute XPath string. [IN]

The xpathString parameter uses the in-encoding parameter
set in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

nsMap The map of namespaces that resolves the prefixes in the
xpathString.

Format is xmlns=default_url
xmlns:prefix1=prefix1_url
xmlns:prefix2=prefix2_url

For example:

xmlns=http://myproject.mycompany.com
xmlns:a_prefix=a.mycompany.com

[IN]

The nsMap parameter uses the in-encoding parameter set
in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

nodeHandle Handle to a DOM subtree. If nodeHandle points to a DOM
document, all of its children are inserted, in the same order. [IN]

dupFlag XDOM.DUP: Clones nodeHandle, and replaces it with the duplicate
node.

XDOM.NODUP: Replaces with the original node. The subtree is also
removed from its original location. [IN]

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code Description

XML.SUCCESS Function completed successfully.
XML.ERROR An error occurred.

Chapter 1: Statements and functions

472

Return code Description

XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMClone function
The XDOMClone function duplicates the DOM subtree specified by xmlHandle to a new subtree
newXmlHandle. The duplicate node has no parent (parentNode returns null.).

Cloning an element copies all attributes and their values, including those generated by the XML
processor, to represent defaulted attributes, but this method does not copy any text it contains unless
it is a deep clone, since the text is contained in a child text node. Cloning any other type of node simply
returns a copy of this node.

Syntax

XDOMClone(xmlHandle, newXmlHandle, depth)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xmlHandle Handle to the DOM subtree. [IN]
newXmlHandle Handle to the new DOM subtree. [IN]
depth XDOM.FALSE: Clone only the node itself.

XDOM.TRUE: Recursively clone the subtree under the specified node. [IN]

Return codes

The following table describes the status of each return code.

Return code Description

XML.SUCCESS The function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMClose function
The XDOMClose function frees the DOM structure.

Syntax

XDOMClose(domHandle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

domHandle Handle to the DOM structure. [IN]

XDOMCreateNode function

473

Return codes

The following table describes the status of each return code.

Return code Description

XML.SUCCESS The function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMCreateNode function
XDOMCreateNode creates a new node in the DOM structure.

Syntax

XDOMCreateNode(xmlHandle, nodeName, nodeValue, nodeType, nodeHandle)

Note: This function is case-sensitive. If you want it to be case-insensitive, you must compile your
programs using the BASIC command with the -i option.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xmlHandle A handle to the DOM structure. This handle acts as the context
when resolving the namespace_uri from the prefix or resolving the
prefix from the namespace_uri.

[IN]
nodeName The name of the node to be created. [IN]

The name can be in any of the following formats:

▪ Local_name

▪ prefix: local_name:namespace_uri

▪ prefix:local_name

▪ :local_name:namespace_uri

The nodeName parameter uses the in-encoding parameter
set in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

nodeValue The string to hold the node value. [IN]

The nodeValue parameter uses the in-encoding parameter
set in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

Chapter 1: Statements and functions

474

Parameter Description

nodeType The type of the node to be created. Valid values are:

XDOM.ELEMENT.NODE

XDOM.ATTR.NODE

XDOM.TEXT.NODE

XDOM.CDATA.NODE

XDOM.ENTITY.REF.NODE

XDOM.ENTITY.NODE

XDOM.PROC.INST.NODE

XDOM.COMMENT.NODE

XDOM.DOC.NODE

XDOM.DOC.TYPE.NODE

XDOM.DOC.FRAG.NODE

XDOM.NOTATION.NODE

XDOM.XML.DECL.NODE

[IN]
nodeHandle A handle to the node to be created in the DOM structure.

[IN]

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code Description

XML.SUCCESS Function completed successfully.
XML.ERROR An error occurred.

XDOMCreateRoot function
The XDOMCreateRoot function creates a new DOM structure with root only. You can use the result
handle in other functions where a DOM handle or node handle is needed.

Syntax

XDOMCreateRoot(domHandle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

domHandle Handle to the opened DOM structure. [OUT]

Return codes

The following table describes the status of each return code.

XDOMEvaluate function

475

Return code Description

XML.SUCCESS The function completed successfully.
XML.ERROR An error occurred.

XDOMEvaluate function
XDOMEvaluate returns the value of xpathString in the context xmlHandle in the DOM structure.

Syntax

XDOMEvaluate(xmlHandle, xpathString, nsMap, aValue)

Note: This function is case-sensitive. If you want it to be case-insensitive, you must compile your
programs using the BASIC command with the -i option.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xmlHandle The handle to the context. [IN]
xpathString Relative or absolute XPath string. [IN]

The xpathString parameter uses the in-encoding parameter
set in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

nsMap The map of namespaces that resolves the prefixes in the
xpathString.

Format is xmlns=default_url
xmlns:prefix1=prefix1_url
xmlns:prefix2=prefix2_url

For example:

xmlns=http://myproject.mycompany.com
xmlns:a_prefix=a.mycompany.com

[IN]

The nsMap parameter uses the in-encoding parameter set
in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

aValue The value of xpathString. [OUT]

The aValue parameter uses the out-encoding parameter
set in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code Description

XML.SUCCESS Function completed successfully.

Chapter 1: Statements and functions

476

Return code Description

XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMGetAttribute function
XDOMGetAttribute gets the node's attribute node, whose attribute name is attrName.

Syntax

XDOMGetAttribute(nodeHandle, attrName, nodeHandle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

nodeHandle Handle to the DOM node. [IN]
attrName Attribute name. [IN]

The attrName parameter uses the in-encoding parameter
set in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

nodeHandle Handle to the found attribute node. [OUT]

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code Description

XML.SUCCESS Function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMGetChildNodes function
The XDOMGetChildNodes function returns all child nodes of xmlHandle.

Syntax

XDOMGetChildNodes(xmlHandle, nodeListHandle)

This function behaves in the same way as:

XDOMLocate(xmlHandle, “*”, “”, XML.MULTI)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xmlHandle Handle to the DOM structure.

XDOMGetElementByld function

477

Parameter Description

nodeListHandle The handle to the node list.

Example

Consider the following XML document:

<?xml version="1.0" encoding="utf-8"?>
<ADDRBOOK cmt="my address book">
<ENTRY id="id1" name=”bookentry”>
 <NAME>Name One</NAME>
 <ADDRESS>101 Some Way</ADDRESS>
 <PHONENUM DESC="Work">303-111-1111</PHONENUM>
 <PHONENUM DESC="Fax">303-111-2222</PHONENUM>
 <PHONENUM DESC="Pager">303-111-3333</PHONENUM>
 <EMAIL>name.one@some.com</EMAIL>
</ENTRY>
<ENTRY ID="id2" NAME=”bookentry”>
<NAME>Name Two</NAME>
<ADDRESS>202 Some Way</ADDRESS>
 <PHONENUM DESC="Work">303-222-1111</PHONENUM>
 <PHONENUM DESC="Fax">303-222-2222</PHONENUM>
 <PHONENUM DESC="Home">303-222-3333</PHONENUM>
 <EMAIL>name.two@some.com</EMAIL>
</ENTRY>
</ADDRBOOK>

In this example, suppose xmlHandle points to <ENTRY id=”id1” name=”bookentry”>. After
the call to XDOMGetChildNodes(xmlHandle, nodehandle), nodeHandle should point to all
child nodes, that is, <NAME>, <ADDRESS>, three <PHONENUM>’s, and <EMAIL>.

XDOMGetElementByld function
The XDOMGetElementByld function finds the first element with the ID you specify.

Syntax

XDOMGetElementById(xmlHandle,idstr,nodeHandle)

This behaves in the same way as:

XDOMLocate(xmlHandle,.”//*[@ID=’idstr’ or @id=’idstr’]”,””,XML_SINGLE)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xmlHandle Handle to the DOM structure.
idstr The ID of the element you want to return.
nodeHandle Handle to the DOM node.

Example

<?xml version="1.0" encoding="utf-8"?>
<ADDRBOOK cmt="my address book">

Chapter 1: Statements and functions

478

<ENTRY id="id1" name=”bookentry”>
 <NAME>Name One</NAME>
 <ADDRESS>101 Some Way</ADDRESS>
 <PHONENUM DESC="Work">303-111-1111</PHONENUM>
 <PHONENUM DESC="Fax">303-111-2222</PHONENUM>
 <PHONENUM DESC="Pager">303-111-3333</PHONENUM>
 <EMAIL>name.one@some.com</EMAIL>
</ENTRY>
<ENTRY ID="id2" NAME=”bookentry”>
 <NAME>Name Two</NAME>
 <ADDRESS>202 Some Way</ADDRESS>
 <PHONENUM DESC="Work">303-222-1111</PHONENUM>
 <PHONENUM DESC="Fax">303-222-2222</PHONENUM>
 <PHONENUM DESC="Home">303-222-3333</PHONENUM>
 <EMAIL>name.two@some.com</EMAIL>
</ENTRY>
</ADDRBOOK>

In the example, suppose xmlHandle points to the document root. After the call to
XDOMGetElementById(xmlHandle, “id2”, nodeHandle), nodeHandle should point to
element <ENTRY ID=”id2” NAME=”bookentry>.

XDOMGetElementsByName function
The XDOMGetElementsByName function tries to find all elements with the name you specify.

Syntax

XDOMGetElementsByName(xmlHandle, namestr, nodeListHandle)

This function behaves in the same way as:

XDOMLocate(xmlHandle, “//*[@NAME=’namestr’ or @name=’namestr’]”, “”,
XML.MULTI)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xmlHandle Handle to the DOM structure.
namestr The name of the element you want to return.
nodeListHandle The handle to the node list.

Example

Consider the following XML document:

<?xml version="1.0" encoding="utf-8"?>
<ADDRBOOK cmt="my address book">
<ENTRY id="id1" name=”bookentry”>
 <NAME>Name One</NAME>
 <ADDRESS>101 Some Way</ADDRESS>
 <PHONENUM DESC="Work">303-111-1111</PHONENUM>
 <PHONENUM DESC="Fax">303-111-2222</PHONENUM>
 <PHONENUM DESC="Pager">303-111-3333</PHONENUM>
 <EMAIL>name.one@some.com</EMAIL>
</ENTRY>

XDOMGetElementsByTag function

479

<ENTRY ID="id2" NAME=”bookentry”>
 <NAME>Name Two</NAME>
 <ADDRESS>202 Some Way</ADDRESS>
 <PHONENUM DESC="Work">303-222-1111</PHONENUM>
 <PHONENUM DESC="Fax">303-222-2222</PHONENUM>
 <PHONENUM DESC="Home">303-222-3333</PHONENUM>
 <EMAIL>name.two@some.com</EMAIL>
</ENTRY>
</ADDRBOOK>

In the example, suppose xmlHandle points to the document root. After the call to
XDOMGetElementsByName(xmlHandle, ”bookentry”, nodeHandle), nodeHandle should
point to elements <ENTRY id=”id1” name=”bookentry”> and <ENTRY ID=”id2” NAME=”bookentry”>.

XDOMGetElementsByTag function
The XDOMGetElementsByTag function tries to find all elements with the tag name you specify.

Syntax

XDOMGetElementsByTag(xmlHandle, tagname, nodeListHandle)

This function behaves in the same way as:

XDOMLocate(xmlHandle, “//tagname”, “”, XML.MULTI)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xmlHandle The input handle, xmlHandle, acts as the context when resolving
the namespace uri from the prefix, or resolving the prefix from the
namespace uri.

tagname Tagname can be one of the following formats:

▪ Local_name

▪ Prefix:local_name
nodeListHandle The handle to the node list.

Example

Consider the following XML document:

<?xml version="1.0" encoding="utf-8"?>
<ADDRBOOK cmt="my address book">
<ENTRY id="id1" name=”bookentry”>
 <NAME>Name One</NAME>
 <ADDRESS>101 Some Way</ADDRESS>
 <PHONENUM DESC="Work">303-111-1111</PHONENUM>
 <PHONENUM DESC="Fax">303-111-2222</PHONENUM>
 <PHONENUM DESC="Pager">303-111-3333</PHONENUM>
 <EMAIL>name.one@some.com</EMAIL>
</ENTRY>
<ENTRY ID="id2" NAME=”bookentry”>
 <NAME>Name Two</NAME>
 <ADDRESS>202 Some Way</ADDRESS>

Chapter 1: Statements and functions

480

 <PHONENUM DESC="Work">303-222-1111</PHONENUM>
 <PHONENUM DESC="Fax">303-222-2222</PHONENUM>
 <PHONENUM DESC="Home">303-222-3333</PHONENUM>
 <EMAIL>name.two@some.com</EMAIL>
</ENTRY>
</ADDRBOOK>

In this XML document, suppose xmlHandle points to the document root. After the call to
XDOMGetElementsByTag(xmlHandle, “PHONENUM”, nodeHandle), nodeHandle should
point to all PHONENUM elements.

XMLGetError function
The XMLGetError function returns the error code and error message after the previous XML API
failed.

Syntax

XMLGetError(errorCode, errorMessage)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

errorCode The error code. [OUT]
errorMessage The error message. [OUT]

Return codes

The following table describes the status of each return code.

Return code Description

XML.SUCCESS The function completed successfully.
XML.ERROR An error occurred.

XDOMGetNodeName function
XDOMGetNodeName returns the node name.

Syntax

XDOMGetNodeName(nodeHandle, nodeName)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

nodeHandle Handle to the DOM node. [IN]

XDOMGetNodeType function

481

Parameter Description

nodeName String to store the node name. [OUT]

The nodeName parameter uses the out-encoding parameter
set in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code Description

XML.SUCCESS Function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMGetNodeType function
The XDOMGetNodeType function returns the node type.

Syntax

XDOMGetNodeType(nodeHandle, nodeType)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

nodeHandle The handle to the DOM node. [IN]
nodeType An integer to store the node type. [OUT]

Return codes

The following table describes the status of each return code.

Return code Description

XML.SUCCESS The function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMGetNodeValue function
XDOMGetNodeValue gets the node value.

Syntax

XDOMGetNodeValue(nodeHandle, nodeValue)

Chapter 1: Statements and functions

482

Parameters

The following table describes each parameter of the syntax.

Parameter Description

nodeHandle Handle to the DOM node. [IN]
nodeValue The string to hold the node value. [OUT]

The nodeValue parameter uses the out-encoding parameter
set in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code Description

XML.SUCCESS Function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMGetOwnerDocument function
The XDOMGetOwnerDocument function returns the DOM handle to which nodeHandle belongs.

Syntax

XDOMGetOwnerDocument(nodeHandle, domHandle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

nodeHandle Handle to the DOM node. [IN]
domHandle Handle to the opened DOM structure. [OUT]

Return codes

The following table describes the status of each return code.

Return code Description

XML.SUCCESS The function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMGetUserData function
The XDOMGetUserData function returns the user data associated with the node.

XDOMItem function

483

Syntax

XDOMGetUserData(nodeHandle, userData)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

nodeHandle The handle to the DOM node. [IN]
userData String to hold the user data. [OUT]

Return codes

The following table describes the status of each return code.

Return code Description

XML.SUCCESS The function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMItem function
The XDOMItem function returns the index-th item in the list.

Syntax

XDOMItem(nodeListHandle, index, dataHandle, dataType)

If the index is less than 1 or greater than the number of items in the list, use
Error(errorCode,errorMessage) to return the error message “index out of bounds.”

Parameters

The following table describes each parameter syntax.

Parameter Description

nodeListHandle The handle to the node list.
index The index item to return.
dataHandle UniVerse stores the returned value, either a DOM handle or a string, in

dataHandle.
dataType The data type that is stored in dataHandle.

If nodeListHandle was generated from an API other than XDOMQuery(), the dataType must be
XQ.ITEM.NODE (1). If nodeListHandle was generated by XDOMQuery(), the dataType could be
XQ.ITEM.NODE(1), or a simple value type such as XQ.ITEM.ANY_SIMPLE_TYPE(2), XQ.ITEM.STRING(21).

The following list shows the data types available.

▪ XQ.ITEM.NODE (1)

▪ XQ.ITEM.ANY_SIMPLE_TYPE (2)

▪ XQ.ITEM.ANY_URI (3)

▪ XQ.ITEM.BASE_64_BINARY (4)

Chapter 1: Statements and functions

484

▪ XQ.ITEM.BOOLEAN (5)

▪ XQ.ITEM.DATA (6)

▪ XQ.ITEM.DATE_TIME (7)

▪ XQ.ITEM.DAY_TIME_DURATION (8)

▪ XQ.ITEM.DECIMAL (9)

▪ XQ.ITEM.DOUBLE (10)

▪ XQ.ITEM.DURATION (11)

▪ XQ.ITEM.FLOAT (12)

▪ XQ.ITEM.G_DAY (13)

▪ XQ.ITEM.G_MONTH (14)

▪ XQ.ITEM.G_MONTH_DAY (15)

▪ XQ.ITEM.G_YEAR (16)

▪ XQ.ITEM.G_YEAR_MONTH (17)

▪ XQ.ITEM.HEX_BINARY (18)

▪ XQ.ITEM.NOTATION (19)

▪ XQ.ITEM.QNAME (20)

▪ XQ.ITEM.STRING (21)

▪ XQ.ITEM.TIME (22)

▪ XQ.ITEM.UNTYPED_ATOMIC (23)

▪ XQ.ITEM.YEAR_MONTH_DURATION (24)

XDOMLength function
The XDOMLength function determines the number of nodes in the list. The range of the valid child
node index is to 1 to length, inclusive.

Syntax

XDOMLength(nodeListHandle, length)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

nodeListHandle The handle to the node list.
length The length of the node list.

XDOMLocate function
XDOMLocate finds a starting point for relative XPath searching in context xmlHandle in the DOM
structure. The xpathString should specify only one node; otherwise, this function will return an error.

XDOMLocateNode function

485

Syntax

XDOMLocate(xmlHandle, xpathString, nsMap, nodeHandle

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xmlHandle A handle to the DOM structure. [IN]
xpathString Relative or absolute XPath string. [IN]

The xpathString parameter uses the in-encoding parameter
set in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

nsMap The map of namespaces that resolves the prefixes in the
xpathString.

Format is xmlns=default_url
xmlns:prefix1=prefix1_url
xmlns:prefix2=prefix2_url

For example:

xmlns=http://myproject.mycompany.com
xmlns:a_prefix=a.mycompany.com

[IN]

The nsMap parameter uses the in-encoding parameter set
in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

nodeHandle Handle to the found node. [OUT]

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code Description

XML.SUCCESS Function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was returned to the

function.

Note: In this document, xmlHandle is a generic type, it can be domHandle or nodeHandle.
DomHandle stands for a whole document, while nodeHandle stands for a subtree. DomHandle is
also a nodeHandle.

XDOMLocateNode function
The XDOMLocateNode function traverses from nodeHandle and gets the next node according to
direction and childIndex.

Chapter 1: Statements and functions

486

Syntax

XDOMLocateNode(nodeHandle, direction, childIndex, nodeType,
newNodeHandle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

nodeHandle The handle to the starting node. [IN]
direction Direction to traverse. Valid values are:

▪ XDOM.PREV.SIBLING

▪ XDOM.NEXT.SIBLING

▪ XDOM.NEXT.SIBLING.WITH.SAME.NAME

▪ XDOM.PREV.SIBLING.WITH.SAME.NAME

▪ XDOM.PARENT

▪ XDOM.CHILD

[IN]
childIndex The index in the child array. Valid values are:

▪ XDOM.FIRST.CHILD

▪ XDOM.LAST.CHILD

▪ Positive Integer

[IN]

XDOMOpen function

487

Parameter Description

nodeType The type of node to be located. Valid values are:

▪ XDOM.NONE

▪ XDOM.ELEMENT.NODE

▪ XDOM.ATTR.NODE

▪ XDOM.TEXT.NODE

▪ XDOM.CDATA.NODE

▪ XDOM.ENTITY.REF.NODE

▪ XDOM.ENTITY.NODE

▪ XDOM.PROC.INST.NODE

▪ XDOM.COMMENT.NODE

▪ XDOM.DOC.NODE

▪ XDOM.DOC.TYPE.NODE

▪ XDOM.DOC.FRAG.NODE

▪ XDOM.NOTATION.NODE

▪ XDOM.XML.DECL.NODE

If nodeType is not XDOM.NONE, UniVerse uses this argument, along with
direction and childIndex, to get the right typed node. For example, if direction
is XDOM.PREV.SIBLING, and nodeType is XDOM.ELEMENT.NODE, UniVerse
finds the element node which is the first previous sibling of nodeHandle. If
direction is XDOM.CHILD, childIndex is XDOM.FIRST.CHILD, and nodeType is
XDOM.ELEMENT.NODE, UniVerse finds the element node which is the first
element child of nodeHandle. If the direction is XDOM.CHILD, childIndex is 2, and
nodeType is XDOM.ELEMENT.NODE, UniVerse finds the element node which is
the second element child of nodeHandle.

When the direction is XDOM.NEXT.SIBLING.WITH.SAME.NAME,
XDOM.PREV.SIBLING.WITH.SAME.NAME, or XDOM.PARENT, this argument is not
used. [IN]

newNodeHandle Handle to the found node. [OUT]

Return codes

The following table describes the status of each return code.

Return code Description

XML.SUCCESS The function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMOpen function
The XDOMOpen function reads an xmlDocument and creates DOM structure. If the DTD is included in
the document, UniVerse validates the document. The xmlDocument can be from a string, or from a file,
depending on the docLocation flag.

Chapter 1: Statements and functions

488

Syntax

XDOMOpen(xmlDocument, docLocation, domHandle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xmlDocument The XML document. [IN]
docLocation A flag to specify whether xmlDocument is a string holding the XML document, or

it is a file containing the XML document. Valid values are:

▪ XML.FROM.FILE

▪ XML.FROM.STRING

[IN]
domHandle Handle to the opened DOM structure. [OUT]

Return codes

The following table describes the status of each return code.

Return code Description

XML.SUCCESS The function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

Option

When the XML does not have an encoding set in the declaration and the data in the document is not
UTF-8, as of UniVerse 10.2 the encoding is assumed to be UTF-8, as shown in the following example:

<?xml version="1.0" ?>
<ROOT>
<PRODUCTS _ID = "M1000" PRODID = "M1000" LIST = "$1,990" DESCRIPTION = "Low cost
, entry level, light duty, monochrome copier"/>
</ROOT>

Since there is no encoding set in the declaration line, opening the file with the XDOMOpen function
fails if there is a character from another encoding set (for example an ISO-8859-1 character) in the
data.

Reading a file from a browser that has the wrong encoding of the data will also produce an error
similar to the following example:

An invalid character was found in text content. Error processing
resource 'file:///C:/U2/UV/&XML&/example.xml'. Line 4, Po...

At UniVerse 11.1.14, new XML option, xdomopen-encoding, was added. This option specifies what
encoding to use when there is no encoding defined in the declaration. When ‘xdomopen-encoding’ is
not set, or is set to “”, UTF-8 is assumed.

XDOMQuery function

489

XDOMQuery function
The XDOMQuery function runs xquery on the current document or document node you specify with
xmlHandle.

Syntax

XDOMQuery(xmlHandle, xquery, xqueryLocation, itemListHandle)

Depending on xqueryLocation, xquery contains the query if xqueryLocation is XML.FROM.STRING.
xquery uses a file name which contains the query if xqueryLocation is XML.FROM.FILE. The output
itemListHandle is the resulting item lists.

XDOMRemove function
XDOMRemove finds the xpathString in the context xmlHandle in the DOM structure, and then removes
the found node or its attribute with name attrName.

Syntax

XDOMRemove(xmlHandle, xpathString, nsMap, attrName, nodeHandle)

Note: This function is case-sensitive. If you want it to be case-insensitive, you must compile your
programs using the BASIC command with the -i option.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xmlHandle The handle to the context. [IN]
xpathString Relative or absolute XPath string. [IN]

The xpathString parameter uses the in-encoding parameter set in the
system-level or account-level xmlconfig file, the XMLSETOPTIONS
command, or the XMLSetOptions() API.

nsMap The map of namespaces that resolves the prefixes in the xpathString.

Format is xmlns=default_url xmlns:prefix1=prefix1_url
xmlns:prefix2=prefix2_url

For example:

xmlns=http://myproject.mycompany.com
xmlns:a_prefix=a.mycompany.com

[IN]

The nsMap parameter uses the in-encoding parameter set in the
system-level or account-level xmlconfig file, the XMLSETOPTIONS
command, or the XMLSetOptions() API.

attrName The attribute name. [IN]

The attrName parameter uses the in-encoding parameter set in the
system-level or account-level xmlconfig file, the XMLSETOPTIONS
command, or the XMLSetOptions() API.

Chapter 1: Statements and functions

490

Parameter Description

nodeHandle The removed node, if nodeHandle is not NULL. [OUT]

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code Description

XML.SUCCESS Function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMReplace function
XDOMReplace finds the xpathString in the context xmlHandle in the DOM structure, and replaces the
found node with nodeHandle.

Syntax

XDOMReplace(xmlHandle, xpathString, nsMap, nodeHandle, dupFlag)

Note: This function is case-sensitive. If you want it to be case-insensitive, you must compile your
programs using the BASIC command with the -i option.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xmlHandle The handle to the context. [IN]
xpathString Relative or absolute XPath string. [IN]

The xpathString parameter uses the in-encoding parameter
set in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

nsMap The map of namespaces that resolves the prefixes in the
xpathString.

Format is xmlns=default_url
xmlns:prefix1=prefix1_url
xmlns:prefix2=prefix2_url

For example:

xmlns=http://myproject.mycompany.com
xmlns:a_prefix=a.mycompany.com

[IN]

The nsMap parameter uses the in-encoding parameter set
in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

nodeHandle Handle to a DOM subtree. If nodeHandle points to a DOM
document, the found node is replaced by all of nodeHandle
children, which are inserted in the same order. [IN]

XDOMSetNodeValue function

491

Parameter Description

dupFlag XDOM.DUP: Clones nodeHandle, and replaces it with the duplicate
node.

XDOM.NODUP: Replaces with the original node. The subtree is also
removed from its original location. [IN]

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code Description

XML.SUCCESS Function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMSetNodeValue function
XDOMSetNodeValue sets the node value.

Syntax

XDOMSetNodeValue(nodeHandle, nodeValue)

Note: This function is case-sensitive. If you want it to be case-insensitive, you must compile your
programs using the BASIC command with the -i option.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

nodeHandle Handle to the DOM node. [IN]
nodeValue The string to hold the node value. [IN]

The nodeValue parameter uses the in-encoding parameter
set in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API.

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code Description

XML.SUCCESS Function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMSetUserData function
The XDOMSetUserData function sets the user data associated with the node.

Chapter 1: Statements and functions

492

Syntax

XDOMSetUserData(nodeHandle, userData)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

nodeHandle Handle to the DOM node. [IN]
userData String to hold the user data. [IN]

Return codes

The following table describes the status of each return code.

Return code Description

XML.SUCCESS The function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMTransform function
The XDOMTransform function transforms input DOM structure using the style sheet specified by
styleSheet to output DOM structure.

Note: Beginning at 11.3.1, the UniVerse XML parser will only allow well-formed XML documents.
Applications that use poorly-formed XML may not be able to use the XDOMtransform
functionality. General XML functionality may also be impacted with poorly-formed XML
documents.

Syntax

XDOMTransform(domHandle, styleSheet, ssLocation, outDomHandle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

domHandle Handle to the opened DOM structure. [OUT]
styleSheet Handle to the context [IN]
ssLocation A flag to specify whether styleSheet contains style sheet itself, or is just the style

sheet file name. Value values are:

XML.FROM.FILE (default)

XML.FROM.STRING

[IN]
outDomHandle Handle to the resulting DOM structure. [OUT]

XDOMValidate function

493

Return codes

The following table describes the status of each return code.

Return code Description

XML.SUCCESS The function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was returned to the function.

XDOMValidate function
The XDOMValidate function validates the DOM document using the schema specified by schFile.

Syntax

XDOMValidate(xmlDocument, docLocation, schFile, schLocation)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xmlDocument The name of the XML document. [IN]
docLocation A flag to specify whether xmlDocument is the document itself, or the document

file name. Valid values are:

▪ XML.FROM.FILE (default)

▪ XML.FROM.STRING XML.FROM.DOM

[IN]
schFile The schema file.
schLocation A flag to specify whether schFile is the schema itself, or the schema file name.

Valid values are:

▪ XML.FROM.FILE (default)

▪ XML.FROM.STRING

[IN]

Return codes

The following table describes the status of each return code.

Return code Description

XML.SUCCESS The function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was passed to the function.

XDOMWrite function
The XDOMWrite function writes the DOM structure to xmlDocument. xmlDocument can be a string or
a file, depending on the value of the docLocation flag.

Chapter 1: Statements and functions

494

Syntax

XDOMWrite(domHandle, xmlDocument, docLocation)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

domHandle The handle to the opened DOM structure. [IN]
xmlDocument The XML document [OUT]
docLocation A flag to specify whether xmlDocument is an output string which should hold the

XML document, or it is a file where the XML document should be written. Valid
values are:

▪ XML.TO.FILE

▪ XML.TO.STRING

[IN]

Return codes

The following table describes the status of each return code.

Return code Description

XML.SUCCESS The function completed successfully.
XML.ERROR An error occurred.
XML.INVALID.HANDLE An invalid DOM handle was passed to the function.

XLATE function
Use the XLATE function to return the contents of a field or a record in a UniVerse file. XLATE opens
the file, reads the record, and extracts the specified data.

Syntax

XLATE ([DICT] filename, record.ID, field#, control.code)

filename is an expression that evaluates to the name of the remote file. If XLATE cannot open the file,
a run-time error occurs, and XLATE returns an empty string.

record.ID is an expression that evaluates to the ID of the record to be accessed. If record.ID is
multivalued, the translation occurs for each record ID and the result is multivalued (system delimiters
separate data translated from each record).

field# is an expression that evaluates to the number of the field from which the data is to be extracted.
If field# is -1, the entire record is returned, except for the record ID.

control.code is an expression that evaluates to a code specifying what action to take if data is not
found or is the null value. The possible control codes are:

Code Description

X (Default) Returns an empty string if the record does not exist or data cannot be
found.

XMAPAppendRec

495

Code Description

V Returns an empty string and produces an error message if the record does not
exist or data cannot be found.

C Returns the value of record.ID if the record does not exist or data cannot be
found.

N Returns the value of record.ID if the null value is found.

The returned value is lowered. For example, value marks in the original field become subvalue marks
in the returned value. For more information, see the LOWER function, on page 255.

If filename, record.ID, or field# evaluates to the null value, the XLATE function fails and the program
terminates with a run-time error message. If control.code evaluates to the null value, null is ignored
and X is used.

The XLATE function is the same as the TRANS function.

PI_TRANSMARKS uvconfig parameter

When the PI_TRANSMARKS uvconfig parameter is applied, the TRANS function will respect the PIOPEN
flavor rules and not change characters 251 and below.

▪ If PI_TRANSMARKS is set to 0 (Default), there is no change in the TRANS function behavior.

▪ If PI_TRANSMARKS is set to 1, the TRANS function will not lower characters 251 thru 248.

Example

X=XLATE("VOC","EX.BASIC",1,"X")
 PRINT "X= ":X
 *
 FIRST=XLATE("SUN.MEMBER","6100",2,"X")

LAST=XLATE("SUN.MEMBER","6100",1,"X")
 PRINT "NAME IS ":FIRST:" ":LAST

This is the program output:

X= F BASIC examples file
 NAME IS BOB MASTERS

XMAPAppendRec
The XMAPAppendRec function formats the specified record from the UniVerse file as a U2XMAP
dataset record and appends it to the U2XMAP dataset.

Syntax

XMAPAppendRec(XMAPhandle, file_name, record)

Note: This function is case-sensitive. If you want it to be case-insensitive, you must compile your
programs using the BASIC command with the -i option.

Parameters

The following table describes each parameter of the syntax.

Chapter 1: Statements and functions

496

Parameter Description

XMAPhandle The handle to the U2XMAP dataset.

The XMAPhandle parameter uses the in-encoding parameter
set in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API for
the input record value.

file_name The name of the UniVerse file that is being mapped in the U2 XMAP
dataset.

record The data record formatted according to the dictionary record of
the UniVerse file.

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code Description

XML_SUCCESS The XML document was opened successfully.
XML_ERROR An error occurred opening the XML document.
XML_INVALID_HANDLE The XMAP dataset was invalid.

XMAPClose function
The XMAPClose function closes the U2XMAP dataset handle and frees all related structures and
memory.

Syntax

XMAPClose(XMAP_handle)

where XMAP_handle is the handle to the U2XMAP dataset.

Return values

The following table describes the return values of this function.

Return value Description

XML_SUCCESS The XML document was closed successfully.
XML_ERROR An error occurred closing the XML document.
XML_INVALID_HANDLE The XMAP dataset was invalid.

XMAPCreate Function
The XMAPCreate function creates an empty XML document for transferring data from the UniVerse
database to XML according the mapping rules you define.

Syntax

XMAPCreate(u2xmapping_rules, mapping_flag, XMAPhandle)

XMAPOpen function

497

Parameters

The following table describes each parameter of the syntax.

Parameter Description

u2xmapping_rules The name of the U2XMAP file, or the UniVerse BASIC variable containing the XML
to Database mapping rules.

mapping_flag A flag indicating if the mapping file is the U2XMAP file itself or a string located
within the UniVerse BASIC program. Valid values are:

▪ XMAP.FROM.FILE - the mapping rules are contained in a U2XMAP file.

▪ XMAP.FROM.STRING - u2xmapping_rules is the name of the variable
containing the mapping rules.

XMAPhandle The handle to the XMAP dataset.

Return values

The following table describes the return values of this function.

Return value Description

XML_SUCCESS The XML document was created successfully.
XML_ERROR An error occurred creating the XML document.
XML_INVALID_HANDLE The XMAP dataset was invalid.

XMAPOpen function
The XMAPOpen function opens an XML document as a U2XMAP data set.

Syntax

XMAPOpen(xml_document, doc_flag, u2xmapping_rules, u2xmap_flag,
XMAPhandle)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xml_document The name of the XML document.
doc_flag A flag defining the type of xml_document. Valid values are:

▪ XML.FROM.DOM - xml_document is a DOM handle.

▪ XML.FROM.FILE - xml_document is a file name.

▪ XML.FROM.STRING - xml_document is the name of a variable
containing the XML document.

u2xmapping_rules The name of the U2XMAP file, or the UniVerse Basic variable
containing the XML to Database mapping rules.

Chapter 1: Statements and functions

498

Parameter Description

u2xmap_flag A flag indicating if the mapping file is the U2XMAP file itself or a
string located within the UniVerse Basic program. Valid values are:

▪ XMAP.FROM.FILE - the mapping rules are contained in a
U2XMAP file.

▪ XMAP.FROM.STRING - u2xmap_flag is the name of the variable
containing the mapping rules.

XMAPhandle The handle to the XMAP dataset.

This API registers the current in-encoding and out-encoding
parameters in the XMAPhandle. These parameters are used
throughout the life of the XMAPhandle.

Return codes

The return code indicates success or failure. The following table describes each return code.

Return code Description

XML_SUCCESS The XML document was opened successfully.
XML_ERROR An error occurred opening the XML document.

XMAPReadNext function
The XMAPReadNext function retrieves the next record from the U2XMAP dataset and formats it as a
record of the UniVerse file that is being mapped.

Syntax

XMAPReadNext(XMAPhandle, file_name, record)

Note: This function is case-sensitive. If you want it to be case-insensitive, you must compile your
programs using the BASIC command with the -i option.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

XMAPhandle The U2XMAP dataset handle.

The XMAPhandle parameter uses the out-encoding parameter
set in the system-level or account-level xmlconfig file, the
XMLSETOPTIONS command, or the XMLSetOptions() API for the
record value.

file_name The name of the UniVerse file that is being mapped in the U2XMAP
dataset.

record The data record formatted according to the dictionary record of the
file.

Return codes

The return code indicates success or failure. The following table describes each return code.

XMAPToXMLDoc function

499

Return code Description

XML_SUCCESS The XMAPReadNext was executed successfully.
XML_ERROR An error occurred in executing XMAPReadNext.
XML_INVALID_HANDLE U2 XMAP dataset handle was invalid.
XML_EOF The end of the U2XMAP dataset has been reached.

XMAPToXMLDoc function
The XMAPToXMLDoc function generates an XML document from the data in the U2XMAP dataset
using the mapping rules you define. The XML document can be either an XML DOM handle or an XML
document. UniVerse writes the data to a file or a UniVerse BASIC variable.

Syntax

XMAPToXMLDoc(XMAPhandle, xmlfile, doc_flag)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

XMAPhandle The handle to the U2XMAP dataset.
xmlfile The name of the XML file, or the name of a UniVerse BASIC variable to hold the

XML document.
doc_flag Indicates where to write the XML document. Valid values are:

▪ XML.TO.DOM - Writes the XML document to an XML DOM handle.

▪ XML.TO.FILE - Writes the XML document to a file.

▪ XML.TO.STRING - Writes the XML document to a UniVerse BASIC variable.

Return values

The following table describes the return values of this function.

Return value Description

XML_SUCCESS The XML document was opened successfully.
XML_ERROR An error occurred opening the XML document.
XML_INVALID_HANDLE The XMAP dataset was invalid.

XMLError function
Use the XMLError function to get the last error message.

Syntax

XMLError(errmsg)

Parameters

The following table describes each parameter of the syntax.

Chapter 1: Statements and functions

500

Parameter Description

errmsg The error message string, or one of the following return values:

XML.SUCCESS: Success.

XML.ERROR: Failed

XMLExecute function
The XMLExecute function enables you to create an XML document using the RetrieVe LIST statement
or the UniVerse SQL SELECT statement from a UniVerse BASIC program.

Syntax

XMLExecute(cmd, options, xmlvar, xsdvar)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

cmd Holds the text string of the RetrieVe LIST statement or the UniVerse SQL SELECT
statement. [IN]

XMLExecute function

501

Parameter Description

Each XML-related option is separated by a field mark (@FM). If the option requires a
value, the values are contained in the same field, separated by value marks (@VM).
WITHDTD Creates a DTD and binds it with the XML document.

By default, UniVerse creates an XML schema.
However, if you include WITHDTD in your RetrieVe or
UniVerse SQL statement, UniVerse does not create an
XML schema, but only produces the DTD.

ELEMENTS The XML output is in element-centric format.
‘XMLMAPPING’:
@VM:’mapping_file_ name’

Specifies the mapping file containing transformation
rules for display. This file must exist in the &XML&
directory.

‘SCHEMA’:@VM: ’type’ The default schema format is ref type schema. You
can use the SCHEMA attribute to define a different
schema format.

HIDEMV, HIDEMS Normally, when UniVerse processes multivalued or
multi-subvalued fields, UniVerse adds another level
of elements to produce multiple levels of nesting.
You have the option of disabling this additional level
by adding the HIDEMV and HIDEMS attributes. When
these options are on, the generated XML document
and the associated DTD or XML schema have fewer
levels of nesting.

HIDEROOT Allows you to specify to only create a segment of
an XML document, for example, using the SAMPLE
keyword and other conditional clauses. If you specify
HIDEROOT, UniVerse only creates the record portion
of the XML document, it does not create a DTD or XML
schema.

‘RECORD’:@VM: ’newrecords’ The default record name is FILENAME_record. The
record attribute in the ROOT element changes the
record name.

‘ROOT’:@VM: ’newroot’ The default root element name in an XML document
is ROOT. You can change the name of the root
element as shown in the following example:

root=”root_element_name”
TARGETNAMESPACE:@FM:’
namespaceURL’

UniVerse displays the targetnamespace attribute in
the XMLSchema as

targetNamespace, and uses the URL you specify
to define schemaLocation. If you define the
targetnamespace and other explicit namespace
definitions, UniVerse checks if the explicitly
defined namespace has the same URL and the
targetnamespace. If it does, UniVerse uses the
namespace name to qualify the schema element, and
the XML document element name.

options

COLLAPSEMV, COLLAPSEMS Normally, when UniVerse processes multivalued or
multi-subvalued fields, UniVerse adds another level
of elements to produce multiple levels of nesting.
You have the option of disabling this additional
level by adding the COLLAPSEMV and COLLAPSE MS
attributes. When these options are on, the generated
XML document and the associated DTD or XML
Schema have fewer levels of nesting.

Chapter 1: Statements and functions

502

Parameter Description

XmlVar The name of the variable to which to write the generated XML document [OUT]
XsdVar The name of the variable in which to store the XML Schema if one is generated along

with the XML document. [OUT]

Example

The following example illustrates the XMLExecute function:

CMD="SELECT SEMESTER,COURSE_NBR FROM STUDENT;"
OPTIONS := "COLLAPSEMS"
OPTIONS := @FM:"HIDEROOT"
OPTIONS := @FM:"root":@VM:"mystudent"
OPTIONS :=@FM:"record":@VM:"myrecord"
OPTIONS :=@FM:"targetnamespace":@VM:"http://www.rocketsoftware.com"
OPTIONS := @FM:"elementformdefault"
STATUS = XMLEXECUTE(CMD,OPTIONS,XMLVAR,XSDVAR)
PRINT XSDVAR
PRINT XMLVAR

XMLTODB function
You can also populate the UniVerse database by calling the UniVerse BASIC XMLTODB function.
XMLTODB does the same thing as the TCL XML.TODB command. It cannot transform data from a
specific subtree in an XML document. If you want to transform specific data, use the XMAP API.

Syntax

XMLTODB(xml_document, doc_flag, u2xmapping_rules, u2xmap_ flag, status)

Parameters

The following table describes each parameter of the syntax.

Parameter Description

xml_document The name of the XML document.
doc_flag A flag defining the type of xml_document. Valid values are:

▪ XML.FROM.DOM - xml_document is a DOM handle.

▪ XML.FROM.FILE - xml_document is a file name.

▪ XML.FROM.STRING - xml_document is a string located within the UniVerse
BASIC program.

u2xmapping_rules The mapping rules for the XML document.
u2xmap_flag A flag indicating if the mapping file is the U2XMAP file itself or a string located

within the UniVerse BASIC program. Valid values are:

▪ XMAP.FROM.FILE - the mapping rules are contained in a U2XMAP file.

▪ XMAP.FROM.STRING - u2xmapping_rules is the name of the variable
containing the mapping rules.

Status The return status.

While the UniVerse BASIC function XMLTODB() provides and easy way of transferring data from an
XML document to a set of related database files, you may want to have greater control over which

XTD function

503

part of the XML document you want to use for transferring data. For example, XMLTODB() lets you
start the data transfer from a particular sibling of the start node. An example of such finer control is
transferring only the second school data and its dependent subtree to the database from the sample
XML document. You can accomplish this using a combination of the DOM API functions and the XMAP
API functions.

Example

The following example illustrates the use of XMLTODB:

*XMLTODB("myXMlFile",XML.FROM.FILE,"myMapFile",XML.FROM.FILE,STATUS)

XTD function
Use the XTD function to convert a string of hexadecimal characters to an integer. If string evaluates to
the null value, null is returned.

Syntax

XTD (string)

Example

Y = "0019"
 Z = XTD (Y)
 PRINT Z

This is the program output:

25

504

Appendix A: Quick reference
This appendix is a quick reference for all UniVerse BASIC statements and functions. The statements
and functions are grouped according to their uses:

▪ Compiler directives

▪ Declarations

▪ Assignments

▪ Program flow control

▪ File I/O

▪ Sequential file I/O

▪ Printer and terminal I/O

▪ Tape I/O

▪ Select lists

▪ String handling

▪ Data conversion and formatting

▪ NLS

▪ Mathematical functions

▪ Relational functions

▪ System

▪ Remote procedure calls

▪ Miscellaneous

Compiler directives
The following table describes compiler directive statements.

Command Description

$* statement Identifies a line as a comment line. Same as the !, $*, and REM
statements.

! statement Identifies a line as a comment line. Same as the *, $*, and REM
statements.

#INCLUDE statement Inserts and compiles UniVerse BASIC source code from another
program into the program being compiled. Same as the $INCLUDE
and INCLUDE statements.

$* statement Identifies a line as a comment line. Same as the *, !, and REM
statements.

$CHAIN statement Inserts and compiles UniVerse BASIC source code from another
program into the program being compiled.

$COPYRIGHT statement Inserts comments into the object code header. (UniVerse supports this
statement for compatibility with existing software.)

$DEFINE statement Defines a compile time symbol.
$EJECT statement Begins a new page in the listing record. (UniVerse supports this

statement for compatibility with existing software.) Same as the
$PAGE statement.

Declarations

505

Command Description

$IFDEF statement Tests for the definition of a compile time symbol.
$IFNDEF statement Tests for the definition of a compile time symbol.
$INCLUDE statement Inserts and compiles UniVerse BASIC source code from another

program into the program being compiled. Same as the #INCLUDE
and INCLUDE statements.

$INSERT statement Performs the same operation as $INCLUDE; the only difference is in
the syntax. (UniVerse supports this statement for compatibility with
existing software.)

$MAP statement In NLS mode, specifies the map for the source code.
$OPTIONS statement Sets compile time emulation of UniVerse flavors.
$PAGE statement Begins a new page in the listing record. (UniVerse supports this

statement for compatibility with existing software.) Same as the
$EJECT statement.

EQUATE statement Assigns a symbol as the equivalent of a variable, function, number,
character, or string.

#INCLUDE statement Inserts and includes the specified BASIC source code from another
program into the program being compiled. Same as the #INCLUDE
and $INCLUDE statements.

NULL statement Indicates that no operation is to be performed.
REM statement Identifies a line as a comment line. Same as the *, !, and $*

statements.
$UNDEFINE statement Removes the definition for a compile time symbol.

Declarations
The following table describes Declaration statements.

Command Description

COMMON statement Defines a storage area in memory for variables commonly used by
programs and external subroutines.

DEFFUN statement Defines a user-written function.
DIMENSION statement Declares the name, dimensionality, and size constraints of an array

variable.
FUNCTION statement Identifies a user-written function.
PROGRAM statement Identifies a program.
SUBROUTINE statement Identifies a series of statements as a subroutine.

Assignments
The following table describes Assignment functions and statements.

Command Description

ASSIGNED function Determines if a variable is assigned a value.
CLEAR statement Assigns a value of 0 to specified variables.
LET statement Assigns a value to a variable.
MAT statement Assigns a new value to every element of an array with one statement.

Appendix A: Quick reference

506

Command Description

UNASSIGNED function Determines if a variable is unassigned.

Program flow control
The following table describes Program Flow Control functions and statements.

Command Description

ABORT statement Terminates all programs and returns to the UniVerse command level.
BEGIN CASE statement Indicates the beginning of a set of CASE statements.
CALL statement Executes an external subroutine.
CASE statements Alters program flow based on the results returned by expressions.
CHAIN command Terminates a BASIC program and executes a UniVerse command.
CONTINUE Transfers control to the next logical iteration of a loop.
END statement Indicates the end of a program or a block of statements.
END CASE statement Indicates the end of a set of CASE statements.
ENTER statement Executes an external subroutine.
EXECUTE statement Executes UniVerse sentences and paragraphs from within the BASIC

program.
EXIT statement Quits execution of a LOOP…REPEAT loop and branches to the

statement following the REPEAT statement.
FOR statement Allows a series of instructions to be performed in a loop a given

number of times.
GOSUB statement Branches to and returns from an internal subroutine.
GOTO statement Branches unconditionally to a specified statement within the program

or subroutine.
IF statement Determines program flow based on the evaluation of an expression.
LOOP statement Repeatedly executes a sequence of statements under specified

conditions.
NEXT statement Defines the end of a FOR…NEXT loop.
ON statement Transfers program control to a specified internal subroutine or to a

specified statement, under specified conditions.
PERFORM statement Executes a specified UniVerse sentence, paragraph, menu, or

command from within the BASIC program, and then returns execution
to the statement following the PERFORM statement.

REPEAT statement Repeatedly executes a sequence of statements under specified
conditions.

RETURN statement Transfers program control from an internal or external subroutine
back to the calling program.

RETURN (value) statement Returns a value from a user-written function.
STOP statement Terminates the current program.
SUBR function Returns the value of an external subroutine.
WHILE/UNTIL Provides conditions under which the LOOP…REPEAT statement or

FOR…NEXT statement terminates.

File I/O

507

File I/O
The following table describes File I/O functions and statements.

Command Description

AUTHORIZATION statement Specifies the effective run-time UID (user identification) number of the
program.

BEGIN TRANSACTION
statement

Indicates the beginning of a set of statements that make up a single
transaction.

BSCAN statement Scans the leaf-nodes of a B-tree file (type 25) or a secondary index.
CLEARFILE statement Erases all records from a file.
CLOSE statement Writes data written to the file physically on the disk and releases any

file or update locks.
COMMIT statement Commits all changes made during a transaction, writing them to disk.
DELETE statements Deletes a record from a UniVerse file.
DELETEU statement Deletes a record from a previously opened file.
END TRANSACTION
statement

Indicates where execution should continue after a transaction
terminates.

FILELOCK statement Sets a file update lock on an entire file to prevent other users from
updating the file until this program releases it.

FILEUNLOCK statement Releases file locks set by the FILELOCK statement.
INDICES function Returns information about the secondary key indexes in a file.
MATREAD statements Assigns the data stored in successive fields of a record from a UniVerse

file to the consecutive elements of an array.
MATREADL statement Sets a shared read lock on a record, then assigns the data stored

in successive fields of the record to the consecutive elements of an
array.

MATREADU statement Sets an exclusive update lock on a record, then assigns the data
stored in successive fields of the record to the consecutive elements
of an array.

MATWRITE statements Assigns the data stored in consecutive elements of an array to the
successive fields of a record in a UniVerse file.

MATWRITEU statement Assigns the data stored in consecutive elements of an array to the
successive fields of a record in a UniVerse file, retaining any update
locks set on the record.

OPEN statement Opens a UniVerse file to be used in a BASIC program.
OPENPATH statement Opens a file to be used in a BASIC program.
PROCREAD statement Assigns the contents of the primary input buffer of the proc to a

variable.
PROCWRITE statement Writes the specified string to the primary input buffer of the proc that

called your BASIC program.
READ statements Assigns the contents of a record to a dynamic array variable.
READL statement Sets a shared read lock on a record, then assigns the contents of the

record to a dynamic array variable.
READU statement Sets an exclusive update lock on a record, then assigns the contents

of the record to a dynamic array variable.
READV statement Assigns the contents of a field of a record to a dynamic array variable.

Appendix A: Quick reference

508

Command Description

READVL statement Sets a shared read lock on a record, then assigns the contents of a
field of a record to a dynamic array variable.

READVU statement Sets an exclusive update lock on a record, then assigns the contents
of a field of the record to a dynamic array variable.

RECORDLOCKED function Establishes whether or not a record is locked by a user.
RECORDLOCKL Sets a shared read-only lock on a record in a file.
RECORDLOCKU Locks the specified record to prevent other users from accessing it.
RELEASE statement Unlocks records locked by READL, READU, READVL, READVU,

MATREADL, MATREADU, MATWRITEV, WRITEV, or WRITEVU
statements.

ROLLBACK statement Rolls back all changes made during a transaction. No changes are
written to disk.

SET TRANSACTION
ISOLATION LEVEL statement

Sets the default transaction isolation level for your program.

TRANS function Returns the contents of a field in a record of a UniVerse file.
TRANSACTION ABORT
statement

Discards changes made during a transaction. No changes are written
to disk.

TRANSACTION COMMIT
statement

Commits all changes made during a transaction, writing them to disk.

TRANSACTION START
statement

Indicates the beginning of a set of statements that make up a single
transaction.

WRITE statements Replaces the contents of a record in a UniVerse file.
WRITEU Replaces the contents of the record in a UniVerse file without

releasing the record lock
WRITEV Replaces the contents of a field of a record in a UniVerse file.
WRITEVU Replaces the contents of a field in the record without releasing the

record lock.
XLATE function Returns the contents of a field in a record of a UniVerse file.

Sequential file I/O
The following table describes the Sequential File I/O statements.

Command Description

CLOSESEQ statement Writes an end-of-file mark at the current location in the record and
then makes the record available to other users.

CREATE statement Creates a record in a UniVerse type 1 or type 19 file or establishes a
path.

FLUSH statement Immediately writes all buffers.
GET statements Reads a block of data from an input stream associated with a device,

such as a serial line or terminal.
GETX statement Reads a block of data from an input stream associated with a device,

and returns the characters in ASCII hexadecimal format.
NOBUF statement Turns off buffering for a sequential file.
OPENSEQ statement Prepares a UniVerse file for sequential use by the BASIC program.
READBLK statement Reads a block of data from a UniVerse file open for sequential

processing and assigns it to a variable.

Printer and terminal I/O

509

Command Description

READSEQ statement Reads a line of data from a UniVerse file opened for sequential
processing and assigns it to a variable.

SEND statement Writes a block of data to a device that has been opened for I/O using
OPENDEV or OPENSEQ.

STATUS statement Determines the status of a UniVerse file open for sequential
processing.

TIMEOUT statement Terminates READSEQ or READBLK if no data is read in the specified
time.

TTYCTL statement Controls sequential file interaction with a terminal device.
TTYGET statement Gets a dynamic array of the terminal characteristics of a terminal, line

printer channel, or magnetic tape channel.
TTYSET statement Sets the terminal characteristics of a terminal, line printer channel, or

magnetic tape channel.
WEOFSEQ statement Writes an end-of-file mark to a UniVerse file open for sequential

processing at the current position.
WRITEBLK statement Writes a block of data to a record in a sequential file.
WRITESEQ statement Writes new values to the specified record of a UniVerse file

sequentially.
WRITESEQF statement Writes new values to the specified record of a UniVerse file

sequentially and ensures that the data is written to disk.

Printer and terminal I/O
The following table describes the Printer and Terminal I/O functions and statements.

Command Description

@ function Returns an escape sequence used for terminal control.
BREAK statement Enables or disables the Break key on the keyboard.
CLEARDATA statement Clears all data previously stored by the DATA statement.
CRT statement Outputs data to the screen.
DATA statement Stores values to be used in subsequent requests for data input.
DISPLAY statement Outputs data to the screen.
ECHO statement Controls the display of input characters on the terminal screen.
FOOTING statement Specifies text to be printed at the bottom of each page.
HEADING statement Specifies text to be printed at the top of each page.
HUSH statement Suppresses all text normally sent to a terminal during processing.
INPUT statement Allows data input from the keyboard during program execution.
INPUT @ statement Positions the cursor at a specified location and defines the length of

the input field.
INPUTCLEAR statement Clears the type-ahead buffer.
INPUTDISP statement Positions the cursor at a specified location and defines a format for

the variable to print.
INPUTERR statement Prints a formatted error message from the ERRMSG file on the bottom

line of the terminal.
INPUTNULL statement Defines a single character to be recognized as the empty string in an

INPUT @ statement.

Appendix A: Quick reference

510

Command Description

INPUTTRAP statement Branches to a program label or subroutine on a TRAP key.
KEYEDIT statement Assigns specific editing functions to the keys on the keyboard to be

used with the INPUT statement.
KEYEXIT statement Specifies exit traps for the keys assigned editing functions by the

KEYEDIT statement.
KEYIN function Reads a single character from the input buffer and returns it.
KEYTRAP statement Specifies traps for the keys assigned specific functions by the KEYEDIT

statement.
OPENDEV statement Opens a device for input or output.
$PAGE statement Prints a footing at the bottom of the page, advances to the next page,

and prints a heading at the top.
PRINT statement Outputs data to the terminal screen or to a printer.
PRINTER CLOSE Indicates the completion of a print file and readiness for the data

stored in the system buffer to be printed on the line printer.
PRINTER ON | OFF Indicates whether print file 0 is to output to the terminal screen or to

the line printer.
PRINTER RESET Resets the printing options.
PRINTERR statement Prints a formatted error message from the ERRMSG file on the bottom

line of the terminal.
PROMPT statement Defines the prompt character for user input.
TABSTOP statement Sets the current tabstop width for PRINT statements.
TERMINFO function Accesses the information contained in the terminfo files.
TPARM function Evaluates a parameterized terminfo string.
TPRINT statement Sends data with delays to the screen, a line printer, or another

specified print file (that is, a logical printer).

Tape I/O
The following table describes the Tape I/O statements.

Command Description

READT statement Assigns the contents of the next record from a magnetic tape unit to
the named variable.

REWIND statement Rewinds the magnetic tape to the beginning of the tape.
WEOF statement Writes an end-of-file mark to a magnetic tape.
WRITET Writes the contents of a record onto magnetic tape.

Select lists
The following table describes Select Lists functions and statements.

Command Description

CLEARSELECT statement Sets a select list to empty.
DELETELIST statement Deletes a select list saved in the &SAVEDLISTS& file.

String handling

511

Command Description

GETLIST statement Activates a saved select list so it can be used by a READNEXT
statement.

READLIST statement Assigns an active select list to a variable.
READNEXT statement Assigns the next record ID from an active select list to a variable.
SELECT statements Creates a list of all record IDs in a UniVerse file for use by a subsequent

READNEXT statement. SELECT, SELECTN, and SELECTV are included in
the SELECT statements.

SELECTE statement Assigns the contents of select list 0 to a variable.
SELECTINDEX statement Creates select lists from secondary key indexes.
SELECTINFO function Returns the activity status of a select list.
SSELECT statement Creates a sorted list of all record IDs from a UniVerse file.
WRITELIST statement Saves a list as a record in the &SAVEDLISTS& file.

String handling
The following table describes the String Handling functions and statements.

Command Description

ALPHA function Determines whether the expression is an alphabetic or non-alphabetic
string.

CATS function Concatenates elements of two dynamic arrays.
CHANGE function Substitutes an element of a string with a replacement element.
CHECKSUM function Returns a cyclical redundancy code (a checksum value).
COL1 function Returns the column position immediately preceding the selected

substring after a BASIC FIELD function is executed.
COL2 function Returns the column position immediately following the selected

substring after a BASIC FIELD function is executed.
COMPARE function Compares two strings for sorting.
CONVERT statement Converts specified characters in a string to designated replacement

characters.
CONVERT function Replaces every occurrence of specified characters in a variable with

other specified characters.
COUNT function Evaluates the number of times a substring is repeated in a string.
COUNTS function Evaluates the number of times a substring is repeated in each element

of a dynamic array.
DCOUNT function Evaluates the number of delimited fields contained in a string.
DEL statement Deletes the specified field, value, or subvalue from a dynamic array.
DELETE function Deletes a field, value, or subvalue from a dynamic array.
DOWNCASE function Converts all uppercase letters in an expression to lowercase.
DQUOTE function Encloses an expression in double quotation marks.
EREPLACE function Substitutes an element of a string with a replacement element.
EXCHANGE function Replaces one character with another or deletes all occurrences of a

specific character.
EXTRACT function Extracts the contents of a specified field, value, or subvalue from a

dynamic array.

Appendix A: Quick reference

512

Command Description

FIELD function Examines a string expression for any occurrence of a specified
delimiter and returns a substring that is marked by that delimiter.

FIELDS function Examines each element of a dynamic array for any occurrence of a
specified delimiter and returns substrings that are marked by that
delimiter.

FIELDSTORE function Replaces, deletes, or inserts substrings in a specified character string.
FIND statement Locates a given occurrence of an element within a dynamic array.
FINDSTR statement Locates a given occurrence of a substring.
FOLD function Divides a string into a number of shorter sections.
GETREM function Returns the numeric value for the position of the REMOVE pointer

associated with a dynamic array.
GROUP function Returns a substring that is located between the stated number of

occurrences of a delimiter.
GROUPSTORE statement Modifies existing character strings by inserting, deleting, or replacing

substrings that are separated by a delimiter character.
INDEX function Returns the starting column position of a specified occurrence of a

particular substring within a string expression.
INDEXS function Returns the starting column position of a specified occurrence of a

particular substring within each element of a dynamic array.
INS statement Inserts a specified field, value, or subvalue into a dynamic array.
INSERT function Inserts a field, value, or subvalue into a dynamic array.
LEFT function Specifies a substring consisting of the first n characters of a string.
LEN function Calculates the length of a string.
LENS function Calculates the length of each element of a dynamic array.
LOCATE statement (IDEAL
and REALITY syntax)

Searches a dynamic array for a particular value or string, and returns
the index of its position.

LOWER function Converts system delimiters that appear in expressions to the next
lower-level delimiter.

MATBUILD statement Builds a string by concatenating the elements of an array.
MATCHFIELD function Returns the contents of a substring that matches a specified pattern

or part of a pattern.
MATPARSE statement Assigns the elements of an array from the elements of a dynamic

array.
QUOTE function Encloses an expression in double quotation marks.
RAISE function Converts system delimiters that appear in expressions to the next

higher-level delimiter.
REMOVE statement Removes substrings from a dynamic array.
REMOVE function Successively removes elements from a dynamic array. Extracts

successive fields, values, etc., for dynamic array processing.
REVREMOVE statement Successively removes elements from a dynamic array, starting from

the last element and moving right to left. Extracts successive fields,
values, etc., for dynamic array processing.

REPLACE function Replaces all or part of the contents of a dynamic array.
REUSE function Reuses the last value in the shorter of two multivalue lists in a

dynamic array operation.
RIGHT function Specifies a substring consisting of the last n characters of a string.

Data conversion and formatting

513

Command Description

SETREM statement Sets the position of the REMOVE pointer associated with a dynamic
array.

SOUNDEX function Returns the soundex code for a string.
SPACE function Generates a string consisting of a specified number of blank spaces.
SPACES function Generates a dynamic array consisting of a specified number of blank

spaces for each element.
SPLICE function Inserts a string between the concatenated values of corresponding

elements of two dynamic arrays.
SQUOTE function Encloses an expression in single quotation marks.
STR function Generates a particular character string a specified number of times.
STRS function Generates a dynamic array whose elements consist of a character

string repeated a specified number of times.
SUBSTRINGS function Creates a dynamic array consisting of substrings of the elements of

another dynamic array.
TRIM function Deletes extra blank spaces and tabs from a character string.
TRIMB function Deletes all blank spaces and tabs after the last non-blank character in

an expression.
TRIMBS function Deletes all trailing blank spaces and tabs from each element of a

dynamic array.
TRIMF function Deletes all blank spaces and tabs up to the first non-blank character

in an expression.
TRIMFS function Deletes all leading blank spaces and tabs from each element of a

dynamic array.
TRIMS function Deletes extra blank spaces and tabs from the elements of a dynamic

array.
UPCASE function Converts all lowercase letters in an expression to uppercase.

Data conversion and formatting
The following table describes the Data Conversion and Formatting functions and statements.

Command Description

ASCII function Converts EBCDIC representation of character string data to the
equivalent ASCII character code values.

CHAR function Converts a numeric value to its ASCII character string equivalent.
CHARS function Converts numeric elements of a dynamic array to their ASCII character

string equivalents.
DTX function Converts a decimal integer into its hexadecimal equivalent.
EBCDIC function Converts data from its ASCII representation to the equivalent code

value in EBCDIC.
FIX function Rounds an expression to a decimal number having the accuracy

specified by the PRECISION statement.
FMT function Converts data from its internal representation to a specified format

for output.
FMTS function Converts elements of a dynamic array from their internal

representation to a specified format for output.
ICONV function Converts data to internal storage format.

Appendix A: Quick reference

514

Command Description

ICONVS function Converts elements of a dynamic array to internal storage format.
OCONV function Converts data from its internal representation to an external output

format.
OCONVS function Converts elements of a dynamic array from their internal

representation to an external output format.
PRECISION statement Sets the maximum number of decimal places allowed in the

conversion from the internal binary format of a numeric value to the
string representation.

SEQ function Converts an ASCII character code value to its corresponding numeric
value.

SEQS function Converts each element of a dynamic array from an ASCII character
code to a corresponding numeric value.

XTD function Converts a hexadecimal string into its decimal equivalent.

NLS
The following table describes the NLS functions and statements.

Command Description

$MAP statement Directs the compiler to specify the map for the source code.
AUXMAP statement Assigns the map for the auxiliary printer to print unit 0 (i.e., the

terminal).
BYTE function Generates a string made up of a single byte.
BYTELEN function Generates the number of bytes contained in the string value in an

expression.
BYTETYPE function Determines the function of a byte in a character.
BYTEVAL function Retrieves the value of a byte in a string value in an expression.
FMTDP function Formats data for output in display positions rather than character

lengths.
FMTSDP function Formats elements of a dynamic array for output in display positions

rather than character lengths.
FOLDDP function Divides a string into a number of substrings separated by field marks,

in display positions rather than character lengths.
GETLOCALE function Retrieves the names of specified categories of the current locale.
INPUTDISP statement Lets the user enter data in display positions rather than character

lengths.
LENDP function Returns the number of display positions in a string.
LENSDP function Returns a dynamic array of the number of display positions in each

element of a dynamic array.
LOCALEINFO function Retrieves the settings of the current locale.
SETLOCALE function Changes the setting of one or all categories for the current locale.
UNICHAR function Generates a character from a Unicode integer value.
UNICHARS function Generates a dynamic array from an array of Unicode values.
UNISEQ function Generates a Unicode integer value from a character.
UNISEQS function Generates an array of Unicode values from a dynamic array.

Mathematical functions

515

Command Description

UPRINT statement Prints data without performing any mapping. Typically used with data
that has already been mapped using OCONV (mapname).

Mathematical functions
The following table describes mathematical functions and statements

Function Description

ABS function Returns the absolute (positive) numeric value of an expression.
ABSS function Creates a dynamic array containing the absolute values of a dynamic

array.
ACOS function Calculates the trigonometric arc-cosine of an expression.
ADDS function Adds elements of two dynamic arrays.
ASIN function Calculates the trigonometric arc-sine of an expression.
ATAN function Calculates the trigonometric arctangent of an expression.
BITAND function Performs a bitwise AND of two integers.
BITNOT function Performs a bitwise NOT of two integers.
BITOR function Performs a bitwise OR of two integers.
BITRESET function Resets one bit of an integer.
BITSET function Sets one bit of an integer.
BITTEST function Tests one bit of an integer.
BITXOR function Performs a bitwise XOR of two integers.
COS function Calculates the trigonometric cosine of an angle.
COSH function Calculates the hyperbolic cosine of an expression.
DIV function Outputs the whole part of the real division of two real numbers.
DIVS function Divides elements of two dynamic arrays.
EXP function Calculates the result of base "e" raised to the power designated by the

value of the expression.
INT function Calculates the integer numeric value of an expression.
FADD function Performs floating-point addition on two numeric values. This function

is provided for compatibility with existing software.
FDIV function Performs floating-point division on two numeric values.
FFIX function Converts a floating-point number to a string with a fixed precision.

FFIX is provided for compatibility with existing software.
FFLT function Rounds a number to a string with a precision of 14.
FMUL function Performs floating-point multiplication on two numeric values. This

function is provided for compatibility with existing software.
FSUB function Performs floating-point subtraction on two numeric values.
LN function Calculates the natural logarithm of an expression in base "e".
MAXIMUM function Returns the element with the highest numeric value in a dynamic

array.
MINIMUM function Returns the element with the lowest numeric value in a dynamic

array.
MOD function Calculates the modulo (the remainder) of two expressions.

Appendix A: Quick reference

516

Function Description

MODS function Calculates the modulo (the remainder) of elements of two dynamic
arrays.

MULS function Multiplies elements of two dynamic arrays.
NEG function Returns the arithmetic additive inverse of the value of the argument.
NEGS function Returns the negative numeric values of elements in a dynamic array. If

the value of an element is negative, the returned value is positive.
NUM function Returns true (1) if the argument is a numeric data type; otherwise,

returns false (0).
NUMS function Returns true (1) for each element of a dynamic array that is a numeric

data type; otherwise, returns false (0).
PWR function Calculates the value of an expression when raised to a specified

power.
RANDOMIZE statement Initializes the RND function to ensure that the same sequence of

random numbers is generated after initialization.
REAL function Converts a numeric expression into a real number without loss of

accuracy.
REM function Calculates the value of the remainder after integer division is

performed.
RND function Generates a random number between zero and a specified number

minus one.
SADD function Adds two string numbers and returns the result as a string number.
SCMP function Compares two string numbers.
SDIV function Outputs the quotient of the whole division of two integers.
SIN function Calculates the trigonometric sine of an angle.
SINH function Calculates the hyperbolic sine of an expression.
SMUL function Multiplies two string numbers.
SQRT function Calculates the square root of a number.
SSUB function Subtracts one string number from another and returns the result as a

string number.
SUBS function Subtracts elements of two dynamic arrays.
SUM function Calculates the sum of numeric data within a dynamic array.
SUMMATION function Adds the elements of a dynamic array.
TAN function Calculates the trigonometric tangent of an angle.
TANH function Calculates the hyperbolic tangent of an expression.

.

Relational functions
The following table describes the Relational functions.

Function Description

ANDS function Performs a logical AND on elements of two dynamic arrays.
EQS function Compares the equality of corresponding elements of two dynamic

arrays.

System

517

Function Description

GES function Indicates when elements of one dynamic array are greater than or
equal to corresponding elements of another dynamic array.

GTS function Indicates when elements of one dynamic array are greater than
corresponding elements of another dynamic array.

IFS function Evaluates a dynamic array and creates another dynamic array on the
basis of the truth or falsity of its elements.

ISNULL function Indicates when a variable is the null value.
ISNULLS function Indicates when an element of a dynamic array is the null value.
LES function Indicates when elements of one dynamic array are less than or equal

to corresponding elements of another dynamic array.
LTS function Indicates when elements of one dynamic array are less than

corresponding elements of another dynamic array.
NES function Indicates when elements of one dynamic array are not equal to

corresponding elements of another dynamic array.
NOT function Returns the complement of the logical value of an expression.
NOTS function Returns the complement of the logical value of each element of a

dynamic array.
ORS function Performs a logical OR on elements of two dynamic arrays.

System
The following table describes the System functions and statements.

Function Description

DATE function Returns the internal system date.
DATETIMEL function Returns the local date and time in microseconds in a human readable

format.

Note: This function is supported on Linux and Solaris platforms only.
DATETIMEZ function Returns the UTC date and time in microseconds in a human readable

format.

Note: This function is supported on Linux and Solaris platforms only.
DEBUG statement Invokes RAID, the interactive UniVerse BASIC debugger.
ERRMSG statement Prints a formatted error message from the ERRMSG file.
GCDISTANCE function Calculates the great-circle distance (in meters) between two points on

the surface of Earth.
INMAT function Used with the MATPARSE, MATREAD, and MATREADU statements to

return the number of array elements or with the OPEN statement to
return the modulo of a file.

ITYPE function Returns the value resulting from the evaluation of an I-descriptor.
LOCK statement Sets an execution lock to protect user-defined resources or events

from being used by more than one concurrently running program.
NAP statement Suspends execution of a BASIC program, pausing for a specified

number of milliseconds.
NOW function Returns the numeric value of the internal datetime value.

Note: This function is supported on Linux and Solaris platforms only.

Appendix A: Quick reference

518

Function Description

SENTENCE function Returns the stored sentence that invoked the current process.
SLEEP statement Suspends execution of a BASIC program, pausing for a specified

number of seconds.
STATUS function Reports the results of a function or statement previously executed.
SYSTEM function Checks the status of a system function.
TIME function Returns the time in internal format.
TIMEDATE function Returns the time and date.
TODATE function Converts the internal datetime value to the internal local date value.

Note: This function is supported on Linux and Solaris platforms only.
TODATETIME function Converts the internal values of the local date and time (as returned by

the DATE() and TIME() functions) to the internal datetime value.

Note: This function is supported on Linux and Solaris platforms only.
TOTIME function Converts the internal datetime value to the internal local time value.

Note: This function is supported on Linux and Solaris platforms only.
UNLOCK statement Releases an execution lock that was set with the LOCK statement.
USERINFO function, on page
455

Gets the pid, user number, and more for the pid or user number
specified.

Remote procedure calls
The following table describes Remote Procedure Call functions.

Function Description

RPC.CALL function Sends requests to a remote server.
RPC.CONNECT function Establishes a connection with a remote server process.
RPC.DISCONNECT function Disconnects from a remote server process.

Miscellaneous
The following table describes Miscellaneous functions and statements.

Function Description

CLEARPROMPTS statement Clears the value of the in-line prompt.
EOF(ARG.) function Checks whether the command line argument pointer is past the last

command line argument.
FILEINFO function Returns information about the specified file’s configuration.
ILPROMPT function Evaluates strings containing in-line prompts.
GET(ARG.) statement Retrieves a command line argument.
SEEK(ARG.) statement Moves the command line argument pointer.

519

Appendix B: ASCII and hex equivalents
Decimal Binary Octal Hexadecimal ASCII

000 00000000 000 00 NUL
001 00000001 001 01 SOH
002 00000010 002 02 STX
003 00000011 003 03 ETX
004 00000100 004 04 EOT
005 00000101 005 05 ENQ
006 00000110 006 06 ACK
007 00000111 007 07 BEL
008 00001000 010 08 BS
009 00001001 011 09 HT
010 00001010 012 0A LF
011 00001011 013 0B VT
012 00001100 014 0C FF
013 00001101 015 0D CR
014 00001110 016 0E SO
015 00001111 017 0F SI
016 00010000 020 10 DLE
017 00010001 021 11 DC1
018 00010010 022 12 DC2
019 00010011 023 13 DC3
020 00010100 024 14 DC4
021 00010101 025 15 NAK
022 00010110 026 16 SYN
023 00010111 027 17 ETB
024 00011000 030 18 CAN
025 00011001 031 19 EM
026 00011010 032 1A SUB
027 00011011 033 1B ESC
028 00011100 034 1C FS
029 00011101 035 1D GS
030 00011110 036 1E RS
031 00011111 037 1F US
032 00100000 040 20 SPACE
033 00100001 041 21 !
034 00100010 042 22 "
035 00100011 043 23 #
036 00100100 044 24 $
037 00100101 045 25 %
038 00100110 046 26 &
039 00100111 047 27 '

Appendix B: ASCII and hex equivalents

520

Decimal Binary Octal Hexadecimal ASCII

040 00101000 050 28 (
041 00101001 051 29)
042 00101010 052 2A *
043 00101011 053 2B +
044 00101100 054 2C ,
045 00101101 055 2D –
046 00101110 056 2E .
047 00101111 057 2F /
048 00110000 060 30 0
049 00110001 061 31 1
050 00110010 062 32 2
051 00110011 063 33 3
052 00110100 064 34 4
053 00110101 065 35 5
054 00110110 066 36 6
055 00110111 067 37 7
056 00111000 070 38 8
057 00111001 071 39 9
058 00111010 072 3A :
059 00111011 073 3B ;
060 00111100 074 3C <
061 00111101 075 3D =
062 00111110 076 3E >
063 00111111 077 3F ?
064 01000000 100 40 @
065 01000001 101 41 A
066 01000010 102 42 B
067 01000011 103 43 C
068 01000100 104 44 D
069 01000101 105 45 E
070 01000110 106 46 F
071 01000111 107 47 G
072 01001000 110 48 H
073 01001001 111 49 I
074 01001010 112 4A J
075 01001011 113 4B K
076 01001100 114 4C L
077 01001101 115 4D M
078 01001110 116 4E N
079 01001111 117 4F O
080 01010000 120 50 P
081 01010001 121 51 Q
082 01010010 122 52 R

ASCII and hex equivalents

521

Decimal Binary Octal Hexadecimal ASCII

083 01010011 123 53 S
084 01010100 124 54 T
085 01010101 125 55 U
086 01010110 126 56 V
087 01010111 127 57 W
088 01011000 130 58 X
089 01011001 131 59 Y
090 01011010 132 5A Z
091 01011011 133 5B [
092 01011100 134 5C \
093 01011101 135 5D]
094 01011110 136 5E ^
095 01011111 137 5F _
096 01100000 140 60 `
097 01100001 141 61 a
098 01100010 142 62 b
099 01100011 143 63 c
100 01100100 144 64 d
101 01100101 145 65 e
102 01100110 146 66 f
103 01100111 147 67 g
104 01101000 150 68 h
105 01110001 151 69 i
106 01110010 152 6A j
107 01110011 153 6B k
108 01110100 154 6C l
109 01110101 155 6D m
110 01110110 156 6E n
111 01110111 157 6F o
112 01111000 160 70 p
113 01111001 161 71 q
114 01111010 162 72 r
115 01111011 163 73 s
116 01111100 164 74 t
117 01110101 165 75 u
118 01110110 166 76 v
119 01110111 167 77 w
120 01111000 170 78 x
121 01111001 171 79 y
122 01111010 172 7A z
123 01111011 173 7B {
124 01111100 174 7C |
125 01111101 175 7D }

Appendix B: ASCII and hex equivalents

522

Decimal Binary Octal Hexadecimal ASCII

126 01111110 176 7E ~
127 01111111 177 7F DEL
128 10000000 200 80 SQLNULL
251 11111011 373 FB TM
252 11111100 374 FC SM
253 11111101 375 FD VM
254 11111110 376 FE FM
255 11111111 377 FF IM

The next table provides additional hexadecimal and decimal equivalents.

Hexadecimal Decimal Hexadecimal Decimal

80 128 3000 12288
90 144 4000 16384
A0 160 5000 20480
B0 176 6000 24576
C0 192 7000 28672
D0 208 8000 32768
E0 224 9000 36864
F0 240 A000 40960
100 256 B000 45056
200 512 C000 49152
300 768 D000 53248
400 1024 E000 57344
500 1280 F000 61440

523

Appendix C: Correlative and conversion codes
This appendix describes the correlative and conversion codes used in dictionary entries and with
the ICONV, ICONVS, OCONV, and OCONVS functions in BASIC. Use conversion codes with the
ICONV function when converting data to internal storage format and with the OCONV function when
converting data from its internal representation to an external output format.

Read this entire appendix, ICONV function, on page 210, and OCONV function, on page 279 before
attempting to perform internal or external data conversion.

Note: If you try to convert the null value, null is returned and the STATUS function returns 1
(invalid data).

The NLS extended syntax is supported only for Release 9.4.1 and above.

The following table lists correlative and conversion codes.

Code Description

A code: algebraic
functions

Algebraic functions

BB and BX codes: bit
conversion

Bit conversion (binary)

BB and BX codes: bit
conversion

Bit conversion (hexadecimal)

C code: concatenation Concatenation
D code: date conversion Date conversion
DI code: international
date conversion

International date conversion

DT code: datetime
conversion

Datetime conversion

ECS code: extended
character set
conversion

Extended character set conversion

F code: mathematical
functions

Mathematical functions

F code: mathematical
functions

Group extraction

L code: length function Length function
MX, MO, MB, and MU0C
codes: radix conversion

Binary conversion

MC Codes: masked
character conversion

Masked alphabetic conversion

MC Codes: masked
character conversion

Masked non-alphabetic conversion

MC Codes: masked
character conversion

Decimal to hexadecimal conversion

MC Codes: masked
character conversion

Decimal to hexadecimal conversion

MC Codes: masked
character conversion

Masked lowercase conversion

Appendix C: Correlative and conversion codes

524

Code Description

MC Codes: masked
character conversion

Masked multibyte conversion

MC Codes: masked
character conversion

Masked single-byte conversion

MC Codes: masked
character conversion

Masked numeric conversion

MC Codes: masked
character conversion

Masked nonnumeric conversion

MC Codes: masked
character conversion

Masked unprintable character conversion

MC Codes: masked
character conversion

Masked initial capitals conversion

MC Codes: masked
character conversion

Masked uppercase conversion

MC Codes: masked
character conversion

Masked wide-character conversion

MC Codes: masked
character conversion

Hexadecimal to decimal conversion

MC Codes: masked
character conversion

Hexadecimal to decimal conversion

MC Codes: masked
character conversion

Masked decimal conversion

ML Masked left conversion
ML and MR codes:
formatting numbers

NLS monetary conversion

MX, MO, MB, and MU0C
codes: radix conversion

Octal conversion

MP code: packed
decimal conversion

Packed decimal conversion

ML and MR codes:
formatting numbers

Masked right conversion

MT code: time
conversion

Time conversion

MX, MO, MB, and MU0C
codes: radix conversion

Hexadecimal Unicode character conversion

MX, MO, MB, and MU0C
codes: radix conversion

Hexadecimal conversion

MY code: ASCII
conversion

ASCII conversion

NL code: Arabic numeral
conversion

NLS Arabic numeral conversion

NLSmapname code:
NLS map conversion

Conversion using NLS map name

NR code: roman
numeral conversion

Roman numeral conversion

P code: pattern
matching

Pattern matching

A code: algebraic functions

525

Code Description

Q code: exponential
notation

Exponential conversion

R code: range function Range function
S (soundex) code Soundex
S (substitution) code Substitution
T code: text extraction Text extraction
Tfile code: file
translation filename

File translation

TI code: international
time conversion

International time conversion

A code: algebraic functions
The A code converts A codes into F codes in order to perform mathematical operations on the field
values of a record, or to manipulate strings. The A code functions in the same way as the F code but is
easier to write and to understand.

Format

A [;] expression

expression can be one or more of the following:

A data location or string:

Expression Description

loc[R] Field number specifying a data value, followed by an optional R (repeat
code).

N(name) name is a dictionary entry for a field. The name is referenced in the file
dictionary. An error message is returned if the field name is not found. Any
codes specified in field 3 of name are applied to the field defined by name,
and the converted value is processed by the A code.

string Literal string enclosed in pairs of double quotation marks ("), single
quotation marks ('), or backslashes (\).

number Constant number enclosed in pairs of double quotation marks ("), single
quotation marks ('), or backslashes (\). Any integer, positive, negative, or 0
can be specified.

D System date (in internal format).
T System time (in internal format).

A special system counter operand:

Expression Description

@NI Current system counter (number of items listed or selected).
@ND Number of detail lines since the last BREAK on a break line.
@NV Current value counter for columnar listing only.
@NS Current subvalue counter for columnar listing only.
@NB Current BREAK level number. 1 = lowest level break. This has a value of 255

on the grand-total line.

Appendix C: Correlative and conversion codes

526

Expression Description

@LPV Load Previous Value: load the result of the last correlative or conversion
onto the stack.

A function:

Expression Description

R(exp) Remainder after integer division of the first operand by the second. For
example, R(2,"5") returns the remainder when field 2’s value is divided by
5.

S(exp) Sum all multivalues in exp. For example, S(6) sums the multivalues of field
6.

IN(exp) Test for the null value.
[] Extract substring. Field numbers, literal numbers, or expressions can be

used as arguments within the brackets. For example, if the value of field 3 is
9, then 7["2",3] returns the second through ninth characters of field 7. The
brackets are part of the syntax and must be typed.

IF(expression) |
THEN(expression) |
ELSE(expression)

A conditional expression.

(conv) Conversion expression in parentheses (except A and F conversions).

An arithmetic operator:

Expression Description

* Multiply operands.
/ Divide operands. Division always returns an integer result: for example,

"3" / "2" evaluates to 1, not to 1.5.
+ Add operands.
- Subtract operands.
: Concatenate operands.

A relational operator:

Expression Description

= Equal to
< Less than
> Greater than
or <> Not equal to
<= Less than or equal to
>= Greater than or equal to

A conditional operator:

Expression Description

AND Logical AND
OR Logical OR

A code: algebraic functions

527

In most cases F and A codes do not act on a data string passed to them. The code specification itself
contains all the necessary data (or at least the names of fields that contain the necessary data). So the
following A codes produce identical F codes, which in turn assign identical results to X:

X = OCONV("123", "A;'1' + '2'")
 X = OCONV("", "A;'1' + '2'")
 X = OCONV(@ID, "A;'1' + '2'")
 X = OCONV("The quick brown fox jumped over a lazy dog's
 back","A;'1' + '2'")

The data strings passed to the A code—123, the empty string, the record ID, and “The quick brown
fox…” string—simply do not come into play. The only possible exception occurs when the user
includes the LPV (load previous value) special operand in the A or F code. The following example adds
the value 5 and the previous value 123 to return the sum 128:

X = OCONV("123", "A;'5' + LPV")

It is almost never right to call an A or F code using the vector conversion functions OCONVS and
ICONVS. In the following example, Y = 123V456V789:

X = OCONVS(Y, "A;'5'+ '2')

The statement says, “For each value of Y, call the A code to add 5 and 2.” (V represents a value mark.)
The A code gets called three times, and each time it returns the value 7. X, predictably, gets assigned 7.
The scalar OCONV function returns the same result in much less time.

What about correlatives and conversions within an A or F code? Since any string in the A or F code can
be multivalued, the F code calls the vector functions OCONVS or ICONVS any time it encounters a
secondary correlative or conversion. In the following example, the F code—itself called only once—
calls OCONVS to ensure that the G code gets performed on each value of @RECORD< 1 >. X is assigned
the result cccVfff:

@RECORD< 1 > = aaa*bbb*cccVddd*eee*fff
 X = OCONV("", "A;1(G2*1)"

The value mark is reserved to separate individual code specifications where multiple successive
conversions must be performed.

The following dictionary entry specifies that the substring between the first and second asterisks of
the record ID should be extracted, then the first four characters of that substring should be extracted,
then the masked decimal conversion should be applied to that substring:

001: D
 002: 0
 003: G1*1VT1,4VMD2
 004: Foo
 005: 6R
 006: S

To attempt to define a multivalued string as part of the A or F code itself rather than as part of the
@RECORD produces invalid code. For instance, both:

X = OCONV("", "A;'aaa*bbb*cccVddd*eee*fff'(G2*1)")

and the dictionary entry:

001: D
 002: 0
 003: A;'aaa*bbb*cccVddd*eee*fff'(G2*1)
 004: Bar
 005: 7L

Appendix C: Correlative and conversion codes

528

 006: S

are invalid. The first returns an empty string (the original value) and a status of 2. The second returns
the record ID; if the STATUS function were accessible from dictionary entries, it would also be set to 2.

BB and BX codes: bit conversion
The BB and BX codes convert data from external binary and hexadecimal format to internal bit string
format and vice versa.

Formats

BB Binary conversion (base 2)

BX Hexadecimal conversion (base 16)

Characters outside of the range for each of the bases produce conversion errors. The ranges are as
follows:

Conversion Range

BB (binary) 0, 1
BX (hexadecimal) 0 through 9, A through F, a through f

With ICONV

When used with the ICONV function, BB converts a binary data value to an internally stored bit string.
The external binary value must be in the following format:

B ' bit [bit] … '

bit is either 1 or 0.

BX converts a hexadecimal data value to an internally stored bit string. The external hexadecimal
value must be in the following format:

X ' hexit [hexit] … '

hexit is a number from 0 through 9, or a letter from A through F, or a letter from a through f.

With OCONV

When used with the OCONV function, BB and BX convert internally stored bit strings to their equivalent
binary or hexadecimal output formats, respectively. If the stored data is not a bit string, a conversion
error occurs.

C code: concatenation
The C code chains together field values or quoted strings, or both.

Format

C [;] expression1cexpression2 [cexpression3] …

The semicolon is optional and is ignored.

c is the character to be inserted between the fields. Any nonnumeric character (except system
delimiters) is valid, including a blank. A semicolon (;) is a reserved character that means no separation

D code: date conversion

529

character is to be used. Two separators cannot follow in succession, with the exceptions of semicolons
and blanks.

expression is a field number and requests the contents of that field; or any string enclosed in single
quotation marks ('), double quotation marks ("), or backslashes (\); or an asterisk (*), which specifies
the data value being converted.

You can include any number of delimiters or expressions in a C code.

Note: When the C conversion is used in a field descriptor in a file dictionary, the field number in
the LOC or A/AMC field of the descriptor should be 0. If it is any other number and the specified field
contains an empty string, the concatenation is not performed.

Examples

Assume a BASIC program with @RECORD = "oneFtwoFthreeVfour":

Statement Output

PRINT OCONV("x","C;1;'xyz';2") onexyztwo
PRINT ICONV("x","C;2;'xyz';3") twoxyzthreeVfour
PRINT OCONV("","C;2;'xyz';3")
PRINT ICONV(x,"C;1***2") one*x*two
PRINT OCONV(0,"C;1:2+3") one:two+threeVfour

There is one anomaly of the C code (as implemented by ADDS Mentor, at least) that the UniVerse C
code does not reproduce:

PRINT ICONV (x, "C*1*2*3") x1x2x3

The assumption that anything following a nonseparator asterisk is a separator seems egregious, so
the UniVerse C code implements:

PRINT ICONV (x, "C*1*2*3") xone*two*threeVfour

Anyone wanting the ADDS effect can quote the numbers.

D code: date conversion
The D code converts input dates from conventional formats to an internal format for storage. It also
converts internal dates back to conventional formats for output. When converting an input date to
internal format, date conversion specifies the format you use to enter the date. When converting
internal dates to external format, date conversion defines the external format for the date.

Format

D [n] [*m] [s] [fmt [[f1, f2, f3, f4, f5]]] [E] [L]

If the D code does not specify a year, the current year is assumed. If the code specifies the year in two-
digit form, the years from 0 through 29 mean 2000 through 2029, and the years from 30 through 99
mean 1930 through 1999.

You can set the default date format with the DATE.FORMAT command. A system-wide default date
format can be set in the msg.text file of the UV account directory. Date conversions specified in file
dictionaries or in the ICONV function or the OCONV function use the default date format except where

Appendix C: Correlative and conversion codes

530

they specifically override it. When NLS locales are enabled, the locale overrides any value set in the
msg.text file.

Format Description

n Single digit (normally 1 through 4) that specifies the number of digits of the year to
output. The default is 4.

* Any single nonnumeric character that separates the fields in the case where the
conversion must first do a group extraction to obtain the internal date. * cannot be a
system delimiter.

m Single digit that must accompany any use of an asterisk. It denotes the number of
asterisk-delimited fields to skip in order to extract the date.

s Any single nonnumeric character to separate the day, month, and year on output. s
cannot be a system delimiter. If you do not specify s, the date is converted in 09 SEP
1996 form, unless a format option overrides it.

If NLS locales are enabled and you do not specify a separator character or n, the
default date form is 09 SEP 1996. If the Time category is active, the conversion code
in the D_FMT field is used.

If NLS locales are enabled and you do not specify an s or format option, the order and
the separator for the day/month/year defaults to the format defined in the DI_FMT
or in the D_FMT field. If the day/month/year order cannot be determined from these
fields, the conversion uses the order defined in the DEFAULT_DMY_ORDER field. If
you do not specify s and the month is numeric, the separator character comes from
the DEFAULT_DMY_SEP field.

D code: date conversion

531

Format Description

Specifies up to five of the following special format options that let you request the
day, day name, month, year, and era name:
Y [n] Requests only the year number (n digits).
YA Requests only the name of the Chinese calendar year. If NLS locales are

enabled, uses the YEARS field in the NLS.LC.TIME file.
M Requests only the month number (1 through 12).
MA Requests only the month name. If NLS locales are enabled, uses the

MONS field in the NLS.LC.TIME file. You can use any combination
of upper- and lowercase letters for the month; UniVerse checks the
combination against the ABMONS field, otherwise it checks the MONS
field.

MB Requests only the abbreviated month name. If NLS locales are enabled,
uses the ABMONS field in the NLS.LC.TIME file; otherwise, uses the first
three characters of the month name.

MR Requests only the month number in Roman numerals (I through XII).
D Requests only the day number within the month (1 through 31).
W Requests only the day number within the week (1 through 7, where

Sunday is 7). If NLS locales are enabled, uses the DAYS field in the
NLS.LC.TIME file, where Sunday is 1.

WA Requests only the day name. If NLS locales are enabled, uses the DAYS
field in the NLS.LC.TIME file, unless modified by the format modifiers, f1,
f2, and so forth.

WB Requests only the abbreviated day name. If NLS locales are enabled,
uses the ABDAYS field in the NLS.LC.TIME file.

Q Requests only the quarter number within the year (1 through 4).
J Requests only the day number within the year (1 through 366).
N Requests only the year within the current era. If NLS is not enabled, this

is the same as the year number returned by the Y format option. If NLS
locales are enabled, N uses the ERA STARTS field in the NLS.LC.TIME file.

NA Requests only the era name corresponding to the current year. If NLS
locales are enabled, uses the ERA NAMES or ERA STARTS fields in the
NLS.LC.TIME file.

fmt

Z Requests only the time-zone name, using the name from the operating
system.

Appendix C: Correlative and conversion codes

532

Format Description

f1, f2, f3, f4, and f5 are the format modifiers for the format options. The brackets
are part of the syntax and must be typed. You can specify up to five modifiers,
which correspond to the options in fmt, respectively. The format modifiers are
positional parameters: if you want to specify f3 only, you must include two commas
as placeholders. Each format modifier must correspond to a format option. The
value of the format modifiers can be any of the following:
n Specifies how many characters to display. n can modify any format

option, depending on whether the option is numeric or text.

▪ If numeric, (D, M, W, Q, J, Y, 0), n prints n digits, right-justified with
zeros.

▪ If text (MA, MB, WA, WB, YA, N, ‘text’), n left-justifies the option within
n spaces.

A[n] Month format is alphabetic. n is a number from 1 through 32 specifying
how many characters to display. Use A with the Y, M, W, and N format
options.

Z[n] Suppresses leading zeros in day, month, or year. n is a number from 1
through 32 specifying how many digits to display. Z works like n, but
zero-suppresses the output for numeric options.

[f1, f2, f3, f4,
f5]

‘text’ Any text enclosed in single or double quotation marks is treated as if
there were no quotation marks and placed after the text produced by
the format option in the equivalent position. Any separator character is
ignored. ‘text’ can modify any option.

E Toggles the European (day/month/year) versus the U.S. (month/day/year) formatting
of dates. Since the NLS.LC.TIME file specifies the default day/month/year order, E is
ignored if you use a Time convention.

L Specifies that lowercase letters should be retained in month or day names; otherwise
the routine converts names to all capitals. Since the NLS.LC.TIME file specifies the
capitalization of names, L is ignored if you use a Time convention.

The following table shows the format options you can use together:

Format option Use with These options

Y M, MA, D, J, [f1, f2, f3, f4, f5]
YA M, MA, D, [f1, f2, f3, f4, f5]
M Y, YA, D, [f1, f2, f3, f4, f5]
MA Y, YA, D, [f1, f2, f3, f4, f5]
MB Y, YA, D, [f1, f2, f3, f4, f5]
D Y, M, [f1, f2, f3, f4, f5]
N Y, M, MA, MB, D, WA [f1, f2, f3, f4, f5]
NA Y, M, MA, MB, D, WA [f1, f2, f3, f4, f5]
W Y, YA, M, MA, D
WA Y, YA, M, MA, D
WB Y, YA, M, MA, D
Q [f1]
J Y, [f1, f2, f3, f4, f5]
Z [f1]

DI code: international date conversion

533

Each format modifier must correspond to a format option. The following table shows which modifiers
can modify which options:

Format Format Option

Modifiers D M Y J W
A no yes yes no yes
n yes yes yes yes yes
Z yes yes yes yes no
‘text’ yes yes yes yes yes

ICONV and OCONV differences

The syntax for converting dates with the ICONV function is the same as for the OCONV function,
except that:

Parameter Difference

n Ignored. The input conversion accepts any number of year’s digits regardless of
the n specification. If no year exists in the input date, the routine uses the year
part of the system date.

s Ignored. The input conversion accepts any single nonnumeric, nonsystem-
delimiter character separating the day, month, and year regardless of the s
specification. If the date is input as an undelimited string of characters, it is
interpreted as one of the following formats: [YY]YYMMDD or [YY]YYDDD.

subcodes Ignored. The input conversion accepts any combination of upper- and lowercase
letters in the month part of the date.

In IDEAL and INFORMATION flavor accounts, the input conversion of an improper date returns a valid
internal date and a STATUS function value of 3. For example, 02/29/93 is interpreted as 03/01/93, and
09/31/93 is interpreted as 10/01/93. A status of 3 usually represents a common human error. More
flagrant errors return an empty string and a STATUS() value of 1.

In PICK, REALITY, and IN2 flavor accounts, the input conversion of an improper date always returns an
empty string and a status of 1.

If the data to be converted is the null value, a STATUS() value of 3 is set and no conversion occurs.

Example

The following example shows how to use the format modifiers:

D DMY[Z,A3,Z2]

Z modifies the day format option (D) by suppressing leading zeros (05 becomes 5). A3 modifies the
month format option (M) so that the month is represented by the first three alphabetic characters
(APRIL becomes APR). Z2 modifies the year format option (Y) by suppressing leading zeros and
displaying two digits. This conversion converts April 5, 1993 to 5 APR 93.

DI code: international date conversion
The international date conversion lets you convert dates in internal format to the default local
convention format and vice versa. If NLS locales are not enabled, the DI conversion defaults to D. If
NLS locales are enabled, DI uses the date conversion in the DI_FMT field. The DI_FMT field can contain
any valid D code.

Appendix C: Correlative and conversion codes

534

Format

DI

DT code: datetime conversion
The DT code converts the input datetime from conventional formats to datetime (an internal 64-bit
integer) for storage. It also converts the internal datetime back to conventional formats for output.

Note: This conversion code is supported on Linux and Solaris platforms only.

Currently it supports four categories of formats:

▪ several commonly used formats

▪ the traditional conversion for date and time

▪ the ISO-8601 format

▪ the RFC-5322 format (Web standard)

DT is the general conversion code for all four of the above formats for the ICONV function. In the
ICONV function, the general code DT could be used for all the formats. But in the OCONV function, an
unambiguous datetime conversion code must be specified for a format

Time Zone during the conversion

The time zone used in the conversion is determined in the following order of priority:

1. The time zone specified in the date to be converted
2. The time zone specified in the conversion code
3. The @TZ’s value
4. The TZ environment variable
5. The system’s time zone setting

Format for commonly used formats

DT[4|D|4D|T|TS|Z][;timezone]

The semicolon (;) is the separator.

The format codes and their corresponding datetime formats are described in the table below:

Format Description

(none) Default format: YYYY-MM-DD HH:MM:SS.mmm
M Default format: YYYY-MM-DD HH:MM:SS.mmm
4 Date and Time: DD MMM YYYY HH:MM
D Date only: DD MMM YYY
4D Date only with 4-digit format: MM DD YYYY
T Time only: HH:MM
TS Time only with seconds: HH:MM:SS
timezone Timezone name

Example

DT code: datetime conversion

535

Source line Converted value

DT 2019-08-16 12:59.123
DTM 16 Aug 2019 12:59
DT4 08 16 2019 12:59
DT4D 08 16 2019
DTT 12:59
DTTS 12:59:59

Format for combination of the D and MT conversion codes

DT;[date-code];[time-code][;timezone]

Although date-code and time-code are optional, at least one should be used. timezone is only specified
to override @TM.

The semicolon (;) is the separator.

The format codes and their corresponding datetime formats are described in the table below:

Format Description

date-code See the conversion code D for date
time-code See the conversion code MT for time
timezone timezone name

Example

Source line Converted value

DT;D/;MTS 08/16/2019 12:59:59
DT;D; 16 AUG 2019
DT;;MTS 12:59:59
DT;D/;MTS;America/New_York 08/16/2019 14:59:59

Format for ISO-8601

DTI[B][R|W][S][Z][2|1|0][;[timezone|offset]]

The semicolon (;) is the separator.

The format codes and their corresponding datetime formats are described in the table below:

Format Description

(none) Default format: YYYY-MM-DDTHH:MM:SS.sss
B Basic format: YYYYMMDDTHHMMSS.sss
R Ordinal date format: YYYY-DDDTHH:MM:SS.sss
W Week date format: YYYY-Www-DTHH:MM:SS.sss
S Use whitespace as separator: YYYY-MM-DD

HH:MM:SS.sss
2 Reserve 2 digits of milliseconds.
1 Reserve 1 digit of milliseconds.
0 Do not display milliseconds.

Appendix C: Correlative and conversion codes

536

Format Description

Z Convert to a UTC time. Do not set Z and
timezone/offset at the same time.

timezone If time zone is set, should display the UTC offset
in the OCONV result.

offset Format: +08:00, -0700, +09. If set, should display
the UTC offset in the OCONV result.

Example

The information below assumes the time zone is America/Denver.

Source line Converted value

DTI 1970-01-01T08:00:00
DTIZ 1970-01-01T00:00:00Z
DTIB 19700101T080000456
DTIBSZ 19700101 000000456Z
DTI;-0700 1970-01-01T09:00:00.456-07:00
DTIB;-07:00 19700101T090000.456-0700
DTI 1970-01-01T07:59:59.999
DTI;America/Denver 1969-12-31T16:59:59.999-07:00
DTI2;America/Denver 1969-12-31T16:59:59.99-07:00
DTI1 1970-01-01T08:00:00.0
DTI0 1970-01-01T08:00:00
DTIW;America/Denver 1990-W01-1T00:00:00-07:00
DTIR;America/Denver 1990-001T00:00:00-07:00
DTIR2;America/Denver 1990-001T00:00:00.77-07:00
DTIRBS;+08:00 1990001 150000.777+0800
DTIRBSZ;+08:00 Invalid, Z and UTC offset are in conflict.
DTIRWBS Invalid, R and W are in conflict.
DTI21 Invalid, 2 and 1 are in conflict.

Format for RFC-5322

DTW[W|S|WS][;timezone]

The semicolon (;) is the separator.

The format codes and their corresponding datetime formats are described in the table below:

Format Description

(none) Default format: DD MMM YYYY HH:MM TIMEZONE
W Including day of the week: WWW DD MMM YYYY

HH:MM TIMEZONE
S Including seconds: DD MMM YYYY HH:MM:SS

TIMEZONE
WS Including day of the week and seconds: WWW DD

MMM YYYY HH:MM:SS TIMEZONE
timezone Time zone name

ECS code: extended character set conversion

537

Example

The information below assumes the time zone is Asia/Shanghai.

Source line Converted value

DTW 14 Aug 2019 12:24 +0000
DTWW Wed 14 Aug 2019 12:24 +0000
DTWS 14 Aug 2019 12:24:36 +0000
DTWWS Wed 14 Aug 2019 12:24:36 +0000
DTW;Asia/Shanghai 14 Aug 2019 12:24 +0800
DTWW;Asia/Shanghai Wed 14 Aug 2019 12:24 +0800
DTWS;Asia/Shanghai 14 Aug 2019 12:24:36 +0800
DTWWS;Asia/Shanghai Wed 14 Aug 2019 12:24:36 +0800
DTW;+0800 14 Aug 2019 12:24 +0800
DTWW;+0800 Wed 14 Aug 2019 12:24 +0800
DTWS;+0800 14 Aug 2019 12:24:36 +0800
DTWWS;+0800 Wed 14 Aug 2019 12:24:36 +0800

Status Code

Use the STATUS function to get the conversion state for ICONV and OCONV functions. In the case of a
DT conversion, it will fail if the status code is not 0.

ECS code: extended character set conversion
The ECS code resolves clashes between the UniVerse system delimiters and the ASCII characters
CHAR(251) through CHAR(255). It converts the system delimiters and ASCII characters to alternative
characters using an appropriate localization procedure. If no localization library is in use, the input
string is returned without character conversion.

This code is used with an ICONV function or an OCONV function.

Format

ECS

F code: mathematical functions
The F code performs mathematical operations on the data values of a record, or manipulates strings.
It comprises any number of operands or operators in reverse Polish format (Lukasiewicz) separated by
semicolons.

The program parses the F code from left to right, building a stack of operands. Whenever it encounters
an operator, it performs the requested operation, puts the result on the top of the stack, and pops the
lower stack elements as necessary.

Format

F [;] element [; element …]

The semicolon (;) is the element separator.

element can be one or more of the items from the following categories:

Appendix C: Correlative and conversion codes

538

A data location or string:

Element Description

loc[R] Numeric location specifying a data value to be pushed onto the stack,
optionally followed by an R (repeat code).

Cn n is a constant to be pushed onto the stack.
string Literal string enclosed in pairs of double quotation marks ("), single

quotation marks ('), or backslashes (\).
number Constant number enclosed in pairs of double quotation marks ("), single

quotation marks ('), or backslashes (\). Any integer, positive, negative, or 0
can be specified.

D System date (in internal format).
T System time (in internal format).

A special system counter operand

Element Description

@NI Current item counter (number of items listed or selected).
@ND Number of detail lines since the last BREAK on a break line.
@NV Current value counter for columnar listing only.
@NS Current subvalue counter for columnar listing only.
@NB Current BREAK level number. 1 = lowest level break. This has a value of 255

on the grand-total line.
@LPV Load Previous Value: load the result of the last correlative code onto the

stack.

An operator:

Operators specify an operation to be performed on top stack entries. stack1 refers to the value on the
top of the stack, stack2 refers to the value just below it, stack3 refers to the value below stack2, and so
on.

Element Description

*[n] Multiply stack1 by stack2. The optional n is the descaling factor (that is, the
result is divided by 10 raised to the nth power).

/ Divide stack1 into stack2, result to stack1.
R Same as /, but instead of the quotient, the remainder is returned to the top

of the stack.
+ Add stack1 to stack2.
- Subtract stack1 from stack2, result to stack1 (except for REALITY flavor,

which subtracts stack2 from stack1).
: Concatenate stack1 string onto the end of stack2 string.
[] Extract substring. stack3 string is extracted, starting at the character

specified by stack2 and continuing for the number of characters specified in
stack1. This is equivalent to the BASIC [m,n] operator, where m is in stack2
and n is in stack1.

S Sum of multivalues in stack1 is placed at the top of the stack.
_ Exchange stack1 and stack2 values.
P or \ Push stack1 back onto the stack (that is, duplicate stack1).
^ Pop the stack1 value off the stack.

G code: group extraction

539

Element Description

(conv) Standard conversion operator converts data in stack1, putting the result into
stack1.

A logical operator:

Logical operators compare stack1 to stack2. Each returns 1 for true and 0 for false:

Element Description

= Equal to.
< Less than.
> Greater than.
or <> Not equal to.
[Less than or equal to.
] Greater than or equal to.
& Logical AND.
! Logical OR.
\n\ Defines a label by a positive integer enclosed by two backslashes (\\).
#n Connection to label n if stack1 differs from stack2.
>n Connection to label n if stack1 is greater than stack2.
<n Connection to label n if stack1 is less than stack2.
=n Connection to label n if stack1 equals stack2.
}n Connection to label n if stack1 is greater than or equal to stack2.
{n Connection to label n if stack1 is less than or equal to stack2.
IN Tests stack1 to see if it is the null value.
Fnnnn If stack1 evaluates to false, branch forward nnnn characters in the F code,

and continue processing.
Bnnnn Branch forward unconditionally nnnn characters in the F code, and continue

processing.
Gnnnn Go to label nnnn. The label must be a string delimited by backslashes (\).
G* Go to the label defined in stack1. The label must be a string delimited by

backslashes (\).

Note: The F code performs only integer arithmetic.

G code: group extraction
The G code extracts one or more values, separated by the specified delimiter, from a field.

Format

G [skip] delim #fields

skip specifies the number of fields to skip; if it is not specified, 0 is assumed and no fields are skipped.

delim is any single nonnumeric character (except IM, FM, VM, SM, and TM) used as the field separator.

#fields is the decimal number of contiguous delimited values to extract.

Appendix C: Correlative and conversion codes

540

L code: length function
The L code places length constraints on the data to be returned.

Format

L [n [,m]]

If Ln is specified, selection is met if the value’s length is less than or equal to n characters; otherwise an
empty string is returned.

If Ln,m is specified, selection is met if the value’s length is greater than or equal to n characters, and
less than or equal to m characters; otherwise an empty string is returned.

If n is omitted or 0, the length of the value is returned.

MC Codes: masked character conversion
The MC codes let you change a field’s data to upper- or lowercase, to extract certain classes of
characters, to capitalize words in the field, and to change unprintable characters to periods.

Formats

The following table describes the available MC formats.

Code Description

MCA Extracts all alphabetic characters in the field, both upper- and lowercase. Non-
alphabetic characters are not printed. In NLS mode, uses the ALPHABETICS field in
the NLS.LC.CTYPE file.

MC/A Extracts all non-alphabetic characters in the field. Alphabetic characters are not
printed. In NLS mode, uses the NON-ALPHABETICS field in the NLS.LC.CTYPE file.

MCD[X] Converts decimal to hexadecimal equivalents.
MCL Converts all uppercase letters to lowercase. Does not affect lowercase letters or

non-alphabetic characters. In NLS mode, uses the UPPERCASE and DOWNCASED
fields in the NLS.LC.CTYPE file.

MCM Use only if NLS is enabled. Extracts all NLS multibyte characters in the field.
Multibyte characters are all those outside the Unicode range (x0000–x007F), the
UniVerse system delimiters, and the null value. As long as NLS is enabled, the
conversion still works if locales are off. If NLS mode is disabled, the code returns a
STATUS function of 2, that is, an invalid conversion code.

MC/M Use only if NLS is enabled. Extracts all NLS single-byte characters in the field.
Single-byte characters are all those in the Unicode range x0000–x007F. As long as
NLS is enabled, the conversion still works if locales are off. If NLS mode is disabled,
the code returns a STATUS of 2, that is, an invalid conversion code.

MCN Extracts all numeric characters in the field. Alphabetic characters are not printed.
In NLS mode, uses the NUMERICS field in the NLS.LC.CTYPE file.

MC/N Extracts all nonnumeric characters in the field. Numeric characters are not
printed. In NLS mode, uses the NON-NUMERICS field in the NLS.LC.CTYPE file.

MCP Converts each unprintable character to a period. In NLS mode, uses the
PRINTABLE and NON_PRINTABLE fields in the NLS.LC.CTYPE file.

MD code: masked decimal conversion

541

Code Description

MCT Capitalizes the first letter of each word in the field (the remainder of the word is
converted to lowercase). In NLS mode, uses the LOWERCASE and UPCASED fields
of the NLS.LC.CTYPE file.

If you set up an NLS Ctype locale category, and you define a character to be
trimmable, if this character appears in the middle of a string, it is not lowercased
nor are the rest of the characters up to the next separator character. This is
because the trimmable character is considered a separator (like <space>).

MCU Converts all lowercase letters to uppercase. Does not affect uppercase letters
or non-alphabetic characters. In NLS mode, uses the LOWERCASE and UPCASED
fields in the NLS.LC.CTYPE file.

MCW Use only if NLS is enabled. Converts between 7-bit standard ASCII (0021-007E
range) and their corresponding double-byte characters, which are two display
positions in width (FF01-FF5E full-width range). As long as NLS is enabled, the
conversion still works if locales are off. If NLS mode is disabled, the code returns a
STATUS of 2, that is, an invalid conversion code.

MCX[D] Converts hexadecimal to decimal equivalents.

If you set up an NLS Ctype locale category, and you define a character to be trimmable, if this
character appears in the middle of a string, it is not lowercased nor are the rest of the characters up to
the next separator character. This is because the trimmable character is considered a separator (like
<space>).

MD code: masked decimal conversion
The MD code converts numeric input data to a format appropriate for internal storage. If the code
includes the $, F, I, or Y option, the conversion is monetary, otherwise it is numeric.

The MD code must appear in either an ICONV function or an OCONV function expression. When
converting internal representation of data to external output format, masked decimal conversion
inserts the decimal point and other appropriate formats into the data.

Note: If NLS is enabled and either the Numeric or Monetary categories are set to OFF, the MD code
behaves as if NLS locales were turned off.

Format

MD [n [m]] [,] [$] [F] [I] [Y] [intl] [– | < | C | D] [P] [Z] [T] [fx
]

If the value of n is 0, the decimal point does not appear in the output.

The optional m specifies the power of 10 used to scale the input or output data. On input, the decimal
point is moved m places to the right before storing. On output, the decimal point is moved m places
to the left. For example, if m is 2 in an input conversion and the input data is 123, it would be stored
as 12300. If m is 2 in an output conversion and the stored data is 123, it would be output as 1.23. If m
is not specified, it is assumed to be the same as n. In both cases, the last required decimal place is
rounded off before excess digits are truncated. Zeros are added if not enough decimal places exist in
the original expression.

If NLS is enabled and the conversion is monetary, the thousands separator comes from the THOU_SEP
field of the Monetary category of the current locale, and the decimal separator comes from the
DEC_SEP field. If the conversion is numeric, the thousands separator comes from the THOU_SEP field
of the Numeric category, and the decimal separator comes from the DEC_SEP field.

Appendix C: Correlative and conversion codes

542

Code Description

, Specifies that thousands separators be inserted every three digits to the left of
the decimal point on output.

$ Prefixes a local currency sign to the number before justification. If NLS is enabled,
the CURR_SYMBOL of the Monetary category is used.

F Prefixes a franc sign (F) to the number before justification. (In all flavors except
IN2, you must specify F in the conversion code if you want ICONV to accept the
character F as a franc sign.)

I Used with the OCONV function, the international monetary symbol for the locale
is used (INTL_CURR_SYMBOL in the Monetary category). Used with the ICONV
function, the international monetary symbol for the locale is removed. If NLS is
disabled or the Monetary category is turned off, the default symbol is USD.

Y Used with the OCONV function: if NLS is enabled, the yen/yuan character
(Unicode 00A5) is used. If NLS is disabled or the Monetary locale category is
turned off, the ASCII character xA5 is used.
An expression that customizes numeric output according to different
international conventions, allowing multibyte characters. The intl expression can
specify a prefix, a suffix, and the characters to use as a thousands delimiter and
as the decimal delimiter, using the locale definition from the NLS.LC.NUMERIC
file. The intl expression has the following syntax:

[prefix , thousands , decimal , suffix]

The brackets are part of the syntax and must be typed. The four elements are
positional parameters and must be separated by commas. Each element is
optional, but its position must be held by a comma. For example, to specify a
suffix only, type [,,,suffix].
prefix Character string to prefix to the number. If prefix

contains spaces, commas, or right square brackets,
enclose it in quotation marks.

thousands Character string that separates thousands. If
thousands contains spaces, commas, or right square
brackets, enclose it in quotation marks.

decimal Character string to use as a decimal delimiter. If
decimal contains spaces, commas, or right square
brackets, enclose it in quotation marks.

intl

suffix Character string to append to the number. If suffix
contains spaces, commas, or right square brackets,
enclose it in quotation marks.

- Specifies that negative data be suffixed with a minus sign and positive data be
suffixed with a blank space.

< Specifies that negative data be enclosed in angle brackets for output; positive
data is prefixed and suffixed with a blank space.

C Specifies that negative data include a suffixed CR; positive data is suffixed with
two blank spaces.

D Specifies that negative data include a suffixed DB; positive data is suffixed with
two blank spaces.

P Specifies that no scaling be performed if the input data already contains a
decimal point.

Z Specifies that 0 be output as an empty string.

MM code: monetary conversion

543

Code Description

T Specifies that the data be truncated without rounding.

Used with the ICONV function: if NLS is enabled, the yen/yuan character is
removed. If NLS is disabled or the Monetary category is turned off, the ASCII
character xA5 is removed.

When NLS locales are enabled, the <, –, C and D options define numbers intended for monetary use.
These options override any specified monetary formatting. If the conversion is monetary and no
monetary formatting is specified, it uses the POS_FMT, NEG_FMT, POS_SIGN, and NEG_SIGN fields
from the Monetary category of the current locale. If the conversion is numeric and the ZERO_SUP field
is set to 1, leading zeros of numbers between –1 and 1 are suppressed. For example, –0.5 is output as
–.5 .

When converting data to internal format, the fx option has the following effect. If the input data has
been overlaid on a background field of characters (for example, $###987.65), the fx option is used with
ICONV to indicate that the background characters should be ignored during conversion. The f is a
one- or two-digit number indicating the maximum number of background characters to be ignored.
The x specifies the background character to be ignored. If background characters exist in the input
data and you do not use the fx option, the data is considered bad and an empty string results.

When converting data from internal representation to external output format, the fx option causes
the external output of the data to overlay a field of background characters. The f is a one- or two-digit
number indicating the number of times the background character is to be repeated. The x specifies
the character to be used as a background character. If the $ option is used with the fx option, the $
precedes the background characters when the data is output.

MM code: monetary conversion
The MM code provides for local conventions for monetary formatting.

Format

MM [n] [I [L]]

Note: If NLS is enabled and either the Numeric or Monetary categories are set to OFF, the MM code
behaves as if locales were turned off.

If NLS is enabled and the Monetary category is turned on, the MM code uses the local monetary
conventions for decimal and thousands separators. The format options are as follows:

Option Description

n Specifies the number of decimal places (0 through 9) to be maintained or output.
If n is omitted, the DEC_PLACES field from the Monetary category is used; if the I
option is also specified, the INTL_DEC_PLACES field is used. If NLS is disabled or
the Monetary category is turned off, and n is omitted, n defaults to 2.

I Substitutes the INTL_CURR_SYMBOL for the CURR_SYMBOL in the Monetary
category of the current locale. If NLS locales are off, the default international
currency symbol is USD.

L Used with the I option to specify that decimal and thousands separators are
required instead of the UniVerse defaults (. and ,). The DEC_SEP and THOU_SEP
fields from the Monetary category are used.

If you specify MM with no arguments, the decimal and thousands separators come from the Monetary
category of the current locale, and the currency symbol comes from the CURR_SYMBOL field. If you

Appendix C: Correlative and conversion codes

544

specify MM with the I option, the decimal and thousands separators are . (period) and , (comma), and
the currency symbol comes from the INTL_CURR_SYMBOL field. If you specify MM with both the I and
the L options, the decimal and thousands separators come from the Monetary category of the current
locale, and the currency symbol comes from the INTL_CURR_SYMBOL field. The I and L options are
ignored when used in the ICONV function.

If NLS is disabled or the category is turned off, the default decimal and thousands separators are the
period and the comma.

The STATUS values are as follows:

Value Description

0 Successful conversion. Returns a string containing the converted monetary value.
1 Unsuccessful conversion. Returns an empty string.
2 Invalid conversion code. Returns an empty string.

ML and MR codes: formatting numbers
The ML and MR codes allow special processing and formatting of numbers and monetary amounts. If
the code includes the F or I option, the conversion is monetary, otherwise it is numeric. ML specifies
left justification; MR specifies right justification.

Format

ML [n [m]] [Z] [,] [C | D | M | E | N] [$] [F] [intl] [(fx)]

MR [n [m]] [Z] [,] [C | D | M | E | N] [$] [F] [intl] [(fx)]

Note: If NLS is enabled and either the Numeric or Monetary categories are set to OFF, the ML and
MR codes behave as if locales were turned off.

Parameter Description

n Number of digits to be printed to the right of the decimal point. If n is omitted or 0,
no decimal point is printed.

m Descales (divides) the number by 10 to the mth power. If not specified, m = n
is assumed. On input, the decimal point is moved m places to the right before
storing. On output, the decimal point is moved m places to the left. For example,
if m is 2 in an input conversion specification and the input data is 123, it would be
stored as 12300. If m is 2 in an output conversion specification and the stored data
is 123, it would be output as 1.23. If the m is not specified, it is assumed to be the
same as the n value. In both cases, the last required decimal place is rounded off
before excess digits are truncated. Zeros are added if not enough decimal places
exist in the original expression.

If NLS is enabled and the conversion is monetary, the thousands separator comes from the THOU_SEP
field of the Monetary category of the current locale, and the decimal separator comes from the
DEC_SEP field. If the conversion is numeric, the thousands separator comes from the THOU_SEP field
of the Numeric category, and the decimal separator comes from the DEC_SEP field.

When NLS locales are enabled, the <, –, C, and D options define numbers intended for monetary use.
These options override any specified monetary formatting. If the conversion is monetary and no
monetary formatting is specified, it uses the POS_FMT, NEG_FMT, POS_SIGN, and NEG_SIGN fields
from the Monetary category of the current locale.

ML and MR codes: formatting numbers

545

They are unaffected by the Numeric or Monetary categories. If no options are set, the value is returned
unchanged.

Option Description

Z Specifies that 0 be output as an empty string.
, Specifies that thousands separators be inserted every three digits to the left of the

decimal point on output.
C Suffixes negative values with CR.
D Suffixes positive values with DB.
M Suffixes negative numbers with a minus sign (-).
E Encloses negative numbers in angle brackets (< >).
N Suppresses the minus sign (-) on negative numbers.
$ Prefixes a local currency sign to the number before justification. The $ option

automatically justifies the number and places the currency sign just before the first
digit of the number output.

F Prefixes a franc sign (F) to the number before justification. (In all flavors except
IN2, you must specify F in the conversion code if you want ICONV to accept the
character F as a franc sign.)
An expression that customizes output according to different international
conventions, allowing multibyte characters. The intl expression can specify a
prefix, a suffix, and the characters to use as a thousands delimiter and as the
decimal delimiter. The intl expression has the following syntax:

[prefix , thousands , decimal , suffix]

The brackets are part of the syntax and must be typed. The four elements are
positional parameters and must be separated by commas. Each element is
optional, but its position must be held by a comma. For example, to specify a suffix
only, type [,,,suffix].
prefix Character string to prefix to the number. If prefix contains

spaces, commas, or square brackets, enclose it in quotation
marks.

thousands Character string that separates thousands. If thousands
contains spaces, commas, or square brackets, enclose it in
quotation marks.

decimal Character string to use as a decimal delimiter. If decimal
contains spaces, commas, or right square brackets, enclose
it in quotation marks.

intl

suffix Character string to append to the number. If suffix contains
spaces, commas, or right square brackets, enclose it in
quotation marks.

One of three format codes:
Data justifies in a field of x blanks.
* Data justifies in a field of x asterisks (*).

f

% Data justifies in a field of x zeros.

The format codes precede x, the number that specifies the size of the field.

You can also enclose literal strings in the parentheses. The text is printed as specified, with the number
being processed right- or left-justified.

Appendix C: Correlative and conversion codes

546

NLS mode uses the definitions from the Numeric category, unless the conversion code indicates a
definition from the Monetary category. If you disable NLS or turn off the required category, the existing
definitions apply.

MP code: packed decimal conversion
The MP code allows decimal numbers to be packed two-to-the-byte for storage. Packed decimal
numbers occupy approximately half the disk storage space required by unpacked decimal numbers.

Format

MP

Leading + signs are ignored. Leading - signs cause a hexadecimal D to be stored in the lower half of
the last internal digit. If there is an odd number of packed halves, four leading bits of 0 are added.
The range of the data bytes in internal format expressed in hexadecimal is 00 through 99 and 0D
through 9D. Only valid decimal digits (0-9) and signs (+, -) should be input. Other characters cause no
conversion to take place.

Packed decimal numbers should always be unpacked for output, since packed values that are output
unconverted are not displayed on terminals in a recognizable format.

MT code: time conversion
The MT code converts times from conventional formats to an internal format for storage. It also
converts internal times back to conventional formats for output. When converting input data to
internal storage format, time conversion specifies the format that is to be used to enter the time. When
converting internal representation of data to external output format, time conversion defines the
external output format for the time.

Format

MT [H] [P] [Z] [S] [c] [[f1, f2, f3]]

MT is required when you specify time in either the ICONV function or the OCONV function. The
remaining specifiers are meaningful only in the OCONV function; they are ignored when used in the
ICONV function.

The internal representation of time is the numeric value of the number of seconds since midnight.

If used with ICONV in an IDEAL, INFORMATION, or PIOPEN flavor account, the value of midnight is 0. In
all other account flavors, the value of midnight is 86400.

To separate hours, minutes, and seconds, you can use any nonnumeric character that is not a system
delimiter. Enclose the separator in quotation marks. If no minutes or seconds are entered, they are
assumed to be 0. You can use a suffix of AM, A, PM, or P to specify that the time is before or after noon.
If an hour larger than 12 is entered, a 24-hour clock is assumed. 12:00 AM is midnight and 12:00 PM is
noon.

If NLS is enabled and the Time category is active, the locale specifies the AM and PM strings, and the
separator comes from the T_FMT or TI_FMT fields in the Time category.

Parameter Description

H Specifies to use a 12-hour format with the suffixes AM or PM. The 24-hour format
is the default. If NLS is enabled, the AM and PM strings come from the AM_STR and
PM_STR fields in the Time category.

P Same as H, but the AM and PM strings are prefixed, not suffixed.

MX, MO, MB, and MU0C codes: radix conversion

547

Parameter Description

Z Specifies to zero-suppress hours in the output.
S Specifies to use seconds in the output. The default omits seconds.
c Specifies the character used to separate the hours, minutes, and seconds in the

output. The colon (:) is the default. If NLS is enabled and you do not specify c, and if
the Time category is active, c uses the DEFAULT_TIME_SEP field.
Specify format modifiers. You must include the brackets, as they are part of the
syntax. You can specify from 1 through 3 modifiers, which correspond to the
hours, minutes, and seconds, in that order. The format modifiers are positional
parameters: if you want to specify f3 only, you must include two commas as
placeholders. Each format modifier must correspond to a format option. Use the
following value for the format modifiers:

[f1, f2, f3]

‘text’ Any text you enclose in single or double quotation marks is
output without the quotation marks and placed after the
appropriate number for the hours, minutes, or seconds.

MX, MO, MB, and MU0C codes: radix conversion
The MX, MO, and MB codes convert data from hexadecimal, octal, and binary format to decimal (base
10) format and vice versa.

Formats

MX [0C] Hexadecimal conversion (base 16)

MO [0C] Octal conversion (base 8)

MB [0C] Binary conversion (base 2)

MU0C Hexadecimal Unicode character conversion

With ICONV

The decimal or ASCII format is the internal format for data representation. When used with the ICONV
function, MX, MO, and MB without the 0C extension convert hexadecimal, octal, or binary data values
(respectively) to their equivalent decimal values. MX, MO, and MB with the 0C extension convert
hexadecimal, octal, or binary data values to the equivalent ASCII characters rather than to decimal
values.

Use the MU0C code only if NLS is enabled. When used with ICONV, MU0C converts data in Unicode
hexadecimal format to its equivalent in the UniVerse internal character set.

Characters outside of the range for each of the bases produce conversion errors. The ranges are as
follows:

Conversion Ranges

MX (hexadecimal) 0 through 9, A through F, a through f
MO (octal) 0 through 7
MB (binary) 0, 1
MU0C (Unicode) No characters outside range

Appendix C: Correlative and conversion codes

548

With OCONV

When used with the OCONV function, MX, MO, and MB without the 0C extension convert decimal values
to their equivalent hexadecimal, octal, or binary equivalents for output, respectively. Nonnumeric
data produces a conversion error if the 0C extension is not used.

MX, MO, and MB with the 0C extension convert an ASCII character or character string to hexadecimal,
octal, or binary output format. Each character in the string is converted to the hexadecimal, octal, or
binary equivalent of its ASCII character code.

Use the MU0C code only if NLS is enabled. When used with OCONV, MU0C converts characters from
their internal representation to their Unicode hexadecimal equivalents for output. The data to convert
must be a character or character string in the UniVerse internal character set; each character in the
string is converted to its 4-digit Unicode hexadecimal equivalent. Data is converted from left to right,
one character at a time, until all data is exhausted.

MY code: ASCII conversion
The MY code specifies conversion from hexadecimal to ASCII on output, and ASCII to hexadecimal on
input.

Format

MY

When used with the OCONV function, MY converts from hexadecimal to ASCII. When used with the
ICONV function, MY converts from ASCII to hexadecimal.

Characters outside of the range for each of the bases produce conversion errors. The ranges are as
follows:

MY (hexadecimal) 0 through 9, A through F, a through f

NL code: Arabic numeral conversion
The NL code allows conversion from a locale-dependent set of alternative characters (representing
digits in the local language) to Arabic numerals. The alternative characters are the external set, the
Arabic characters are the internal set.

Format

NL

If NLS is not enabled, characters are checked to ensure only that they are valid ASCII digits 0 through 9,
but no characters are changed.

The STATUS function returns one of the following:

Value Description

0 Successful conversion. If NLS is not enabled, input contains valid digits.
1 Unsuccessful conversion. The data to be converted contains a character other

than a digit in the appropriate internal or external set.

NLSmapname code: NLS map conversion

549

NLSmapname code: NLS map conversion
The NLSmapname code converts data from internal format to external format and vice versa using the
specified map. mapname is either a valid map name or one of the following: LPTR, CRT, AUX, or OS.

Format

NLS mapname

The STATUS function returns one of the following:

Value Description

0 Conversion successful
1 mapname invalid, string returned empty
2 Conversion invalid
3 Data converted, but result may be invalid (map could not deal with some

characters)

NR code: roman numeral conversion
The NR code converts Roman numerals into Arabic numerals when used with the ICONV function. The
decimal, or ASCII, format is the internal format for representation.

When used with the OCONV function, the NR code converts Arabic numerals into Roman numerals.

Format

NR

The following is a table of Roman/Arabic numeral equivalents:

Roman Arabic

i 1
v 5
x 10
l 50
c 100
d 500
m 1000
V 5000
X 10,000
L 50,000
C 100,000
D 500,000
M 1,000,000

Appendix C: Correlative and conversion codes

550

P code: pattern matching
The P code extracts data whose values match one or more patterns. If the data does not match any of
the patterns, an empty string is returned.

Format

P(pattern) [{ ; | / } (pattern)] …

pattern can contain one or more of the following codes:

Code Description

nN An integer followed by the letter N, which tests for n numeric characters.
nA An integer followed by the letter A, which tests for n alphabetic characters.
nX An integer followed by the letter X, which tests for n alphanumeric characters.
nnnn A literal string, which tests for that literal string.

If n is 0, any number of numeric, alphabetic, or alphanumeric characters matches. If either the data or
the match pattern is the null value, null is returned.

Separate multiple ranges by a semicolon (;) or a slash (/).

Parentheses must enclose each pattern to be matched. For example, if the user wanted only Social
Security numbers returned, P(3N-2N-4N) would test for strings of exactly three numbers, then a
hyphen, then exactly two numbers, then a hyphen, then exactly four numbers.

Q code: exponential notation
The Q code converts numeric input data from exponential notation to a format appropriate for
internal storage. When converting internal representation of data to external output format, the Q
code converts the data to exponential notation by determining how many places to the right of the
decimal point are to be displayed and by specifying the exponent.

Format

QR [n { E | . } m] [edit] [mask]

QL [n { E | . } m] [edit] [mask]

QX

Q alone and QR both specify right justification. QL specifies left justification. QX specifies right
justification. QX is synonymous with QR0E0 as input and MR as output.

n specifies the number of fractional digits to the right of the decimal point. It can be a number from 0
through 9.

m specifies the exponent. It can be a number from 0 through 9. When used with E, m can also be a
negative number from –1 through –9.

Separate n and m with either the letter E or a period (.). Use E if you want to specify a negative
exponent.

edit can be any of the following:

Value Description

$ Prefixes a dollar sign to the value.

R code: range function

551

Value Description

F Prefixes a franc sign to the value.
, Inserts commas after every thousand.
Z Returns an empty string if the value is 0. Any trailing fractional zeros are

suppressed, and a zero exponent is suppressed.
E Surrounds negative numbers with angle brackets (< >).
C Appends cr to negative numbers.
D Appends db to positive numbers.
B Appends db to negative numbers.
N Suppresses a minus sign on negative numbers.
M Appends a minus sign to negative numbers.
T Truncates instead of rounding.

mask allows literals to be intermixed with numerics in the formatted output field. The mask can
include any combination of literals and the following three special format mask characters:

Character Description

#n Data is displayed in a field of n fill characters. A blank is the default fill character.
It is used if the format string does not specify a fill character after the width
parameter.

%n Data is displayed in a field of n zeros.
*n Data is displayed in a field of n asterisks.

If NLS is enabled, the Q code formats numeric and monetary values as the ML and MR codes do, except
that the intl format cannot be specified. See ML and MR codes: formatting numbers, on page 544 for
more information.

See the FMT function, on page 172 for more information about formatting numbers.

R code: range function
The R code limits returned data to that which falls within specified ranges. n is the lower bound, m is
the upper bound.

Format

Rn,m [{ ; | / } n,m] …

Separate multiple ranges by a semicolon (;) or a slash (/).

If range specifications are not met, an empty string is returned.

S (soundex) code
The S code with no arguments specifies a soundex conversion. Soundex is a phonetic converter
that converts ordinary English words into a four-character abbreviation comprising one alphabetic
character followed by three digits. Soundex conversions are frequently used to build indexes for name
lookups.

Appendix C: Correlative and conversion codes

552

Format

S

S (substitution) code
The S code substitutes one of three values depending on whether the data to convert evaluates to 0 or
an empty string, to the null value, or to something else.

Format

S ; nonzero.substitute ; zero.substitute ; null.substitute

If the data to convert evaluates to 0 or an empty string, zero.substitute is returned. If the data
is nonzero, nonempty, and nonnull, nonzero.substitute is returned. If the data is the null value,
null.substitute is returned. If null.substitute is omitted, null values are not replaced.

All three substitute expressions can be one of the following:

▪ A quoted string

▪ A field number

▪ An asterisk

If it is an asterisk and the data evaluates to something other than 0, the empty string, or the null value,
the data value itself is returned.

Example

Assume a BASIC program where @RECORD is:

AFBFCVD

Statement Output

PRINT OCONV("x","S;2;'zero'") B
PRINT OCONV("x","S;*;'zero'") x
PRINT OCONV(0,"S;2;'zero'") zero
PRINT OCONV('',"S;*;'zero'") zero

T code: text extraction
The T code extracts a contiguous string of characters from a field.

Format

T [start,] length

Parameter Description

start Starting column number. If omitted, 1 is assumed.
length Number of characters to extract.

If you specify length only, the extraction is either from the left or from the right depending on the
justification specified in line 5 of the dictionary definition item. In a BASIC program if you specify
length only, the extraction is from the right. In this case the starting position is calculated according to
the following formula:

Tfile code: file translation

553

string.length - substring.length + 1

This lets you extract the last n characters of a string without having to calculate the string length.

If start is specified, extraction is always from left to right.

Tfile code: file translation
The Tfile code converts values from one file to another by translating through a file. It uses data values
in the source file as IDs for records in a lookup file. The source file can then reference values in the
lookup file.

Format

T[DICT] filename ; c [vloc] ; [iloc] ; [oloc] [;bloc]

T[DICT] filename ; c ; [iloc] ; [oloc] [;bloc] [,vloc | [vloc]]

To access the lookup file, its record IDs (field 0) must be referenced. If no reference is made to the
record IDs of the lookup file, the file cannot be opened and the conversion cannot be performed. The
data value being converted must be a record ID in the lookup file.

Parameter Description

DICT Specifies the lookup file’s dictionary. (In REALITY flavor accounts, you can
use an asterisk (*) to specify the dictionary: for instance, T*filename … .)

filename Name of the lookup file.
Translation subcode, which must be one of the following:
V Conversion item must exist on file, and the specified field must

have a value, otherwise an error message is returned.
C If conversion is impossible, return the original value-to-be-

translated.
I Input verify only. Functions like V for input and like C for output.
N Returns the original value-to-be-translated if the null value is

found.
O Output verify only. Functions like C for input and like V for output.

c

X If conversion is impossible, return an empty string.
vloc Number of the value to be returned from a multivalued field. If you do not

specify vloc and the field is multivalued, the whole field is returned with all
system delimiters turned into blanks. If the vloc specification follows the oloc
or bloc specification, enclose vloc in square brackets or separate vloc from
oloc or bloc with a comma.

iloc Field number (decimal) for input conversion. The input value is used as a
record ID in the lookup file, and the translated value is retrieved from the
field specified by the iloc. If the iloc is omitted, no input translation takes
place.

oloc Field number (decimal) for output translation. When RetrieVe creates a
listing, data from the field specified by oloc in the lookup file are listed
instead of the original value.

bloc Field number (decimal) which is used instead of oloc during the listing of
BREAK.ON and TOTAL lines.

Appendix C: Correlative and conversion codes

554

TI code: international time conversion
The international time conversion lets you convert times in internal format to the default local
convention format and vice versa. If NLS locales are not enabled, the TI conversion defaults to MT.
If NLS locales are enabled, TI uses the date conversion in the TI_FMT field of the Time category. The
TI_FMT field can contain any valid MT code.

Format

TI

555

Appendix D: BASIC reserved words
ABORTE

ABORTM

ABS

ABSS

ACOS

ADDS

ALL

ALPHA

AND

ANDS

ARG.

ASCII

ASIN

ASSIGN

ASSIGNED

ATAN

AUTHORIZATION

BCONVERT

BEFORE

BEGIN

BITAND

BITNOT

BITOR

BITRESET

BITSET

BITTEST

BITXOR

BREAK

BSCAN

BY

CALL

CALLING

CAPTURING

CASE

CAT

Appendix D: BASIC reserved words

556

CATS

CHAIN

CHANGE

CHAR

CHARS

CHECKSUM

CLEAR

CLEARCOMMON

CLEARDATA

CLEARFILE

CLEARINPUT

CLEARPROMPTS

CLEARSELECT

CLOSE

CLOSESEQ

COL1

COL2

COM

COMMIT

COMMON

COMPARE

CONTINUE

CONVERT

COS

COSH

COUNT

COUNTS

CREATE

CRT

DATA

DATE

DCOUNT

DEBUG

DECLARE

DEFFUN

DEL

DELETE

DELETELIST

BASIC reserved words

557

DELETEU

DIAGNOSTICS

DIM

DIMENSION

DISPLAY

DIV

DIVS

DO

DOWNCASE

DQUOTE

DTX

EBCDIC

ECHO

ELSE

END

ENTER

EOF

EQ

EQS

EQU

EQUATE

EREPLACE

ERRMSG

ERROR

EXCHANGE

EXEC

EXECUTE

EXIT

EXP

EXTRACT

FADD

FDIV

FFIX

FFLT

FIELD

FIELDS

FIELDSTORE

FILEINFO

Appendix D: BASIC reserved words

558

FILELOCK

FILEUNLOCK

FIND

FINDSTR

FIX

FLUSH

FMT

FMTS

FMUL

FOLD

FOOTING

FOR

FORMLIST

FROM

FSUB

FUNCTION

GARBAGECOLLECT

GCI

GE

GES

GET

GETLIST

GETREM

GETX

GO

GOSUB

GOTO

GROUP

GROUPSTORE

GT

GTS

HEADING

HEADINGE

HEADINGN

HUSH

ICHECK

ICONV

ICONVS

BASIC reserved words

559

IF

IFS

ILPROMPT

IN

INCLUDE

INDEX

INDEXS

INDICES

INMAT

INPUT

INPUTCLEAR

INPUTDISP

INPUTERR

INPUTIF

INPUTNULL

INPUTTRAP

INS

INSERT

INT

ISNULL

ISNULLS

ISOLATION

ITYPE

KEY

KEYEDIT

KEYEXIT

KEYIN

KEYTRAP

LE

LEFT

LEN

LENS

LES

LET

LEVEL

LIT

LITERALLY

LN

Appendix D: BASIC reserved words

560

LOCATE

LOCK

LOCKED

LOOP

LOWER

LPTR

LT

LTS

MAT

MATBUILD

MATCH

MATCHES

MATCHFIELD

MATPARSE

MATREAD

MATREADL

MATREADU

MATWRITE

MATWRITEU

MAXIMUM

MESSAGE

MINIMUM

MOD

MODS

MTU

MULS

NAP

NE

NEG

NEGS

NES

NEXT

NOBUF

NO.ISOLATION

NOT

NOTS

NULL

NUM

BASIC reserved words

561

NUMS

OCONV

OCONVS

OFF

ON

OPEN

OPENCHECK

OPENDEV

OPENPATH

OPENSEQ

OR

ORS

OUT

PAGE

PASSLIST

PCDRIVER

PERFORM

PRECISION

PRINT

PRINTER

PRINTERIO

PRINTERR

PROCREAD

PROCWRITE

PROG

PROGRAM

PROMPT

PWR

QUOTE

RAISE

RANDOMIZE

READ

READ.COMMITTED

READ.UNCOMMITTED

READBLK

READL

READLIST

READNEXT

Appendix D: BASIC reserved words

562

READSEQ

READT

READU

READV

READVL

READVU

REAL

RECIO

RECORDLOCKED

RECORDLOCKL

RECORDLOCKU

RELEASE

REM

REMOVE

REPEAT

REPEATABLE.READ

REPLACE

RESET

RETURN

RETURNING

REUSE

REVREMOVE

REWIND

RIGHT

RND

ROLLBACK

RPC.CALL

RPC.CONNECT

RPC.DISCONNECT

RQM

RTNLIST

SADD

SCMP

SDIV

SEEK

SELECT

SELECTE

SELECTINDEX

BASIC reserved words

563

SELECTN

SELECTV

SEND

SENTENCE

SEQ

SEQS

SEQSUM

SERIALIZABLE

SET

SETREM

SETTING

SIN

SINH

SLEEP

SMUL

SOUNDEX

SPACE

SPACES

SPLICE

SQLALLOCONNECT

SQLALLOCENV

SQLALLOCSTMT

SQLBINDCOL

SQLCANCEL

SQLCOLATTRI- BUTES

SQLCONNECT

SQLDESCRIBECOL

SQLDISCONNECT

SQLERROR

SQLEXECDIRECT

SQLEXECUTE

SQLFETCH

SQLFREECONNECT

SQLFREEENV

SQLFREESTMT

SQLGETCURSORNAME

SQLNUMRESULTCOLS

SQLPREPARE

Appendix D: BASIC reserved words

564

SQLROWCOUNT

SQLSETCONNECT-OPTION

SQLSETCURSORNAME

SQLSETPARAM

SQRT

SQUOTE

SSELECT

SSELECTN

SSELECTV

SSUB

START

STATUS

STEP

STOP

STOPE

STOPM

STORAGE

STR

STRS

SUB

SUBR

SUBROUTINE

SUBS

SUBSTRINGS

SUM

SUMMATION

SYSTEM

TABSTOP

TAN

TANH

TERMINFO

THEN

TIME

TIMEDATE

TIMEOUT

TO

TPARM

TPRINT

BASIC reserved words

565

TRANS

TRANSACTION

TRIM

TRIMB

TRIMBS

TRIMF

TRIMFS

TRIMS

TTYCTL

TTYGET

TTYSET

UNASSIGNED

UNIT

UNLOCK

UNTIL

UPCASE

USING

WEOF

WEOFSEQ

WEOFSEQF

WHILE

WORDSIZE

WORKWRITE

WRITEBLK

WRITELIST

WRITESEQ

WRITESEQF

WRITET

WRITEU

WRITEV

WRITEVU

XLATE

XTD

566

Appendix E: @Variables
The following table lists BASIC @variables. The @variables denoted by an asterisk (*) are read-only.
All others can be changed by the user.

The EXECUTE statement initializes the values of stacked @variables either to 0 or to values reflecting
the new environment. These values are not passed back to the calling environment. The values of
nonstacked @variables are shared between the EXECUTE and calling environments. All @variables
listed here are stacked unless otherwise indicated.

Variable Read-
only

Value

@ABORT.CODE * A numeric value indicating the type of condition that caused
the ON.ABORT paragraph to execute. The values are:

1 – An ABORT statement was executed.

2 – An abort was requested after pressing the Break key
followed by option A.

3 – An internal or fatal error occurred.

4 – An AUTO.LOGOUT event occurred.
@ACCOUNT * User login name. Same as @LOGNAME. Nonstacked.
@AM * Field mark: CHAR(254). Same as @FM.
@ANS Last I-type answer, value indeterminate.
@AUTHORIZATION * Current effective user name.
@COMMAND * Last command executed or entered at the UniVerse prompt.
@COMMAND.STACK * Dynamic array containing the last 99 commands executed.
@CONV For future use.
@CRTHIGH * Number of lines on the terminal.
@CRTWIDE * Number of columns on the terminal.
@DATA.PENDING * Dynamic array containing input generated by the DATA

statement. Values in the dynamic array are separated by field
marks.

@DATE Internal date when the program was invoked.
@DAY Day of month from @DATE.
@DICT For future use.
@FALSE * Compiler replaces the value with 0.
@FILE.NAME Current file name. When used in a virtual field index,

@FILENAME reflects the current file name being used in a
RetrieVe or UniVerse SQL statement.

Same as @FILENAME.
@FILENAME Current file name. When used in a virtual field index,

@FILENAME reflects the current file name being used in a
RetrieVe or UniVerse SQL statement.

Same as @FILE.NAME.
@FM * Field mark: CHAR(254). Same as @AM.
@FORMAT For future use.

@Variables

567

Variable Read-
only

Value

@HDBC * ODBC connection environment on the local UniVerse server.
Nonstacked.

@HEADER For future use.
@HENV * ODBC environment on the local UniVerse server. Nonstacked.
@HSTMT * ODBC statement environment on the local UniVerse server.

Nonstacked.
@ID Current record ID.
@IDX.FILEPATH Can be used within an indexed subroutine. Contains the

full path of the UniVerse file being updated that caused the
indexed subroutine to fire.

@IDX.IOTYPE Specifies the type of operation being performed. Can be
integrated in the indexed subroutine to determine they type
of database operation that caused the indexed subroutine to
fire.

The following values are associated with the @IDX.IOTYPE:

0 - The value returned when @IDX.IOTYPE is used outside the
context of an indexed subroutine.

1 - The value returned when the SUBR is called because an
INSERT operation is performed.

2 - The value returned when the SUBR is called because a
DELETE operation is performed.

3 - The value returned when the SUBR is called because an
UPDATE operation is used to evaluate the original value
operation.

4 - The value returned when a SUBR i called because an
UPDATE operation is used to evaluate the new value
operation.

@IM * Item mark: CHAR(255).
@ISOLATION * Current transaction isolation level for the active transaction or

the current default isolation level if no transaction exists.
@LEVEL * Nesting level of execution statements. Nonstacked.
@LOGNAME * User login name. Same as @ACCOUNT.
@LPTRHIGH * Number of lines on the device to which you are printing (that

is, terminal or printer).
@LPTRWIDE * Number of columns on the device to which you are printing

(that is, terminal or printer).
@MONTH Current month.
@MV Current value counter for columnar listing only. Used only in I-

descriptors. Same as @NV.
@NB Current BREAK level number. 1 is the lowest-level break.

@NB has a value of 255 on the grand total line. Used only in I-
descriptors.

@ND Number of detail lines since the last BREAK on a break line.
Used only in I-descriptors.

@NI Current item counter (the number of items listed or selected).
Used only in I-descriptors. Same as @RECCOUNT.

Appendix E: @Variables

568

Variable Read-
only

Value

@NS Current subvalue counter for columnar listing only. Used only
in I-descriptors.

@NULL * The null value. Nonstacked.
@NULL.STR * Internal representation of the null value, which is CHAR(128).

Nonstacked.
@NV Current value counter for columnar listing only. Used only in I-

descriptors. Same as @MV.
@OPTION Value of field 5 in the VOC for the calling verb.
@PARASENTENCE * Last sentence or paragraph that invoked the current process.
@PATH * Path name of the current account.
@PYEXCEPTIONMSG A string that stores the detailed exception message. If no

exception is thrown, its value is an empty string.
@PYEXCEPTIONTRACEBACK A string that stores the traceback of the exception. If no

exception is thrown, its value is an empty string.
@PYEXCEPTIONTYPE A string that stores the exception type. If no exception is

thrown, its value is an empty string.
@RECCOUNT Current item counter (the number of items listed or selected).

Used only in I-descriptors. Same as @NI.
@RECORD Entire current record.
@RECUR0 Reserved.
@RECUR1 Reserved.
@RECUR2 Reserved.
@RECUR3 Reserved.
@RECUR4 Reserved.
@SCHEMA * Schema name of the current UniVerse account. Nonstacked.

When users create a new schema, @SCHEMA is not set until
the next time they log in to UniVerse.

@SELECTED Number of elements selected from the last select list.
Nonstacked.

@SENTENCE * Sentence that invoked the current BASIC program. Any
EXECUTE statement updates @SENTENCE.

@SM * Subvalue mark: CHAR(252). Same as @SVM.
@SQL.CODE * For future use.
@SQL.DATE * Current system date. Use in trigger programs. Nonstacked.
@SQL.ERROR * For future use.
@SQL.STATE * For future use.
@SQL.TIME * Current system time. Use in trigger programs. Nonstacked.
@SQL.WARNING * For future use.
@SQLPROC.NAME * Name of the current SQL procedure.
@SQLPROC.TX.LEVEL * Transaction level at which the current SQL procedure began.
@STDFIL Default file variable.
@SVM * Subvalue mark: CHAR(252). Same as @SM.
@SYS.BELL * Bell character. Nonstacked.
@SYSTEM.RETURN.CODE Status codes returned by system processes. Same as

@SYSTEM.SET.

@Variables

569

Variable Read-
only

Value

@SYSTEM.SET Status codes returned by system processes. Same as
@SYSTEM.RETURN.CODE.

@TERM.TYPE * Terminal type. Nonstacked.
@TIME Internal time when the program was invoked.
@TM * Text mark: CHAR(251).
@TRANSACTION * A numeric value. Any nonzero value indicates that a

transaction is active; the value 0 indicates that no transaction
exists.

@TRANSACTION.ID * Transaction number of the active transaction. An empty string
indicates that no transaction exists.

@TRANSACTION.LEVEL * Transaction nesting level of the active transaction. A 0
indicates that no transaction exists.

@TRUE Compiler replaces the value with 1.
@TTY Terminal device name. If the process is a phantom, @TTY

returns the value ‘phantom’. If the process is a UniVerse API, it
returns ‘uvcs’.

Note: In PI/Open flavor, @TTY returns an empty string for
PHANTOM processes.

@TZ Since datetime is stored as UTC, in order to consider the
timezone of the current user when converting to and from the
locale date and time, a new @-variable called @TZ has been
introduced.

@TZ is a per-process variable which defaults to an empty
string. If @TZ is empty, the timezone in use will refer to the
user’s TZ environment variable (if set) or to the system’s
timezone setting if it is not set. The @TZ value can be set to
any time zone supported by the underlying operating system.
For Unix and Linux, it can be names supported by the tz
database.

When converting datetime from and to the local date and
time, @TZ will be used as the local time zone. The exception
is when during ICONV() and OCONV() for datetime, if a
timezone is specified in the conversion code or the data to be
converted, the @TZ’s value will be overridden.

Note: This variable is supported on Linux and Solaris
platforms only.

@U2PY A string that returns the number of the Python level at
whichthe current BASIC program is running.

Without Python, @U2PY has the value of 0.

With Python, @U2PY has the value of a positive integer.

Note: SYSTEM(55) has been implemented to return the
samevalue as @U2PY.

@USER0 User-defined.
@USER1 User-defined.
@USER2 User-defined.

Appendix E: @Variables

570

Variable Read-
only

Value

@USER3 User-defined.
@USER4 User-defined.
@USERNO * User number. Nonstacked. Same as @USER.NO.
@USER.NO * User number. Nonstacked. Same as @USERNO.
@USER.RETURN.CODE Status codes created by the user.
@VM * Value mark: CHAR(253).
@WHO * Name of the current UniVerse account directory. Nonstacked.
@YEAR Current year (2 digits).
@YEAR4 Current year (4 digits).

571

Appendix F: BASIC subroutines
This appendix describes the following subroutines you can call from a UniVerse BASIC program:

! ASYNC subroutine (!AMLC)

!EDIT.INPUT subroutine

!ERRNO subroutine

!FCMP subroutine

!GET.KEY subroutine

!GET.PARTNUM subroutine

!GET.PATHNAME subroutine

!GET.USER.COUNTS subroutine

!GETPU subroutine

!INLINE.PROMPTS subroutine

!INTS subroutine

!MAKE.PATHNAME subroutine

!MATCHES subroutine

!MESSAGE subroutine

!PACK.FNKEYS subroutine

!REPORT.ERROR subroutine

!SET.PTR subroutine

!SETPU subroutine

!TIMDAT subroutine

!USER.TYPE subroutine

!VOC.PATHNAME subroutine

In addition, the subroutines listed in the following table have been added to existing functions for PI/
open compatibility.

Subroutine Associated function

CALL !ADDS ADDS
CALL !ANDS ANDS
CALL !CATS CATS
CALL !CHARS CHARS
CALL !CLEAR.PROMPTS CLEARPROMPTS
CALL !COUNTS COUNTS
CALL !DISLEN LENDP
CALL !DIVS DIVS
CALL !EQS EQS
CALL !FADD FADD
CALL !FDIV FDIV
CALL !FIELDS FIELDS

Appendix F: BASIC subroutines

572

Subroutine Associated function

CALL !FMTS FMTS
CALL !FMUL FMUL
CALL !FOLD FOLD
CALL !FSUB FSUB
CALL !GES GES
CALL !GTS GTS
CALL !ICONVS ICONVS
CALL !IFS IFS
CALL !INDEXS INDEXS
CALL !LENS LENS
CALL !LES LES
CALL !LTS LTS
CALL !MAXIMUM MAXIMUM
CALL !MINIMUM MINIMUM
CALL !MODS MODS
CALL !MULS MULS
CALL !NES NES
CALL !NOTS NOTS
CALL !NUMS NUMS
CALL !OCONVS OCONVS
CALL !ORS ORS
CALL !SEQS SEQS
CALL !SPACES SPACES
CALL !SPLICE SPLICE
CALL !STRS STRS
CALL !SUBS SUBS
CALL !SUBSTRINGS SUBSTRINGS
CALL !SUMMATION SUMMATION

! ASYNC subroutine
Use the !ASYNC subroutine (or its synonym !AMLC) to send data to, and receive data from an
asynchronous device.

Syntax

CALL !ASYNC (key, line, data, count, carrier)

key defines the action to be taken (1 through 5). The values for key are defined in the following list:

line is the number portion from the &DEVICE& entry TTY##, where ## represents a decimal number.

data is the data being sent to or received from the line.

count is an output variable containing the character count.

carrier is an output variable that returns a value dependent on the value of key. If key is 1, 2, or 3,
carrier returns the variable specified by the user. If key has a value of 4 or 5, carrier returns 1.

!EDIT.INPUT subroutine

573

You must first assign an asynchronous device using the ASSIGN command. An entry must be in the
&DEVICE& file for the device to be assigned with the record ID format of TTY##, where ## represents a
decimal number. The actions associated with each key value are as follows:

Key Action

1 Inputs the number of characters indicated by the value of count.
2 Inputs the number of characters indicated by the value of count or until a linefeed

character is encountered.
3 Outputs the number of characters indicated by the value of count.
4 Returns the number of characters in the input buffer to count. On operating systems

where the FIONREAD key is not supported, 0 is returned in count. When the value of
key is 4, 1 is always returned to carrier.

5 Returns 0 in count if there is insufficient space in the output buffer. On operating
systems where the TIOCOUTQ key is not supported, 0 is returned in count. When the
value of key is 5, 1 is always returned to carrier.

Example

The !ASYNC subroutine returns the first 80 characters from the device defined by ASYNC10 in the
&DEVICE& file to the variable data.

data=
 count= 80
 carrier= 0
 call !ASYNC(1,10,data,count,carrier)

!EDIT.INPUT subroutine
Use the !EDIT.INPUT subroutine to request editable terminal input within a single-line window on the
terminal. Editing keys are defined in the terminfo files and can be set up using the KEYEDIT statement,
KEYTRAP statement and KEYEDIT statement. To ease the implementation, the UNIVERSE.INCLUDE
file GTI.FNKEYS.IH can be included to automatically define the editing keys from the current terminfo
definition. We recommend that you use the INCLUDE file.

Syntax

CALL !EDIT.INPUT (keys, wcol, wrow, wwidth, buffer, startpos, bwidth,
ftable, code)

All input occurs within a single-line window of the terminal screen, defined by the parameters wrow,
wcol, and wwidth. If the underlying buffer length bwidth is greater than wwidth and the user performs
a function that moves the cursor out of the window horizontally, the contents of buffer are scrolled so
as to keep the cursor always in the window.

If the specified starting cursor position would take the cursor out of the window, the buffer’s contents
are scrolled immediately so as to keep the cursor visible. !EDIT.INPUT does not let the user enter more
than bwidth characters into the buffer, regardless of the value of wwidth.

Appendix F: BASIC subroutines

574

Qualifiers

Qualifier Description

Controls certain operational characteristics. keys can take the additive values
(the token names can be found in the GTI.FNKEYS.IH include file) shown here:
Value Token Description
0 IK$NON None of the keys below are required.
1 IK$OCR Output a carriage return.
2 IK$ATM Terminate editing as soon as the user has entered

bwidth characters.
4 IK$TCR Toggle cursor-visible state.
8 IK$DIS Display contents of buffer string on entry.
16 IK$HDX Set terminal to half-duplex mode (restored on exit).
32 IK$INS Start editing in insert mode. Default is overlay mode.

keys

64 IK$BEG Separate Begin Line/End Line functionality required.
wcol The screen column of the start of the window (x-coordinate).
wrow The screen row for the window (y-coordinate).
wwidth The number of screen columns the window occupies.

Contains the following:
on entry The text to display (if key IK$DIS is set).

buffer

on exit The final edited value of the text.
Indicates the cursor position as follows:
on entry The initial position of the cursor (from start of buffer).

startpos

on exit The position of the cursor upon exit.
bwidth The maximum number of positions allowed in buffer. bwidth can be more than

wwidth, in which case the contents of buffer scroll horizontally as required.
ftable A packed function key trap table, defining which keys cause exit from the !

EDIT.INPUT function. The !PACK.FNKEYS function creates the packed function key
trap table.
The reply code:
= 0 User pressed Return or entered bwidth characters and IK$ATM was

set.

code

> 0 The function key number that terminated !EDIT.INPUT.

!EDIT.INPUT functions

!EDIT.INPUT performs up to eight editing functions, as follows:

Value Token Description

3 FK$BSP Backspace
4 FK$LEFT Cursor left
5 FK$RIGHT Cursor right
19 FK$INSCH Insert character
21 FK$INSTXT Insert/overlay mode toggle
23 FK$DELCH Delete character
24 FK$DELLIN Delete line
51 FK$CLEOL Clear to end-of-line

!EDIT.INPUT subroutine

575

The specific keys to perform each function can be automatically initialized by including the $INCLUDE
UNIVERSE.INCLUDE GTI.FNKEYS.IH statement in the application program.

If any of the values appear in the trap list, its functionality is disabled and the program immediate exits
the !EDIT.INPUT subroutine when the key associated with that function is pressed.

Unsupported functions

This implementation does not support a number of functions originally available in the Prime
INFORMATION version. Because of this, sequences can be generated that inadvertently cause the !
EDIT.INPUT function to terminate. For this reason, you can create a user-defined terminal keystroke
definition file so that !EDIT.INPUT recognizes the unsupported sequences. Unsupported sequences
cause the !EDIT.INPUT subroutine to ring the terminal bell, indicating the recognition of an invalid
sequence.

The file CUSTOM.GTI.DEFS defines a series of keystroke sequences for this purpose. You can create
the file in each account or in a central location, with VOC entries in satellite accounts referencing
the remote file. There is no restriction on how the file can be created. For instance, you can use the
command:

>CREATE.FILE CUSTOM.GTI.DEFS 2 17 1 /* Information style */

or:

>CREATE-FILE CUSTOM.GTI.DEFS (1,1,3 17,1,2) /* Pick style */

to create the definition file. A terminal keystroke definition record assumes the name of the terminal
which the definitions are associated with, for example for vt100 terminals, the CUSTOM.GTI.DEFS
file record ID would be vt100 (case-sensitive). Each terminal keystroke definition record contains
a maximum of 82 fields (attributes) which directly correspond to the keystroke code listed in the
GTI.FNKEYS.IH include file.

The complete listing of the fields defined within the GTI.FNKEYS.IH include file is shown below:

Key name Field Description

FK$FIN 1 Finish
FK$HELP 2 Help
FK$BSP 3 Backspacea

FK$LEFT 4 Left arrowa

FK$RIGHT 5 Right arrowa

FK$UP 6 Up arrow
FK$DOWN 7 Down arrow
FK$LSCR 8 Left screen
FK$RSCR 9 Right screen
FK$USCR 10 Up screen, Previous page
FK$DSCR 11 Down screen, Next page
FK$BEGEND 12 Toggle begin/end line, or Begin line
FK$TOPBOT 13 Top/Bottom, or End line
FK$NEXTWD 14 Next word
FK$PREVWD 15 Previous word
FK$TAB 16 Tab
FK$BTAB 17 Backtab
FK$CTAB 18 Column tab
FK$INSCH 19 Insert character (space)a

Appendix F: BASIC subroutines

576

Key name Field Description

FK$INSLIN 20 Insert line
FK$INSTXT 21 Insert text, Toggle insert/overlay modea

FK$INSDOC 22 Insert document
FK$DELCH 23 Delete charactera

FK$DELLIN 24 Delete linea

FK$DELTXT 25 Delete text
FK$SRCHNX 26 Search next
FK$SEARCH 27 Search
FK$REPLACE 28 Replace
FK$MOVE 29 Move text
FK$COPY 30 Copy text
FK$SAVE 31 Save text
FK$FMT 32 Call format line
FK$CONFMT 33 Confirm format line
FK$CONFMTNW 34 Confirm format line, no wrap
FK$OOPS 35 Oops
FK$GOTO 36 Goto
FK$CALC 37 Recalculate
FK$INDENT 38 Indent (set left margin)
FK$MARK 39 Mark
FK$ATT 40 Set attribute
FK$CENTER 41 Center
FK$HYPH 42 Hyphenate
FK$REPAGE 43 Repaginate
FK$ABBREV 44 Abbreviation
FK$SPELL 45 Check spelling
FK$FORM 46 Enter formula
FK$HOME 47 Home the cursor
FK$CMD 48 Enter command
FK$EDIT 49 Edit
FK$CANCEL 50 Abort/Cancel
FK$CLEOL 51 Clear to end of line1
FK$SCRWID 52 Toggle between 80 and 132 mode
FK$PERF 53 Invoke DSS PERFORM emulator
FK$INCLUDE 54 DSS Include scratchpad data
FK$EXPORT 55 DSS Export scratchpad data
FK$TWIDDLE 56 Twiddle character pair
FK$DELWD 57 Delete word
FK$SRCHPREV 58 Search previous
FK$LANGUAGE 59 Language
FK$REFRESH 60 Refresh
FK$UPPER 61 Uppercase
FK$LOWER 62 Lowercase

!EDIT.INPUT subroutine

577

Key name Field Description

FK$CAPIT 63 Capitalize
FK$REPEAT 64 Repeat
FK$STAMP 65 Stamp
FK$SPOOL 66 Spool record
FK$GET 67 Get record
FK$WRITE 68 Write record
FK$EXECUTE 69 Execute macro
FK$NUMBER 70 Toggle line numbering
FK$DTAB 71 Clear tabs
FK$STOP 72 Stop (current activity)
FK$EXCHANGE 73 Exchange mark and cursor
FK$BOTTOM 74 Move bottom
FK$CASE 75 Toggle case sensitivity
FK$LISTB 76 List (buffers)
FK$LISTD 77 List (deletions)
FK$LISTA 78 List (selects)
FK$LISTC 79 List (commands)
FK$DISPLAY 80 Display (current select list)
FK$BLOCK 81 Block (replace)
FK$PREFIX 82 Prefix

a. Indicates supported functionality.

Example

The following BASIC program sets up three trap keys (using the !PACK.FNKEYS subroutine), waits for
the user to enter input, then reports how the input was terminated:

$INCLUDE UNIVERSE.INCLUDE GTI.FNKEYS.IH
 * Set up trap keys of FINISH, UPCURSOR and DOWNCURSOR
 TRAP.LIST = FK$FIN:@FM:FK$UP:@FM:FK$DOWN
 CALL !PACK.FNKEYS(TRAP.LIST, Ftable)
 * Start editing in INPUT mode, displaying contents in window
 KEYS = IK$INS + IK$DIS
 * Window edit is at x=20, y=2, of length 10 characters;
 * the user can enter up to 30 characters of input into TextBuffer,
 * and the cursor is initially placed on the first character of the
 * window.
 TextBuffer=""
 CursorPos = 1
 CALL !EDIT.INPUT(KEYS, 20, 2, 10, TextBuffer, CursorPos, 30, Ftable,
 ReturnCode)
 * On exit, the user's input is within TextBuffer,
 * CursorPos indicates the location of the cursor upon exiting,
 * and ReturnCode contains the reason for exiting.
 BEGIN CASE
 CASE CODE = 0 * User pressed RETURN key
 CASE CODE = FK$FIN * User pressed the defined FINISH key
 CASE CODE = FK$UP * User pressed the defined UPCURSOR key
 CASE CODE = FK$DOWN * User pressed the defined DOWNCURSOR key
 CASE 1 * Should never happen

Appendix F: BASIC subroutines

578

 END CASE

!ERRNO subroutine
Use the !ERRNO subroutine to return the current value of the operating system errno variable.

Syntax

CALL !ERRNO (variable)

variable is the name of a BASIC variable.

The !ERRNO subroutine returns the value of the system errno variable after the last call to a GCI
subroutine in variable. If you call a system routine with the GCI, and the system call fails, you can
use !ERRNO to determine what caused the failure. If no GCI routine was called prior to its execution, !
ERRNO returns 0. The values of errno that apply to your system are listed in the system include file
errno.h.

!FCMP subroutine
Use the !FCMP subroutine to compare the equality of two floating-point numeric values as follows:

If number1 is less than number2, result is –1.

If number1 is equal to number2, result is 0.

If number1 is greater than number2, result is 1.

Syntax

CALL !FCMP (result , number1 , number2)

!GET.KEY subroutine
Use the !GET.KEY subroutine to return the next key pressed at the keyboard. This can be either
a printing character, the Return key, a function key as defined by the current terminal type, or a
character sequence that begins with an escape or control character not defined as a function key.

Function keys can be automatically initialized by including the $INCLUDE UNIVERSE.INCLUDES
GTI.FNKEYS.IH statement in the application program that uses the !GET.KEY subroutine.

Syntax

CALL !GET.KEY (string, code)

Qualifiers

Code String value

string Returns the character sequence of the next key pressed at the keyboard.

!GET.PARTNUM subroutine

579

Code String value

Returns the string interpretation value:
Code String Value
0 A single character that is not part of any function key

sequence. For example, if A is pressed, code = 0 and string =
CHAR(65).

>0 The character sequence associated with the function
key defined by that number in the GTI.FNKEYS.IH include
file. For example, on a VT100 terminal, pressing the key
labeled --> (right cursor move) returns code = 5 and string =
CHAR(27):CHAR(79):CHAR(67).

code

<0 A character sequence starting with an escape or control
character that does not match any sequence in either the
terminfo entry or the CUSTOM.GCI.DEFS file.

Example

The following BASIC program waits for the user to enter input, then reports the type of input entered:

 $INCLUDE GTI.FNKEYS.IH
 STRING = ' ' ; * initial states of call variables
 CODE = -999
 * Now ask for input until user hits a "Q"
 LOOP
 UNTIL STRING[1,1] = "q" OR STRING[1,1] = "Q"
 PRINT 'Type a character or press a function key (q to quit):':
 CALL !GET.KEY(STRING, CODE)
 * Display meaning of CODE
 PRINT
 PRINT "CODE = ":CODE:
 BEGIN CASE
 CASE CODE = 0
 PRINT " (Normal character)"
 CASE CODE > 0
 PRINT " (Function key number)"
 CASE 1; * otherwise
 PRINT " (Unrecognized function key)"
 END CASE
 * Print whatever is in STRING, as decimal numbers:
 PRINT "STRING = ":
 FOR I = 1 TO LEN(STRING)
 PRINT "CHAR(":SEQ(STRING[I,1]):") ":
 NEXT I
 PRINT
 REPEAT
 PRINT "End of run."
 RETURN
 END

!GET.PARTNUM subroutine
Use the !GET.PARTNUM subroutine with distributed files to determine the number of the part file to
which a given record ID belongs.

Appendix F: BASIC subroutines

580

Syntax

CALL !GET.PARTNUM (file, record.ID, partnum, status)

file (input) is the file variable of the open distributed file.

record.ID (input) is the record ID.

partnum (output) is the part number of the part file of the distributed file to which the given record ID
maps.

status (output) is 0 for a valid part number or an error number for an invalid part number. An insert file
of equate tokens for the error numbers is available.

An insert file of equate names is provided to allow you to use mnemonics for the error numbers.
The insert file is called INFO_ERRORS.INS.IBAS, and is located in the INCLUDE subdirectory. To use
the insert file, specify $INCLUDE statement SYSCOM INFO_ERRORS.INS.IBAS when you compile the
program.

Equate name Description

IE$NOT.DISTFILE The file specified by the file variable is not a distributed file.
IE$DIST.DICT.OPEN.FAIL The program failed to open the file dictionary for the distributed

file.
IE$DIST.ALG.READ.FAIL The program failed to read the partitioning algorithm from the

distributed file dictionary.
IE$NO.MAP.TO.PARTNUM The record ID specified is not valid for this distributed file.

Use the !GET.PARTNUM subroutine to call the partitioning algorithm associated with a distributed
file. If the part number returned by the partitioning algorithm is not valid, that is, not an integer
greater than zero, !GET.PARTNUM returns a nonzero status code. If the part number returned by the
partitioning algorithm is valid, !GET.PARTNUM returns a zero status code.

Note: !GET.PARTNUM does not check that the returned part number corresponds to one of the
available part files of the currently opened file.

Example

In the following example, a distributed file SYS has been defined with parts and part numbers S1, 5, S2,
7, and S3, 3, respectively. The file uses the default SYSTEM partitioning algorithm.

PROMPT ''
 GET.PARTNUM = '!GET.PARTNUM'
 STATUS = 0
 PART.NUM = 0
 OPEN '', 'SYS' TO FVAR ELSE STOP 'NO OPEN SYS'
 PATHNAME.LIST = FILEINFO(FVAR, FINFO$PATHNAME)
 PARTNUM.LIST = FILEINFO(FVAR, FINFO$PARTNUM)
 LOOP
 PRINT 'ENTER Record ID : ':
 INPUT RECORD.ID
 WHILE RECORD.ID
 CALL @GET.PARTNUM(FVAR, RECORD.ID, PART.NUM, STATUS)
 LOCATE PART.NUM IN PARTNUM.LIST<1> SETTING PART.INDEX THEN
 PATHNAME = PATHNAME.LIST <PART.INDEX>
 END ELSE
 PATHNAME = ''
 END
 PRINT 'PART.NUM = ':PART.NUM:' STATUS = ':STATUS :'

!GET.PATHNAME subroutine

581

 PATHNAME = ': PATHNAME
 REPEAT
 END

!GET.PARTNUM returns part number 5 for input record ID 5-1, with status code 0, and part number 7
for input record ID 7-1, with status code 0, and part number 3 for input record ID 3-1, with status code
0. These part numbers are valid and correspond to available part files of file SYS.

!GET.PARTNUM returns part number 1200 for input record ID 1200-1, with status code 0. This part
number is valid but does not correspond to an available part file of file SYS.

!GET.PARTNUM returns part number 0 for input record ID 5-1, with status code IE
$NO.MAP.TO.PARTNUM, and part number 0 for input record ID A-1, with status code IE
$NO.MAP.TO.PARTNUM, and part number 0 for input record ID 12-4, with status code IE
$NO.MAP.TO.PARTNUM. These part numbers are not valid and do not correspond to available part
files of the file SYS.

!GET.PATHNAME subroutine
Use the !GET.PATHNAME subroutine to return the directory name and file name parts of a path name.

Syntax

CALL !GET.PATHNAME (pathname, directoryname, filename, status)

pathname (input) is the path name from which the details are required.

directoryname (output) is the directory name portion of the path name, that is, the path name with the
last entry name stripped off.

filename (output) is the file name portion of the path name.

status (output) is the returned status of the operation. A 0 indicates success, another number is an
error code indicating that the supplied path name was not valid.

Example

If pathname is input as /usr/accounts/ledger, directoryname is returned as /usr/accounts, and filename
is returned as ledger.

PATHNAME = "/usr/accounts/ledger "
 CALL !GET.PATHNAME(PATHNAME,DIR,FNAME,STATUS)
 IF STATUS = 0
 THEN
 PRINT "Directory portion = ":DIR
 PRINT "Entryname portion = ":FNAME
 END

!GETPU subroutine
Use the !GETPU subroutine to read individual parameters of any logical print channel.

Syntax

CALL !GETPU (key, print.channel, set.value, return.code)

Appendix F: BASIC subroutines

582

key is a number indicating the parameter to be read.

print.channel is the logical print channel, designated by –1 through 255.

set.value is the value to which the parameter is currently set.

return.code is the code returned.

The !GETPU subroutine allows you to read individual parameters of logical print channels as
designated by print.channel. Print channel 0 is the terminal unless a PRINTER ON statement has been
executed to send output to the default printer. If you specify print channel –1, the output is directed
to the terminal, regardless of the status of PRINTER ON or OFF. See the description of the !SETPU
subroutine later in this appendix for a means of setting individual print.channel parameters.

Equate names for keys

An insert file of equate names is provided to allow you to use mnemonics rather than key numbers.
The name of the insert file is GETPU.INS.IBAS. Use the $INCLUDE statement compiler directive to insert
this file if you want to use equate names. The following list shows the equate names and keys for the
parameters:

Mnemonic Key Parameter

PU$MODE 1 Printer mode.
PU$WIDTH 2 Device width (columns).
PU$LENGTH 3 Device length (lines).
PU$TOPMARGIN 4 Top margin (lines).
PU$BOTMARGIN 5 Bottom margin (lines).
PU$LEFTMARGIN 6 Left margin (columns, reset on printer close). Always

returns 0.
PU$SPOOLFLAGS 7 Spool option flags.
PU$DEFERTIME 8 Spool defer time. This cannot be 0.
PU$FORM 9 Spool form (string).
PU$BANNER 10 Spool banner or hold filename (string).
PU$LOCATION 11 Spool location (string).
PU$COPIES 12 Spool copies. A single copy can be returned as 1 or 0.
PU$PAGING 14 Terminal paging (nonzero is on). This only works when

PU$MODE is set to 1.
PU$PAGENUMBER 15 Returns the current page number.
PU$DISABLE 16 0 is returned if print.channel is enabled; and a 1 is

returned if print.channel is disabled.
PU$CONNECT 17 Returns the number of a connected print channel or an

empty string if no print channels are connected.
PU$NLSMAP 22 If NLS is enabled, returns the NLS map name associated

with the specified print channel.
PU$LINESLEFT 1002 Lines left before new page needed. Returns erroneous

values for the terminal if cursor addressing is used, if
a line wider than the terminal is printed, or if terminal
input has occurred.

PU$HEADERLINES 1003 Lines used by current header.
PU$FOOTERLINES 1004 Lines used by current footer.
PU$DATALINES 1005 Lines between current header and footer.

!GETPU subroutine

583

Mnemonic Key Parameter

PU$DATACOLUMNS 1006 Columns between left margin and device width.

The PU$SPOOLFLAGS key

The PU$SPOOLFLAGS key refers to a 32-bit option word that controls a number of print options. This is
implemented as a 16-bit word and a 16-bit extension word. (Thus bit 21 refers to bit 5 of the extension
word.) The bits are assigned as follows:

Bit Description

Uses FORTRAN-format mode. This allows the attaching of vertical format information to
each line of the data file. The first character position of each line from the file does not
appear in the printed output, and is interpreted as follows:
Character Meaning
0 Advances two lines.
1 Ejects to the top of the next page.
+ Overprints the last line.
Space Advances one line.

1

– Advances three lines (skip two lines). Any other character is
interpreted as advance one line.

3 Generates line numbers at the left margin.
4 Suppresses header page.
5 Suppresses final page eject after printing.
12 Spools the number of copies specified in an earlier !SETPU call.
21 Places the job in the spool queue in the hold state.
22 Retains jobs in the spool queue in the hold state after they have been printed.
other All the remaining bits are reserved.

Equate names for return code

An insert file of equate names is provided to allow you to use mnemonics rather than key numbers.
The name of the insert file is ERRD.INS.IBAS. Use the $INCLUDE statement to insert this file if you want
to use equate names. The following list shows the codes returned in the argument return.code:

Code Meaning

0 No error
E$BKEY Bad key (key is out of range)
E$BPAR Bad parameter (value of new.value is out of range)
E$BUNT Bad unit number (value of print.channel is out of range)
E$NRIT No write (attempt to set a read-only parameter)

Examples

In this example, the file containing the parameter key equate names is inserted with the $INCLUDE
compiler directive. Later the top margin parameter for logical print channel 0 is interrogated. Print
channel 0 is the terminal unless a prior PRINTER statement ON has been executed to direct output to
the default printer. The top margin setting is returned in the argument TM.SETTING. Return codes are
returned in the argument RETURN.CODE.

$INCLUDE UNIVERSE.INCLUDE GETPU.H

Appendix F: BASIC subroutines

584

 CALL !GETPU(PU$TOPMARGIN,0,TM.SETTING,RETURN.CODE)

The next example does the same as the previous example but uses the key 4 instead of the equate
name PU$TOPMARGIN. Because the key number is used, it is not necessary for the insert file GETPU.H
to be included.

CALL !GETPU(4,0,TM.SETTING,RETURN.CODE)

The next example returns the current deferred time on print channel 0 in the variable TIME.RET:

CALL !GETPU(PU$DEFERTIME,0,TIME.RET,RETURN.CODE)

!GET.USER.COUNTS subroutine
Use the !GET.USER.COUNTS subroutine to return a count of UniVerse and system users. If any value
cannot be retrieved, a value of –1 is returned.

Syntax

CALL !GET.USER.COUNTS (uv.users, max.uv.users, os.users)

uv.users (output) is the current number of UniVerse users.

max.uv.users (output) is the maximum number of licensed UniVerse users allowed on your system.

os.users (output) is the current number of operating system users.

!GET.USERS subroutine
The !GET.USERS subroutine allows a BASIC program access to the system usage information.

Syntax

CALL !GET.USERS(uv.users,max.users,sys.users,user.info,code)

The user.info argument returns a dynamic array with a field for each user. Each field is separated by
value marks into four values, containing the following information:

▪ The UniVerse user number

▪ The user ID

▪ The process ID

▪ The user type

The user type is a character string containing either Terminal or Phantom.

Example

The following example illustrates the use of the !GET.USERS subroutine.

0001:USERS = "!GET.USERS"
0002: CALL @USERS(UV.USERS,MAX.USERS,SYS.USERS,USER.INFO,CODE)
0003:CRT "UV.USERS = ":UV.USERS
0004:CRT "MAX.USERS = ":MAX.USERS
0005:CRT "SYS.USERS = ":SYS.USERS
0006:CRT "USER.INFO = ":USER.INFO
0007:CRT "CODE = ":CODE

!INLINE.PROMPTS subroutine

585

0008:END

This program returns information similar to the following example:

UV.USERS = 1
MAX.USERS = 16
SYS.USERS = 1
USER.INFO = -916²NT AUTHORITY\system²916²Phantom¦1172²NORTHAMERICA\claireg²1172²
Terminal
CODE = 0
>ED &BP& TRY.GETUSERS
8 lines long.

!INLINE.PROMPTS subroutine
Use the !INLINE.PROMPTS subroutine to evaluate a string that contains in-line prompts.

Syntax

CALL !INLINE.PROMPTS (result , string)

In-line prompts have the following syntax:

<<{ control , }…text { , option }>>

result (output) is the variable that contains the result of the evaluation.

string (input) is the string containing an in-line prompt.

control specifies the characteristics of the prompt, and can be one of the following:

Prompt Description

@(CLR) Clears the terminal screen.
@(BELL) Rings the terminal bell.
@(TOF) Issues a formfeed character: in most circumstances this results in the

cursor moving to the top left of the screen.
@ (col , row) Prompts at the specified column and row number on the terminal.
A Always prompts when the in-line prompt containing the control option is

evaluated. If you do not specify this option, the input value from a previous
execution of the prompt is used.

Cn Specifies that the nth word on the command line is used as the input value.
(Word 1 is the verb in the sentence.)

F (filename record.id
[,fm [,vm [,sm]]])

Takes the input value from the specified record in the specified file, and
optionally, extracts a value (@VM), or subvalue (@SM), from the field
(@FM). This option cannot be used with the file dictionary.

In Takes the nth word from the command line, but prompts if the word is not
entered.

R (string) Repeats the prompt until an empty string is entered. If string is specified,
each response to the prompt is appended by string between each entry. If
string is not specified, a space is used to separate the responses.

Appendix F: BASIC subroutines

586

Prompt Description

P Saves the input from an in-line prompt. The input is then used for all in-
line prompts with the same prompt text. This is done until the saved input
is overwritten by a prompt with the same prompt text and with a control
option of A, C, I, or S, or until control returns to the UniVerse prompt. The P
option saves the input from an in-line prompt in the current paragraph, or
in other paragraphs.

Sn Takes the nth word from the command (as in the In control option), but
uses the most recent command entered at the UniVerse system level to
execute the paragraph, rather than an argument in the paragraph. This is
useful where paragraphs are nested.

text The prompt to be displayed.
option A valid conversion code or pattern match. A valid conversion code is one

that can be used with the ICONV function. Conversion codes must be
enclosed in parentheses. A valid pattern match is one that can be used with
the MATCHING keyword.

If the in-line prompt has a value, that value is substituted for the prompt. If the in-line prompt does
not have a value, the prompt is displayed to request an input value when the function is executed. The
value entered at the prompt is then substituted for the in-line prompt.

Note:

Once a value has been entered for a particular prompt, the prompt continues to have that value
until a !CLEAR.PROMPTS subroutine is called, or control option A is specified. A !CLEAR.PROMPTS
subroutine clears all the values that have been entered for in-line prompts.
You can enclose prompts within prompts.

Example

A = ""
 CALL !INLINE.PROMPTS(A,"You have requested the <<Filename>> file")
 PRINT "A"

The following output is displayed:

Filename=PERSONNEL
You have requested the PERSONNEL file

!INTS subroutine
Use the !INTS subroutine to retrieve the integer portion of elements in a dynamic array.

Syntax

CALL !INTS (result, dynamic.array)

result (output) contains a dynamic array that comprises the integer portions of the elements of
dynamic.array.

dynamic.array (input) is the dynamic array to process.

!MAKE.PATHNAME subroutine

587

The !INTS subroutine returns a dynamic array, each element of which contains the integer portion of
the numeric value in the corresponding element of the input dynamic.array.

Example

 A=33.0009:@VM:999.999:@FM:-4.66:@FM:88.3874
 CALL !INTS(RESULT,A)

The following output is displayed:

33VM999FM–4FM88

!MAKE.PATHNAME subroutine
Use the !MAKE.PATHNAME subroutine to construct the full path name of a file.

Syntax

CALL !MAKE.PATHNAME (path1, path2, result, status)

The !MAKE.PATHNAME subroutine can be used to:

▪ Concatenate two strings to form a path name. The second string must be a relative path.

▪ Obtain the fully qualified path name of a file. Where only one of path1 or path2 is given, !
MAKE.PATHNAME returns the path name in its fully qualified state. In this case, any file name you
specify does not have to be an existing file name.

▪ Return the current working directory. To do this, specify both path1 and path2 as empty strings.

path1 (input) is a file name or partial path name. If path1 is an empty string, the current working
directory is used.

path2 (input) is a relative path name. If path2 is an empty string, the current working directory is used.

result (output) is the resulting path name.

status (output) is the returned status of the operation. 0 indicates success. Any other number indicates
either of the following errors:

Status Description

IE$NOTRELATIVE path2was not a relative path name.
IE$PATHNOTFOUND The path name could not be found when !

MAKE.PATHNAME tried to qualify it fully.

Example

In this example, the user’s working directory is /usr/accounts:

ENT = "ledger"
 CALL !MAKE.PATHNAME(ENT,"",RESULT,STATUS)
 IF STATUS = 0
 THEN PRINT "Full name = ":RESULT

The following result is displayed:

Full name = /usr/accounts/ledger

Appendix F: BASIC subroutines

588

!MATCHES subroutine
Use the !MATCHES subroutine to test whether each element of one dynamic array matches the
patterns specified in the elements of the second dynamic array. Each element of dynamic.array is
compared with the corresponding element of match.pattern. If the element in dynamic.array matches
the pattern specified in match.pattern, 1 is returned in the corresponding element of result. If the
element from dynamic.array is not matched by the specified pattern, 0 is returned.

Syntax

CALL !MATCHES (result , dynamic. array , match.pattern)

result (output) is a dynamic array containing the result of the comparison on each element in dynamic
array1.

dynamic.array (input) is the dynamic array to be tested.

match.pattern (input) is a dynamic array containing the match patterns.

When dynamic.array and match.pattern do not contain the same number of elements, the behavior of !
MATCHES is as follows:

▪ result always contains the same number of elements as the longer of dynamic.array or
match.pattern.

▪ If there are more elements in dynamic.array than in match.pattern, the missing elements are
treated as though they contained a pattern that matched an empty string.

▪ If there are more elements in match.pattern than in dynamic.array, the missing elements are
treated as though they contained an empty string.

Examples

The following example returns the value of the dynamic array as 1VM1VM1:

A='AAA4A4':@VM:2398:@VM:'TRAIN'
 B='6X':@VM:'4N':@VM:'5A'
 CALL !MATCHES(RESULT,A,B)

In the next example, there are missing elements in match.pattern that are treated as though they
contain a pattern that matches an empty string. The result is 0VM0SM0FM1FM1.

 R='AAA':@VM:222:@SM:'CCCC':@FM:33:@FM:'DDDDDD'
 S='4A':@FM:'2N':@FM:'6X'
 CALL !MATCHES(RESULT,R,S)

In the next example, the missing element in match.pattern is used as a test for an empty string in
dynamic.array, and the result is 1VM1FM1:

X='AAA':@VM:@FM:''
 Y='3A':@FM:'3A'
 CALL !MATCHES(RESULT,X,Y)

!MESSAGE subroutine
Use the !MESSAGE subroutine to send a message to another user on the system. !MESSAGE lets you
change and report on the current user’s message status.

!PACK.FNKEYS subroutine

589

Syntax

CALL !MESSAGE (key, username, usernum, message, status)

key (input) specifies the operation to be performed. You specify the option you require with the key
argument, as follows:

Key Description

IK$MSGACCEPT Sets message status to accept.
IK$MSGREJECT Sets message status to reject.
IK$MSGSEND Sends message to user.
IK$MSGSENDNOW Sends message to user now.
IK$MSGSTATUS Displays message status of user.

username (input) is the name of the user, or the TTY name, for send or status operations.

usernum (input) is the number of the user for send/status operations.

message (input) is the message to be sent.

status (output) is the returned status of the operation as follows:

Status Description

0 The operation was successful.
IE$NOSUPPORT You specified an unsupported key option.
IE$KEY You specified an invalid key option.
IE$PAR The username or message you specified was not valid.
IE$UNKNOWN.USER You tried to send a message to a user who is not logged in

to the system.
IE$SEND.REQ.REC The sender does not have the MESSAGERECEIVE option

enabled.
IE$MSG.REJECTED One or more users have the MESSAGEREJECT mode set.

Note: The value of message is ignored when key is set to IK$MSGACCEPT, IK$MSGREJECT, or IK
$MSGSTATUS.

Example

CALL !MESSAGE (KEY,USERNAME,USERNUMBER,MESSAGE,CODE)
 IF CODE # 0
 THEN CALL !REPORT.ERROR ('MY.COMMAND','!MESSAGE',CODE)

!PACK.FNKEYS subroutine
The !PACK.FNKEYS subroutine converts a list of function key numbers into a bit string suitable for
use with the !EDIT.INPUT subroutine. This bit string defines the keys which cause !EDIT.INPUT to exit,
enabling the program to handle the specific keys itself.

Syntax

CALL !PACK.FNKEYS (trap.list, ftable)

Appendix F: BASIC subroutines

590

Qualifiers

Qualifier Description

trap.list A list of function numbers delimited by field marks (CHAR(254)), defining the
specific keys that are to be used as trap keys by the !EDIT.INPUT subroutine.

ftable A bit-significant string of trap keys used in the ftable parameter of the !
EDIT.INPUT subroutine. This string should not be changed in any way before
calling the !EDIT.INPUT subroutine.

trap.list can be a list of function key numbers delimited by field marks (CHAR(254)). Alternatively, the
mnemonic key name, listed below and in the UNIVERSE.INCLUDE file GTI.FNKEYS.IH, can be used:

Key name Field Description

FK$FIN 1 Finish
FK$HELP 2 Help
FK$BSP 3 Backspacea

FK$LEFT 4 Left arrowa

FK$RIGHT 5 Right arrowa

FK$UP 6 Up arrow
FK$DOWN 7 Down arrow
FK$LSCR 8 Left screen
FK$RSCR 9 Right screen
FK$USCR 10 Up screen, Previous page
FK$DSCR 11 Down screen, Next page
FK$BEGEND 12 Toggle begin/end line, or Begin line
FK$TOPBOT 13 Top/Bottom, or End line
FK$NEXTWD 14 Next word
FK$PREVWD 15 Previous word
FK$TAB 16 Tab
FK$BTAB 17 Backtab
FK$CTAB 18 Column tab
FK$INSCH 19 Insert character (space)a

FK$INSLIN 20 Insert line
FK$INSTXT 21 Insert text, Toggle insert/overlay modea

FK$INSDOC 22 Insert document
FK$DELCH 23 Delete charactera

FK$DELLIN 24 Delete linea

FK$DELTXT 25 Delete text
FK$SRCHNX 26 Search next
FK$SEARCH 27 Search
FK$REPLACE 28 Replace
FK$MOVE 29 Move text
FK$COPY 30 Copy text
FK$SAVE 31 Save text
FK$FMT 32 Call format line
FK$CONFMT 33 Confirm format line

!PACK.FNKEYS subroutine

591

Key name Field Description

FK$CONFMTNW 34 Confirm format line, no wrap
FK$OOPS 35 Oops
FK$GOTO 36 Goto
FK$CALC 37 Recalculate
FK$INDENT 38 Indent (set left margin)
FK$MARK 39 Mark
FK$ATT 40 Set attribute
FK$CENTER 41 Center
FK$HYPH 42 Hyphenate
FK$REPAGE 43 Repaginate
FK$ABBREV 44 Abbreviation
FK$SPELL 45 Check spelling
FK$FORM 46 Enter formula
FK$HOME 47 Home the cursor
FK$CMD 48 Enter command
FK$EDIT 49 Edit
FK$CANCEL 50 Abort/Cancel
FK$CLEOL 51 Clear to end of linea

FK$SCRWID 52 Toggle between 80 and 132 mode
FK$PERF 53 Invoke DSS PERFORM emulator
FK$INCLUDE 54 DSS Include scratchpad data
FK$EXPORT 55 DSS Export scratchpad data
FK$TWIDDLE 56 Twiddle character pair
FK$DELWD 57 Delete word
FK$SRCHPREV 58 Search previous
FK$LANGUAGE 59 Language
FK$REFRESH 60 Refresh
FK$UPPER 61 Uppercase
FK$LOWER 62 Lowercase
FK$CAPIT 63 Capitalize
FK$REPEAT 64 Repeat
FK$STAMP 65 Stamp
FK$SPOOL 66 Spool record
FK$GET 67 Get record
FK$WRITE 68 Write record
FK$EXECUTE 69 Execute macro
FK$NUMBER 70 Toggle line numbering
FK$DTAB 71 Clear tabs
FK$STOP 72 Stop (current activity)
FK$EXCHANGE 73 Exchange mark and cursor
FK$BOTTOM 74 Move bottom
FK$CASE 75 Toggle case sensitivity
FK$LISTB 76 List (buffers)

Appendix F: BASIC subroutines

592

Key name Field Description

FK$LISTD 77 List (deletions)
FK$LISTA 78 List (selects)
FK$LISTC 79 List (commands)
FK$DISPLAY 80 Display (current select list)
FK$BLOCK 81 Block (replace)
FK$PREFIX 82 Prefix

Indicates supported functionality.

If ftable is returned as an empty string, an error in the trap.list array is detected, such as an invalid
function number. Otherwise ftable is a bit-significant string which should not be changed in any way
before its use with the !EDIT.INPUT subroutine subroutine.

Example

The following program sets up three trap keys using the !PACK.FNKEYS function, then uses the bit
string within the !EDIT.INPUT subroutine:

$INCLUDE UNIVERSE.INCLUDE GTI.FNKEYS.IH
 * Set up trap keys of FINISH, UPCURSOR and DOWNCURSOR
 TRAP.LIST = FK$FIN:@FM:FK$UP:@FM:FK$DOWN
 CALL !PACK.FNKEYS(TRAP.LIST, Ftable)
 * Start editing in INPUT mode, displaying contents in window
 KEYS = IK$INS + IK$DIS
 * Window edit is at x=20, y=2, of length 10 characters;
 * the user can enter up to 30 characters of input into TextBuffer,
 * and the cursor is initially placed on the first character of the
 * window.
 TextBuffer=""
 CursorPos = 1
 CALL !EDIT.INPUT(KEYS,20,2,10,TextBuffer,CursorPos,30,Ftable,ReturnCode)
 * On exit, the user's input is within TextBuffer,
 * CursorPos indicates the location of the cursor upon exiting,
 * and ReturnCode contains the reason for exiting.
 BEGIN CASE
 CASE CODE = 0
 * User pressed RETURN key
 CASE CODE = FK$FIN
 * User pressed the defined FINISH key
 CASE CODE = FK$UP
 * User pressed the defined UPCURSOR key
 CASE CODE = FK$DOWN
 * User pressed the defined DOWNCURSOR key
 CASE 1 * Should never happen
 END CASE

!REPORT.ERROR subroutine
Use the !REPORT.ERROR subroutine to print explanatory text for a UniVerse or operating system error
code.

Syntax

CALL !REPORT.ERROR (command, subroutine, code)

!SET.PTR subroutine

593

command is the name of the command that used the subroutine in which an error was reported.

subroutine is the name of the subroutine that returned the error code.

code is the error code.

The general format of the message printed by !REPORT.ERROR is as follows:

Error: Calling subroutine from command. system error code:
message.text.

system is the operating system, or UniVerse.

Text for values of code in the range 0 through 9999 is retrieved from the operating system. Text for
values of code over 10,000 is retrieved from the SYS.MESSAGES file. If the code has no associated text,
a message to that effect is displayed. Some UniVerse error messages allow text to be inserted in them.
In this case, code can be a dynamic array of the error number, followed by one or more parameters to
be inserted into the message text.

Examples

CALL !MESSAGE (KEY,USERNAME,USERNUMBER,MESSAGE,CODE)
 IF CODE # 0
 THEN CALL !REPORT.ERROR ('MY.COMMAND','!MESSAGE',CODE)

If code was IE$SEND.REQ.REC, !REPORT.ERROR would display the following:

Error calling "!MESSAGE" from "MY.COMMAND" UniVerse error 1914:
Warning: Sender requires "receive" enabled!

The next example shows an error message with additional text:

CALL !MESSAGE (KEY,USERNAME,USERNUMBER,MESSAGE,CODE)
 IF CODE # 0
 THEN CALL !REPORT.ERROR ('MY.COMMAND','!MESSAGE',CODE:@FM:USERNAME)

If code was IE$UNKNOWN.USER, and the user ID was joanna, !REPORT.ERROR would display the
following:

Error calling "!MESSAGE" from "MY.COMMAND" UniVerse error 1757: joanna
is not logged on

!SET.PTR subroutine
Use the !SET.PTR subroutine to set options for a logical print channel. This subroutine provides the
same functionality as the UniVerse SETPTR (UNIX) or SETPTR (Windows platforms) command.

Syntax

CALL !SET.PTR (print.channel, width, length, top.margin,
bottom.margin, mode, options)

print.channel is the logical printer number, –1 through 255. The default is 0.

width is the page width. The default is 132.

length is the page length. The default is 66.

top.margin is the number of lines left at the top of the page. The default is 3.

bottom.margin is the number of lines left at the bottom of the page. The default is 3.

Appendix F: BASIC subroutines

594

mode is a number 1 through 5 that indicates the output medium, as follows:

▪ 1 - Line Printer Spooler Output (default).

▪ 2, 4, 5 - Assigned Device. To send output to an assigned device, you must first assign the device to
a logical print channel, using the UniVerse ASSIGN command. The ASSIGN command issues an
automatic SETPTR command using the default parameters, except for mode, which it sets to 2.
Use !SET.PTR only if you have to change the default parameters.

▪ 3 - Hold File Output. Mode 3 directs all printer output to a file called &HOLD&. If a &HOLD& file
does not exist in your account, !SET.PTR creates the file and its dictionary (D_&HOLD&). You must
execute !SET.PTR with mode 3 before each report to create unique report names in &HOLD&. If the
report exists with the same name, the new report overwrites.

options are any of the printer options that are valid for the SETPTR command. These must be
separated by commas and enclosed by valid quotation marks.

If you want to leave a characteristic unchanged, supply an empty string argument and specify the
option NODEFAULT. If you want the default to be selected, supply an empty string argument without
specifying the NODEFAULT option.

Printing on the last line and printing a heading

If you print on the last line of the page or screen and use a HEADING statement to print a heading, your
printout will have blank pages. The printer or terminal is set to advance to the top of the next page
when the last line of the page or screen is printed. The HEADING statement is set to advance to the top
of the next page to print the heading.

Example

The following example sets the options so that printing is deferred until 12:00, and the job is retained
in the queue:

CALL !SET.PTR (0,80,60,3,3,1,'DEFER 12:00,RETAIN')

!SETPU subroutine
Use the !SETPU subroutine to set individual parameters of any logical print channel.

Syntax

CALL !SETPU (key, print.channel, new.value, return.code)

Unlike !SET.PTR subroutine, you can specify only individual parameters to change; you need not
specify parameters you do not want to change. See the description of the !GETPU subroutine
subroutine for a way to read individual print.channel parameters.

key is a number indicating the parameter to be set (see !GETPU subroutine, on page 581).

print.channel is the logical print channel, designated by –1 through 255.

new.value is the value to which you want to set the parameter.

return.code is the returned error code (see !GETPU subroutine, on page 581).

The !SETPU subroutine lets you change individual parameters of logical print channels as designated
by print.channel. Print channel 0 is the terminal unless a PRINTER statement ON has been executed
to send output to the default printer. If you specify print channel –1, the output is directed to the
terminal, regardless of the status of PRINTER ON or OFF.

!SETPU subroutine

595

Equate names for keys

An insert file of equate names is provided to allow you to use mnemonics rather than key numbers.
The name of the insert file is GETPU.INS.IBAS. Use the $INCLUDE compiler directive to insert this file
if you want to use the equate names. For a description of the $INCLUDE statement compiler directive,
see UniVerse BASIC. The following list shows the equate names and keys for the parameters:

Mnemonic Key Parameter

PU$MODE 1 Printer mode.
PU$WIDTH 2 Device width (columns).
PU$LENGTH 3 Device length (lines).
PU$TOPMARGIN 4 Top margin (lines).
PU$BOTMARGIN 5 Bottom margin (lines).
PU$SPOOLFLAGS 7 Spool option flags (see !GETPU subroutine, on page

581).
PU$DEFERTIME 8 Spool defer time. This cannot be 0.
PU$FORM 9 Spool form (string).
PU$BANNER 10 Spool banner or hold file name (string).
PU$LOCATION 11 Spool location (string).
PU$COPIES 12 Spool copies. A single copy can be returned as 1 or 0.
PU$PAGING 14 Terminal paging (nonzero is on). This only works when PU

$MODE is set to 1.
PU$PAGENUMBER 15 Sets the next page number.

The PU$SPOOLFLAGS key

The PU$SPOOLFLAGS key refers to a 32-bit option word that controls a number of print options. This is
implemented as a 16-bit word and a 16-bit extension word. (Thus bit 21 refers to bit 5 of the extension
word.) The bits are assigned as follows:

Bit Description

Uses FORTRAN-format mode. This allows the attaching of vertical format information to
each line of the data file. The first character position of each line from the file does not
appear in the printed output, and is interpreted as follows:
Character Meaning
0 Advances two lines.
1 Ejects to the top of the next page.
+ Overprints the last line.
Space Advances one line.

1

– Advances three lines (skip two lines). Any other character is
interpreted as advance one line.

3 Generates line numbers at the left margin.
4 Suppresses header page.
5 Suppresses final page eject after printing.
12 Spools the number of copies specified in an earlier !SETPU call.
21 Places the job in the spool queue in the hold state.
22 Retains jobs in the spool queue in the hold state after they have been printed.
other All the remaining bits are reserved.

Appendix F: BASIC subroutines

596

Equate names for return code

An insert file of equate names is provided to allow you to use mnemonics rather than key numbers.
The name of the insert file is ERRD.INS.IBAS. Use the $INCLUDE statement to insert this file if you want
to use equate names. The following list shows the codes returned in the argument return.code:

Code Meaning

0 No error
E$BKEY Bad key (key is out of range)
E$BPAR Bad parameter (value of new.value is out of range)
E$BUNT Bad unit number (value of print.channel is out of range)
E$NRIT No write (attempt to set a read-only parameter)

Printing on the last line and printing a heading

If you print on the last line of the page or screen and use a HEADING statement to print a heading, your
printout will have blank pages. The printer or terminal is set to advance to the top of the next page or
screen when the last line of the page or screen is printed. The HEADING statement is set to advance to
the top of the next page to print the heading.

Examples

In the following example, the file containing the parameter key equate names is inserted with the
$INCLUDE compiler directive. Later, the top margin parameter for logical print channel 0 is set to 10
lines. Return codes are returned in the argument RETURN.CODE.

$INCLUDE SYSCOM GETPU.INS.IBAS
 CALL !SETPU(PU$TOPMARGIN,0,10,RETURN.CODE)

The next example does the same as the previous example, but uses the key 4 instead of the equate
name PU$TOPMARGIN. Because the key is used, it is not necessary for the insert file GETPU.INS.IBAS to
be included.

CALL !SETPU(4,0,10,RETURN.CODE)

!TIMDAT subroutine
Use the !TIMDAT subroutine to return a dynamic array containing the time, date, and other related
information. The !TIMDAT subroutine returns a 13-element dynamic array containing information
shown in the following list.

Syntax

CALL !TIMDAT (variable)

variable is the name of the variable to which the dynamic array is to be assigned.

Field Description

1 Month (two digits).
2 Day of month (two digits).
3 Year (two digits).
4 Minutes since midnight (integer).
5 Seconds into the minute (integer).

!USER.TYPE subroutine

597

Field Description

6 Ticks of last second since midnight (integer). Always returns 0.

Tick refers to the unit of time your system uses to measure real time.
7 CPU seconds used since entering UniVerse.
8 Ticks of last second used since login (integer).
9 Disk I/O seconds used since entering UniVerse. Always returns –1.
10 Ticks of last disk I/O second used since login (integer). Always returns –1.
11 Number of ticks per second.
12 User number.
13 Login ID (user ID).

Use the following functions for alternative ways of obtaining time and date information:

Use this function... To obtain this data...

DATE function Data in fields 1, 2, and 3 of the dynamic array returned by the !TIMDAT
subroutine

TIME function Data in fields 4, 5, and 6 of the dynamic array returned by the !TIMDAT
subroutine

@USERNO User number
@LOGNAME Login ID (user ID)

Example

CALL !TIMDAT(DYNARRAY)
 FOR X = 1 TO 13
 PRINT 'ELEMENT ':X:', DYNARRAY
 NEXT X

!USER.TYPE subroutine
Use the !USER.TYPE subroutine to return the user type of the current process and a flag to indicate if
the user is a UniVerse Administrator.

Syntax

CALL !USER.TYPE (type, admin)

type is a value that indicates the type of process making the subroutine call. type can be either of the
following:

Equate Name Value Meaning

U$NORM 1 Normal user
U$PH 65 Phantom

admin is a value that indicates if the user making the call is a UniVerse Administrator. Possible values
of admin are 1, if the user is a UniVerse Administrator, and 0, if the user is not a UniVerse Administrator.

Appendix F: BASIC subroutines

598

An insert file of equate names is provided for the !USER.TYPE values. To use the equate names, specify
the directive $INCLUDE statement SYSCOM USER_TYPES.H when you compile your program. (For PI/
open compatibility you can specify $INCLUDE SYSCOM USER_TYPES.INS.IBAS.)

Example

In this example, the !USER.TYPE subroutine is called to determine the type of user. If the user is
a phantom, the program stops. If the user is not a phantom, the program sends a message to the
terminal and continues processing.

ERROR.ACCOUNTS.FILE: CALL !USER.TYPE(TYPE, ADMIN)
 IF TYPE = U&PH THEN STOP
 ELSE PRINT 'Error on opening ACCOUNTS file'

!VOC.PATHNAME subroutine
Use the !VOC.PATHNAME subroutine to extract the path names for the data file or the file dictionary of
a specified VOC entry.

Syntax

CALL !VOC.PATHNAME (data/dict, voc.entry, result, status)

data/dict (input) indicates the file dictionary or data file, as follows:

▪ IK$DICT or 'DICT' returns the path name of the file dictionary of the specified VOC entry.

▪ IK$DATA or ' ' returns the path name (or path names for distributed files) of the data file of the
specified VOC entry.

voc.entry is the record ID in the VOC.

result (output) is the resulting path names.

status (output) is the returned status of the operation.

An insert file of equate names is provided for the data/dict values. To use the equate names, specify
the directive $INCLUDE statement SYSCOM INFO_KEYS.H when you compile your program. (For PI/
open compatibility you can specify $INCLUDE SYSCOM INFO_KEYS.INS.IBAS.)

The result of the operation is returned in the status argument, and has one of the following values:

Value Result

0 The operation executed successfully.
IE$PAR A bad parameter was used in data/dict or voc.entry.
IE$RNF The VOC entry record cannot be found.

Example

CALL !VOC.PATHNAME (IK$DATA,"VOC",VOC.PATH,STATUS)
 IF STATUS = 0
 THEN PRINT "VOC PATHNAME = ":VOC.PATH

If the user’s current working directory is /usr/account, the output is:

VOC PATHNAME = /usr/accounts/VOC

599

Appendix G: Socket function error return codes
The following error return codes are used for all socket-related functions described below. Note that
only numeric code should be used in UniVerse BASIC programs.

The following table describes each error code and its meaning.

Error code Definition

0 -SCK_ENOERROR No error.
1 - SCK_ENOINITIALISED On Windows platforms, a successful WSAStartup() call must

occur before using this function.
2 - SCK_ENETDOWN The network subsystem has failed.
3 - SCK_EFAULT The addrlen parameter is too small or addr is not a valid part of

the user address space.
4 - SCK_ENOTCONN The socket is not connected.
5 - SCK_EINTR The (blocking) call was canceled. (through WSACancelBlocking-

Call).
6 - SCK_EINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or the service

provider is still processing a callback function.
7 - SCK_EINVAL This can be caused by several conditions. The listen function

was not invoked prior to accept, the socket has not been bound
with bind, an unknown flag was specified, or MSG_OOB was
specified for a socket with SO_OOBINLINE enabled or (for byte
stream sockets only) len was zero or negative.

8 - SCK_EMFILE The queue is nonempty upon entry to accept and there are no
descriptors available.

9 - SCK_ENOBUFS No buffer space is available.
10 - SCK_ENOTSOCK The descriptor is not a socket.
11 - SCK_EOPNOTSUPP The referenced socket is not a type that supports connection-

oriented service.
12 - SCK_EWOULDBLOCK The socket is marked as nonblocking and the requested

operation would block.
13 - SCK_ENETRESET The connection has been broken due to the keep-alive activity

detecting a failure while the operation was in progress.
14 - SCK_ESHUTDOWN The socket has been shut down.
15 - SCK_EMSGSIZE (For recv()) The message was too large to fit into the specified

buffer and was truncated, or (for send()) the socket is message
oriented, and the message is larger than the maximum
supported by the underlying transport.

16 - SCK_ETIMEDOUT The virtual circuit was terminated due to a time-out or other
failure. The application should close the socket as it is no longer
usable.

17 - SCK_ECONNABORTED The connection has been dropped, because of a network failure
or because the system on the other end went down without
notice.

Appendix G: Socket function error return codes

600

Error code Definition

18 - SCK_ECONNRESET The virtual circuit was reset by the remote side executing a hard
or abortive close. For UPD sockets, the remote host was unable
to deliver a previously sent UDP datagram and responded with
a “Port Unreachable” ICMP packet. The application should close
the socket as it is no longer usable.

19 - SCK_EACCES The requested address is a broadcast address, but the
appropriate flag was not set. Call setSocketOption() with
the BROADCAST parameter to allow the use of the broadcast
address.

20 - SCK_EHOSTUNREACH The remote host cannot be reached from this host at this time.
21 - SCK_ENOPROTOOPT The option is unknown or unsupported for the specified

provider or socket.
22 - SCK_ESYSNOTREADY Indicates that the underlying network subsystem is not ready

for network communication.
23 -SCK_EVER

NOTSUPPORTED

The version of Windows Sockets support requested is not
provided by this particular Windows Sockets implementation.

24 - SCK_EPROCLIM Limit on the number of tasks supported by the Windows
Sockets implementation has been reached.

25 - SCK_EAFNOSUPPORT The specified address family is not supported.
26 - SCK_EPROTONOSUPPORT The specified protocol is not supported.
27 - SCK_EPROTOTYPE The specified protocol is the wrong type for this socket.
28 - SCK_ESOCKTNOSUPPORT The specified socket type is not supported in this address

family.
29 - SCK_EBADF Descriptor socket is not valid.
30 - SCK_EHOST_NOT_FOUND Authoritative Answer Host not found.
31 - SCK_ETRY_AGAIN Nonauthoritative Host not found, or server failure.
32 - SCK_ENO_RECOVERY A nonrecoverable error occurred.
33 - SCK_ENO_DATA Valid name, no data record of requested type.
34 - SCK_EACCESS Attempt to connect datagram socket to broadcast address

failed because setSocketOption() BROADCAST is not enabled.
35 - SCK_EADDRINUSE A process on the machine is already bound to the same fully-

qualified address and the socket has not been marked to allow
address reuse with REUSEADDR. (See the REUSEADDR socket
option under setSocketOption()).

36 - SCK_EADDRNOTAVAIL The specified address is not a valid address for this machine.
37 - SCK_EISCONN The socket is already connected.
38 - SCK_EALREADY A nonblocking connect call is in progress on the specified

socket.
39 - SCK_ECONNREFUSED The attempt to connect was forcefully rejected.
40 - SCK_EMALLOC Memory allocation error.
41 - SCK_ENSLMAP NLS map not found, or unmapped characters encountered.
42 - SCK_EUNKNOWN Other unknown errors.
101 Invalid security context handle.
102 SSL/TLS handshake failure (unspecified, peer is not SSL aware).
103 Requires client authentication but does not have a certificate in

context.

Socket function error return codes

601

Error code Definition

104 Unable to authenticate server.
105 Client authentication failure.
106 Peer not speaking SSL.
107 Encryption error.
108 Decryption error.

	Contents
	Chapter 1: Statements and functions
	! statement
	#INCLUDE statement
	$* statement
	$CHAIN statement
	$COPYRIGHT statement
	$DEFINE statement
	$EJECT statement
	$IFDEF statement
	$IFNDEF statement
	$INCLUDE statement
	$INSERT statement
	$MAP statement
	$OPTIONS statement
	$PAGE statement
	$UNDEFINE statement
	* statement
	< > operator
	@ function
	[] operator
	ABORT statement
	ABS function
	ABSS function
	acceptConnection function
	ACOS function
	ACTIVATEKEY statement
	addAuthenticationRule function
	addCertificate function
	addRequestParameter function
	ADDS function
	ALPHA function
	amInitialize function
	amReceiveMsg function
	amReceiveRequest function
	amSendMsg function
	amSendRequest function
	amSendResponse function
	amTerminate function
	analyzeCertificate function
	ANDS function
	ASCII function
	ASIN function
	ASSIGNED function
	assignment statements
	ATAN function
	AuditLog() function
	AUTHORIZATION statement
	AUXMAP statement
	BEGIN CASE statement
	BEGIN TRANSACTION statement
	BITAND function
	BITNOT function
	BITOR function
	BITRESET function
	BITSET function
	BITTEST function
	BITXOR function
	BREAK statement
	BSCAN statement
	BYTE function
	BYTELEN function
	BYTETYPE function
	BYTEVAL function
	CALL statement
	CASE statements
	CATS function
	CENTURY.PIVOT function
	CHAIN statement
	CHANGE function
	CHAR function
	CHARS function
	CHECKSUM function
	CLEAR statement
	CLEARCOMMON
	CLEARDATA statement
	CLEARFILE statement
	CLEARPROMPTS statement
	CLEARSELECT statement
	CLOSE statement
	CLOSESEQ statement
	closeSocket function
	CloseXMLData function
	COL1 function
	COL2 function
	COMMAND.EDITOR
	COMMIT statement
	COMMON statement
	COMPARE function
	CONVERT function
	CONVERT statement
	COS function
	COSH function
	COUNT function
	COUNTS function
	CREATE statement
	createCertificate function
	createCertRequest function
	createRequest function
	createSecureRequest function
	createSecurityContext function
	CRT statement
	DATA statement
	DATE function
	DATETIMEL function
	DATETIMEZ function
	DBTOXML function
	DCOUNT function
	DEACTIVATEKEY statement
	DEBUG statement
	DEFFUN statement
	DEL statement
	DELETE function
	DELETE statements
	DELETELIST statement
	DESCRINFO function
	DIGEST function
	DIMENSION statement
	DISABLEDEC statement
	DISPLAY statement
	DIV function
	DIVS function
	DOWNCASE function
	DQUOTE function
	DTX function
	EBCDIC function
	ECHO statement
	ENABLEDEC statement
	ENCODE function
	ENCRYPT function
	END statement
	END CASE statement
	END TRANSACTION statement
	ENTER statement
	EOF(ARG.) function
	EQS function
	EQUATE statement
	EREPLACE function
	ERRMSG statement
	EXCHANGE function
	EXECUTE statement
	EXIT statement
	EXP function
	EXTRACT function
	FADD function
	FDIV function
	FFIX function
	FFLT function
	FIELD function
	FIELDS function
	FIELDSTORE function
	FILEINFO function
	FILELOCK statement
	FILEUNLOCK statement
	FIND statement
	FINDSTR statement
	FIX function
	FLUSH statement
	FMT function
	FMTDP function
	FMTS function
	FMTSDP function
	FMUL function
	FOLD function
	FOLDDP function
	FOOTING statement
	FOR statement
	FORMLIST statement
	FSUB function
	FUNCTION statement
	GCDISTANCE function
	generateKey function
	generateKey function
	GES function
	GET statements
	getCipherSuite function
	getIpv
	GETX statement
	GET(ARG.) statement
	getHTTPDefault function
	GETLIST statement
	GETLOCALE function
	GETREM function
	getSocketErrorMessage function
	getSocketInformation function
	getSocketMap function
	getSocketOptions function
	GOSUB statement
	GOTO statement
	GROUP function
	GROUPSTORE statement
	GTS function
	HEADING statement
	HMAC function
	HUSH statement
	ICHECK function
	ICONV function
	ICONVS function
	IF statement
	IFS function
	ILPROMPT function
	INCLUDE statement
	INDEX function
	INDEXS function
	INDICES function
	initSecureServerSocket function
	initServerSocket function
	INMAT function
	INPUT statement
	INPUTCLEAR statement
	INPUTDISP statement
	INPUTDP statement
	INPUTERR statement
	INPUTIF statement
	INPUTNULL statement
	INPUTTRAP statement
	INS statement
	INSERT function
	INT function
	ISNULL function
	ISNULLS function
	ITYPE function
	KEYEDIT statement
	KEYEXIT statement
	KEYIN function
	KEYTRAP statement
	LEFT function
	LEN function
	LENDP function
	LENS function
	LENSDP function
	LES function
	LET statement
	LN function
	loadSecurityContext function
	LOCALEINFO function
	LOCATE statement (IDEAL and REALITY syntax)
	LOCATE statement (INFORMATION syntax)
	LOCATE statement (PICK syntax)
	LOCK statement
	LOOP statement
	LOWER function
	LTS function
	MAT statement
	MATBUILD statement
	MATCH operator
	MATCHFIELD function
	MATPARSE statement
	MATREAD statements
	MATREADL statement
	MATREADU statement
	MATWRITE statements
	MATWRITEU statement
	MAXIMUM function
	MINIMUM function
	MOD function
	MODS function
	MQCLOSE function
	MQCONN function
	MQDISC function
	MULS function
	NAP statement
	NEG function
	NEGS function
	NES function
	NEXT statement
	NOBUF statement
	NOT function
	NOTS function
	NOW function
	NULL statement
	NUM function
	NUMS function
	OCONV function
	OCONVS function
	ON statement
	OPEN statement
	OPENCHECK statement
	OPENDEV statement
	OPENPATH statement
	OPENSEQ statement
	openSecureSocket function
	openSocket function
	OpenXMLData function
	ORS function
	PAGE statement
	PERFORM statement
	PRECISION statement
	PrepareXML function
	PRINT statement
	PRINTER statement
	PRINTERR statement
	PROCREAD statement
	PROCWRITE statement
	PROGRAM statement
	PROMPT statement
	protocolLogging function
	PWR function
	PyCall function
	PyCallFunction function
	PyCallMethod function
	PyGetAttr function
	PyImport function
	PySetAttr function
	QUOTE function
	RAISE function
	RANDOMIZE statement
	READ statements
	READBLK statement
	READL statement
	READLIST statement
	READNEXT statement
	READSEQ statement
	readSocket function
	READT statement
	READU statement
	READV statement
	READVL statement
	READVU statement
	ReadXMLData function
	REAL function
	RECORDLOCK statements
	RECORDLOCKED function
	RELEASE statement
	ReleaseXML function
	REM function
	REM statement
	REMOVE function
	REMOVE statement
	REPEAT statement
	REPLACE function
	RETURN statement
	RETURN (value) statement
	REUSE function
	REVREMOVE statement
	REWIND statement
	RIGHT function
	RND function
	ROLLBACK statement
	RPC.CALL function
	RPC.CONNECT function
	RPC.DISCONNECT function
	saveSecurityContext function
	SADD function
	SCMP function
	SDIV function
	SEEK statement
	SEEK(ARG.) statement
	SELECT statements
	SELECTE statement
	SELECTINDEX statement
	SELECTINFO function
	SEND statement
	SENTENCE function
	SEQ function
	SEQS function
	setAuthenticationDepth function
	setCipherSuite function
	setClientAuthentication function
	setIpv
	setPrivateKey function
	setRandomSeed function
	SET TRANSACTION ISOLATION LEVEL statement
	setHTTPDefault function
	setRequestHeader function
	SETLOCALE function
	SETREM statement
	setSocketMap function
	setSocketOptions function
	showSecurityContext function
	SIGNATURE function
	SIN function
	SINH function
	SLEEP statement
	SMUL function
	SOAPCreateRequest function
	SOAPCreateSecureRequest function
	SOAPGetDefault function
	SOAPGetFault function
	SOAPGetResponseHeader function
	SOAPSetRequestBody function
	SOAPSetRequestContent function
	SOAPSetRequestHeader function
	SOAPRequestWrite function
	SOAPSetDefault function
	SOAPSetParameters function
	SOAPSubmitRequest function
	SOUNDEX function
	SPACE function
	SPACES function
	SPLICE function
	SQRT function
	SQUOTE function
	SSELECT statement
	SSUB function
	STATUS function
	STATUS statement
	STOP statement
	STORAGE statement
	STR function
	STRS function
	submitRequest function
	SUBR function
	SUBROUTINE statement
	SUBS function
	SUBSTRINGS function
	SUM function
	SUMMATION function
	SWAP statement
	SYSTEM function
	TABSTOP statement
	TAN function
	TANH function
	TERMINFO function
	TIME function
	TIMEDATE function
	TIMEOUT statement
	TODATE function
	TODATETIME function
	TOTIME function
	TPARM function
	TPRINT statement
	TRANS function
	transaction statements
	TRANSACTION ABORT statement
	TRANSACTION COMMIT statement
	TRANSACTION START statement
	TRIM function
	TRIMB function
	TRIMBS function
	TRIMF function
	TRIMFS function
	TRIMS function
	TTYCTL statement
	TTYGET statement
	TTYSET statement
	UDOArrayAppendItem
	UDOArrayDeleteItem
	UDOArrayGetItem
	UDOArrayGetNextItem
	UDOArrayGetSize
	UDOArrayInsertItem
	UDOArraySetItem
	UDOClone
	UDOCreate
	UDODeleteProperty
	UDOFree
	UDOGetLastError
	UDOGetNextProperty
	UDOGetOption
	UDOGetProperty
	UDOGetPropertyNames
	UDOGetType
	UDOIsTypeOf
	UDORead
	UDOSetOption
	UDOSetProperty
	UDOWrite
	UNASSIGNED function
	UNICHAR function
	UNICHARS function
	UNISEQ function
	UNISEQS function
	UNLOCK statement
	UPCASE function
	UPRINT statement
	USERINFO function
	WEOF statement
	WEOFSEQ statement
	WRITE statements
	WRITEBLK statement
	WRITELIST statement
	WRITESEQ statement
	WRITESEQF statement
	writeSocket function
	WRITET statement
	WRITEU statement
	WRITEV statement
	WRITEVU statement
	XDOMAddChild function
	XDOMAppend function
	XDOMClone function
	XDOMClose function
	XDOMCreateNode function
	XDOMCreateRoot function
	XDOMEvaluate function
	XDOMGetAttribute function
	XDOMGetChildNodes function
	XDOMGetElementByld function
	XDOMGetElementsByName function
	XDOMGetElementsByTag function
	XMLGetError function
	XDOMGetNodeName function
	XDOMGetNodeType function
	XDOMGetNodeValue function
	XDOMGetOwnerDocument function
	XDOMGetUserData function
	XDOMItem function
	XDOMLength function
	XDOMLocate function
	XDOMLocateNode function
	XDOMOpen function
	XDOMQuery function
	XDOMRemove function
	XDOMReplace function
	XDOMSetNodeValue function
	XDOMSetUserData function
	XDOMTransform function
	XDOMValidate function
	XDOMWrite function
	XLATE function
	XMAPAppendRec
	XMAPClose function
	XMAPCreate Function
	XMAPOpen function
	XMAPReadNext function
	XMAPToXMLDoc function
	XMLError function
	XMLExecute function
	XMLTODB function
	XTD function

	Appendix A: Quick reference
	Compiler directives
	Declarations
	Assignments
	Program flow control
	File I/O
	Sequential file I/O
	Printer and terminal I/O
	Tape I/O
	Select lists
	String handling
	Data conversion and formatting
	NLS
	Mathematical functions
	Relational functions
	System
	Remote procedure calls
	Miscellaneous

	Appendix B: ASCII and hex equivalents
	Appendix C: Correlative and conversion codes
	A code: algebraic functions
	BB and BX codes: bit conversion
	C code: concatenation
	D code: date conversion
	DI code: international date conversion
	DT code: datetime conversion
	ECS code: extended character set conversion
	F code: mathematical functions
	G code: group extraction
	L code: length function
	MC Codes: masked character conversion
	MD code: masked decimal conversion
	MM code: monetary conversion
	ML and MR codes: formatting numbers
	MP code: packed decimal conversion
	MT code: time conversion
	MX, MO, MB, and MU0C codes: radix conversion
	MY code: ASCII conversion
	NL code: Arabic numeral conversion
	NLSmapname code: NLS map conversion
	NR code: roman numeral conversion
	P code: pattern matching
	Q code: exponential notation
	R code: range function
	S (soundex) code
	S (substitution) code
	T code: text extraction
	Tfile code: file translation
	TI code: international time conversion

	Appendix D: BASIC reserved words
	Appendix E: @Variables
	Appendix F: BASIC subroutines
	! ASYNC subroutine
	!EDIT.INPUT subroutine
	!ERRNO subroutine
	!FCMP subroutine
	!GET.KEY subroutine
	!GET.PARTNUM subroutine
	!GET.PATHNAME subroutine
	!GETPU subroutine
	!GET.USER.COUNTS subroutine
	!GET.USERS subroutine
	!INLINE.PROMPTS subroutine
	!INTS subroutine
	!MAKE.PATHNAME subroutine
	!MATCHES subroutine
	!MESSAGE subroutine
	!PACK.FNKEYS subroutine
	!REPORT.ERROR subroutine
	!SET.PTR subroutine
	!SETPU subroutine
	!TIMDAT subroutine
	!USER.TYPE subroutine
	!VOC.PATHNAME subroutine

	Appendix G: Socket function error return codes

